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Abstract—The problem of finding satisfying assignments for 

conjunctive normal formula with K literals in each clause, known 

as K-SAT, has attracted many attentions in the previous three 

decades. Since it is known as NP-Complete Problem, its effective 

solution (finding solution within polynomial time) would be of 

great interest due to its relation with the most well-known open 

problem in computer science (P=NP Conjecture). Different 

strategies have been developed to solve this problem but in all of 

them the complexity is preserved in NP class. In this paper, by 

considering the recent approach of applying statistical physic 

methods for analyzing the phase transition in the complexity of 

algorithms used for solving K-SAT, we try to compute the 

complexity of using randomized algorithm for finding the 

solution of K-SAT in more relaxed regions. It is shown how the 

probability of literal flipping process can change the complexity 

of algorithm substantially. An information theoretic 

interpretation of this reduction in time complexity will be argued. 
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I. INTRODUCTION 

In computer science, there is an important family of 
problems known as Constraint Satisfaction problem. In this 
family we are looking for the values of variables which satisfy 
the set of constraints simultaneously. Although many of these 
constraints deals with non-Boolean variables, but they can be 
reduced to the well-known form of satisfying a canonical form 
of logical formula called Conjunctive Normal Form (CNF). 
When each clause in CNF has K literals, this problem is called 
K-Satisfiability problem or K-SAT. 

This problem covers a wide range of different theoretical 
and applied problems. Scheduling time table problem [1], 
Planning in Artificial Intelligence [2], validating software 
models [3], routing field programmable gate arrays [4] and 
synthesizing consistent network configurations [5] are 
recognized among these problems. 

Furthermore, an important problem of designing digital 
circuits and their verifications can be reformulated easily into 
the satisfying of K-SAT formula [6]-[8]. 

The theoretical reason behind this wide range of 
application for K-SAT problem was discovered by Stephen 
Cook [9]. He proved the NP-Complete nature of the K-SAT 
problem. It means all of NP problems can be reduced to the 
version of K-SAT problem by using an efficient procedure 
with polynomial time complexity [10]. Therefore it is not hard 

to imagine that how much the effective strategy for solving K-
SAT would be advantageous, both from theoretical and 
practical perspectives. 

This paper has been organized into four sections. After this 
primary introduction about K-SAT, different strategies which 
have been designed to solve k-SAT are reviewed in Section 2. 
Section 3 focuses on randomized algorithm, in which it is tried 
to improve the time complexity of algorithm by relaxing the 
conditions imposed on random walking in the solution space 
inspired by the recent studies about the typical time 
complexity of K-SAT problem [11]. Finally in Section 4, 
concluding remarks and future works will be discussed. 

II. RELATED WORKS 

Classically constraint satisfaction problems are solved by 
systematic search algorithms. For K-SAT problem, this 
approach is followed in the DPLL algorithm [12], [13]. 

In this algorithm after choosing a value for any unassigned 
variable, the formula is simplified by considering the 
propagation of chosen value in the formula. Since the 
constraints are represented in conjunctive normal form, two 
main equivalence rules in propositional logic about disjunctive 
phrases are used to deduce the consequences of any variable 
assignment (1) & (2). 

                     

                       

For any K-SAT formula on   Boolean variables,    
assignments are possible. This exponentially large state space 
can be pruned by considering the structural properties of the 
CNF formula. Sometimes it is better to start the process of 
assigning value to variables from highly constrained variables 
and sometimes it is better to start with more relaxed variables. 

In the case of applying DPLL algorithm, the process of 
assignment is started with unit-clause (single literal clause). 
These unite clauses provide a suitable way to reduce the size 
of state space by imposing a strict type of restriction on the 
value of literals in the unite-clauses. 

The best scenario happens when deducing the 
consequences of any unite-clause assignment provide an 
opportunity for forming another unite-clause. Consider the 
following formula: 

 (          )  (  ̅̅̅)  (     )  (  ̅̅ ̅    )    
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Certainly for satisfying  ,    must be assigned 0, 
considering this value for  , the second clause is transformed 
into a unit clause  . Therefore    must be assigned 1 or true. 
Again considering this value for    the third clause is 
transformed into unit clause    and the process is continued 
by choosing proper values for the variables of formula. This 
condition provides a clear guide for choosing the values for 
variables without any doubt and reduces the time complexity 
of the problem. 

Unfortunately this consecutive formation of unite clauses 
happens rarely and cannot be used as a general technique. As a 
matter of fact the consecutive emergence of unit clauses in the 
process of deducing the consequences of the variable 
assignment reduces the branching factor of the search tree. 

Studies have shown the considerable amount of reduction 
in the time complexity of solving K-SAT, whenever one can 
find a way to represent the formula in the way that imposes 
maximum restriction for variable assignment. Sometimes this 
type of forced assignment leading to the pruned search tree is 
called implication. The best example of this type of forced 
assignment can be observed in Horn theory [14]. 

It must be mentioned that in the case of unsatisfiable 
formula, reaching to conflict as soon as possible (in 
polynomial time) is realized as a sign of an effective search 
strategy. A conflict can be detected in the formula if at some 
point there is a clause in the formula with all of its literals 
evaluating to zero. The clause with this condition is called 
conflicting clause. A conflict in the formula happens as the 
result of earlier improper assignments. 

Different strategies have been developed to escape from 
conflicts. Backtracking to the earlier assignments and change 
them in the controlled way, is the common them of all these 
strategies [11]. DPLL has experienced many significant 
improvements over the years based on these backtracking 
techniques. Conflict Driven Learning and Non-Chronological 
Backtracking are among the best improvements which have 
enhanced the power of DPLL algorithm in a considerable way 
[15], [16]. These improvements are based on the simple 
strategy of learning as much as possible from any conflict and 
its source in order to avoid it in the subsequent assignments. 

Modern algorithms for solving SAT problem, gets the 
benefit of an improved type of unit clause rule, called two-
literal watching and also improved technique in branching and 
variable assignment by considering the variables presented in 
recently conflicting clauses [17].Sometimes it is justifiable to 
apply random restart technique due to the complications 
associated with Conflict Driven Learning techniques and 
correlations among different clauses [18]. 

There is an interpretation of K-SAT which puts it in the 
category of discrete optimization problems. In this 
perspective, we are looking to maximize the number of 
satisfied clauses. This maximum can reach to the total number 
of clauses in which satisfaction happens. Therefore it is 
possible to use discrete optimization techniques like Simulated 
Annealing [19], Tabu Search [20], Neural Network [21] and 
Genetic Algorithms [22] to solve it. 

Realization of K-SAT as an optimization problem 
refreshes our mind about the general difficulties of finding the 
maximum of the objective function. The intractable nature of 
the problem exhibits itself as the difficulties of bypassing the 
exponential number of local maximums or local minimums in 
its objective function [23]. Considering the K-SAT as an 
optimization problem, one can use stochastic local search 
algorithms to bypass the pathological difficulties of finding 
the global maximum of its objective function. 

Stochastic local search algorithms were used for the first 
time by Minton et al. [24] for solving constraint satisfaction 
problem and for MAX-SAT problem by Hansen and Janmard 
[25]. Particularly for K-SAT, stochastic local search was used 
by Gu [26] and Selman et al. [27]. Selman et al. introduced 
GSAT algorithm which was more effective than DPLL 
variants used in those days and their approach sparked 
considerable interest in Artificial Intelligence Community. 

In spite of all efforts, up to now, we don’t have a 
polynomial time algorithm for solving K-SAT. On the other 
side there is a belief supported by many practical experiments 
which asserts that exponential time complexity occurs for a 
limited sub-space of K-SAT instances [28]. After the seminal 
work of  Cheesman et al. [29], today we know that hard 
instances for K-SAT reside at the threshold of satisfiable to 

unsatisfiable phase, which occurs at specific value of 
 

 
 known 

as   (here   is the number of clauses or constraints and   is 
the number of variables in the K-SAT formula). Theoretical 
investigations about the source and nature of this phase 
transition in the K-SAT problem have revolutionized our 
understanding from this problem and its state space geometry. 
Recently threshold conjecture has been proved analytically for 
some specific conditions [30]. 

The effectiveness of applying statistical physic methods 
for analyzing the source of phase transition in the K-SAT 
problem, has provided us a very detailed picture of solution 
space upon which many other thresholds of transition have 
been recognized. In addition to   (Satisfiable to Unsatisfiable 
threshold), an algorithmic threshold    is defined in such a 
way that all known algorithms running in polynomial time fail 
to find solution for     . Generally it is known that 
      [31]. 

Therefore the previous satisfiable phase is partitioned into 
different regions in the light of new detailed picture of the 
solution space. Generally as   is increased the clusters of 
solutions in the solution space shrink and the connectivity 
among them is lost [32]. Let   and   be two distinct solutions 
in the set of all satisfying assignments for a specific K-SAT 
instance. A step [33] is defined as the number of variables 
which must be inverted in   to produce some    that is also in 
a solution space. A path from   to   is defined as a sequence 
of steps starting with   and ending with . 

Intuitively we expect that increasing   
 

 
 decreases the 

number of solutions up to reaching to the unsatisfiability 
region but this phase transition is accompanied with other 
micro-transitions especially in the solution space of the 
problem. 
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For example bellow   for     , we observe 
connectivity in solution space. This connectivity exhibits itself 
as the existence of path between any two arbitrarily chosen 
solutions   and .This connectivity is transformed at some 
specific value, called       in which the solutions are 
partitioned into different clusters. Therefore at this value   , 
the condition can be described technically by the following 
equation[33]. 

  ⋃   
 
                   *     +       

                                                

Further increment of   changes the size and the number of 
clusters into exponentially large number (in the problem 
size ) where two solutions belonging to different clusters, 
have a large hamming distance that scales with problem size 
[34]. 

There are several other phase transitions which can be 
defined for the topological transformation of the solutions in 
the state space [33], [35]. For example one can also identify 
   in which a condensation takes place such that for any  
  , the majority of solutions belong to sub-exponential 
number of clusters. Generally we have:         [36], 
[37]. 

In this paper by considering this picture of solution space, 
it is tried to improve randomized algorithm presented by 
Schoning [38] in 1999 and reduce its time complexity. 

III. RANDOMIZED ALGORITHM AND ITS ANALYSIS 

When the structure of K-CNF formula cannot provide an 
insight for pruning the solution space, nothing can do better 
than random search [23]. Theoretically the maximum amount 
of information can be extracted by this strategy from state 
space of the problem. The first successful randomized local 
search was introduced by Schoning [38]. His method has been 
based on random walking in the space of possible assignments 
starting from random truth assignment and flipping the 
suitable literals until the formula gets satisfied. 

Taking into account different thresholds mentioned in the 
previous section, we expect to find a solution in polynomial 
time when    . The situation would be harder for   near 
   and after it due to the clusterization. Because of the 
interaction between different clauses, up to now, no one has 
given an analytic model which makes us able to count the 
number of unsatisfied clauses during the process of random 
walking in the solution space. Therefore the performance of 
Schoning’s algorithm is analyzed by focusing on the hamming 
distance between current assignments namely  and one 
particular satisfying assignment called  . Let’s look at the 
Schonin’s algorithm [38]. 

This algorithm starts at a uniformly random truth 
assignment . If   satisfies the formula, it would be returned. 
Otherwise the algorithm repeatedly chooses a clause   from 
unsatisfied clauses, then chooses a variable   uniformly 
from ’s literals and flipping it until the formula is satisfied or 
the algorithm runs out of time. 

As a matter of fact, starting from random initial 
assignment  , the algorithm tries to reduce the hamming 

distance between current assignment and satisfying 
assignment by random flipping of variables in unsatisfied 
clauses. Obviously                 (    )  would be 
less than  (the number of variables in the formula) and greater 
or equal to zero. 

                  (    )    

Reaching to the zero hamming distance means the 
satisfying assignment has been found. Let’s define  ( ) as the 
probability of reaching to the zero. We know that: 

 ( )              ( )    

As a matter of fact we are looking for the evolution of 
 ( )  during the execution of randomized algorithm. 
Considering the algorithm, it is not hard to realize that flipping 
the variable chosen uniformly from the unsatisfied clause is 
responsible for the evolution of ( ) . Let   be the chosen 
clause from unsatisfied clauses with assumption that the 
formula is satisfied finally at threshold of  , one can expect 
that     agrees with   on at least one of its variables. Therefore 
flipping one variable would lead to reducing the hamming 
distance and moving toward   (satisfying assignment) with 

probability
 

 
. Consequently the hamming distance is increased 

due to this flipping with probability(  
 

 
). Now we have 

enough information to write the governing equation of ( ) at 
the vicinity of  . 

 ( )  
 

 
 (   )  

   

 
 (   ) 

Equation (7) reflects the evolution of  ( ) when we are 
dealing with highly constrained problem near  . For more 
relaxed type of problem in which   is around   , the 
agreement of    with   equals to , where    , due to the 
connectivity in the solution space among the satisfying 
assignments. Therefore, (7) can be transformed for covering 
more relaxed problems into (8). 

 ( )  
 

 
 (   )  

   

 
 (   )              

The boundary conditions ( ( )            ( )   ) 
are still valid for relaxed type of problem. Solving (8) will 
give us the answer: 

 (   )  (
   

 
)    

Equation (9) shows that the success of finding the 
satisfying assignment is completely controlled by the 
hamming distance of randomly chosen initial assignment with 
the satisfying assignment   and also by the probability of 
having suitable flipping of variables. In order to calculate the 
        (the probability of finding the satisfying assignment 
by algorithm), it is enough to divide the   possible 
assignments into partitions with the same hamming distance to 
the desired satisfying assignment and compute the average of 
 ( ) over . 

    (                (    )   )     ( 
 
) 

Therefore for computing         by applying the 
generalized type of Schoning’s algorithm in which the random 
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walker reduces the hamming distance to the desired satisfying 

assignment with probability 
 

 
 and increases it with 

probability
   

 
, we have the following equation: 

        ( )  ∑    ( 
 
) (   ) 

    

∑    ( 
 
)(

 

   
)  

           (
 

   
  )     (

 

   
)  

(
 (   )

 
)    

By applying amplification technique in order to get rid of 
emergent error associated with randomized algorithm [39], the 
time complexity of applying this algorithm for solving K-SAT 

problem is ( )      ( )(
 (   )

 
) . For computing this time 

complexity, it has been assumed that Schoning’s algorithm 
needs polynomial time complexity. 

Therefore boosting technique applied for reducing the 
error of randomized algorithm is the source of emerging 
exponential time complexity of the resulted algorithm. In the 
next section we argue how the parameter , taking part in the 
probability of reducing hamming distance, can change our 
usual expectation from the complexity of this method. 

IV. CONCLUSION AND FUTURE WORK 

In this paper we analyzed the consequences of applying 
Schoning’s randomized search method [38] for values 
of    . Usually the performance of algorithms is analyzed 
in worst case, in which the maximum time complexity can be 
observed. 

For K-SAT, as it has been shown by Cheeseman et al. 
[29], the worst instances happen at the onset of    in which 
one can expect that each clause is satisfied by a proper value 
of just one of its variables. In this highly constrained region, 
we have     and the time complexity of algorithm 

is (
 (   )

 
)     ( ) . By applying an information theoretic 

method [40] to calculate the entropy of the random walk in 

this case (where (     )  
   

 
    (     )  

 

 
) we 

reach to (12). 

 ,      -  
 

 
      

   

 
    

 

   
 

 
Fig. 1. The Entropy of random walking in the state space at the vicinity of 

  . 

Fig. 1 shows the entropy function of K-SAT problem at 
the threshold of    in which satisfaction comes in highly 
constrained manner. Remember that for      the K-SAT 
would be unsatisfiable. 

A deeper look at Fig. 1 shows that maximum value of 
entropy function for k-SAT occurs at k=2. We know that k-
SAT is solvable in polynomial time for k=2. It means that, the 
exponential size of solution space is pruned maximally when 
the amount of information gained from random walk in 
solution space becomes maximum at k=2. 

In Fig. 2, the entropy function of random walking in the 
solution space of more relaxed situation in which  (   

  )  
   

 
    (     )  

 

 
 where    , has been 

depicted. As it can be observed, for larger value of , which is 
seen in more relaxed problem (    ), the maximum value 
of function is shifted toward larger values of . 

It has been known for several years that random walking in 
the solution space is the best strategy in the lack of any guide 
for pruning the large state spaces [23]. The result of this paper 
approves this hypothesis. When the entropy of random walk is 
maximized the problem can be solved effectively in 
polynomial time due to the vanishing of exponential part of 

time complexity. Obviously  ( )      ( )(
 (   )

 
)  is 

transformed to     ( )  at      , in which maximum 
entropy of random walk is happened and deviation from this 
maximum entropy of random walk would be accompanied by 
the emergence of exponential time complexity. 

Although   is known to be larger than 1 for    , It is an 
open question to find a strict mathematical bound for it. This 
trend of study will improve our understanding in the future. 

 

Fig. 2. The entropy of random walk for different values of  .   with red 

line,    with green line,    with magenta line and     with yellow line. 
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