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Abstract—Model transformation by example is a novel 

approach in model-driven software engineering. The rationale 

behind the approach is to derive transformation rules from an 

initial set of interrelated source and target models; e.g., 

requirements analysis and software design models. The derived 

rules describe different transformation steps in a purely 

declarative way. Inductive Logic Programming utilizes the power 

of machine learning and the capability of logic programming to 

induce valid hypotheses from given examples. In this paper, we 

use Inductive Logic Programming to derive transformation rules 

from given examples of analysis-design pairs. As a proof concept, 

we applied the approach to two major software design tasks: 

class packaging and introducing Façade design. Various analysis-

design model pairs collected from different sources were used as 

case studies. The resultant performance measures show that the 

approach is promising. 
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I. INTRODUCTION 

The problem of transforming the requirement analysis 
models into software design models can be viewed as a model 
transformation problem. Designers utilize their engineering 
knowledge to perform this specific kind of transformation. In 
this paper, we capture such knowledge through learning the 
transformation rules from available pairs of requirement 
analysis models (e.g., domain model or conceptual class 
diagram) and corresponding software design models (e.g., 
component diagram or package diagram). The approach of 
learning a model transformation from provided examples is 
referred to as Model Transformation by Example (MTBE) [1]. 
The examples, in this context, represent pairs of the 
transformation requirements/design models. 

Model Driven Development (MDD) considers a sequence 
of several kinds of models as the primary artifacts of the 
development process as they contain the needed information 
that supports its different phases. Those models may be derived 
from each other via automated transformation. The models are 
structured conforming to particular models called meta-models. 
Implementing models transformation requires an intense 
knowledge about MDD including the meta-models and the 
environment of the model transformation. 

Practically, machine learning (ML) techniques can be used 
to deduce the transformation rules from the available set of 
examples [2]. ML techniques have been applied in different 
domains, including software engineering [3]-[8]. Inductive 

logic programming (ILP) is one of the machine learning 
techniques that provide mechanisms for inducing valid 
hypotheses from given examples and background knowledge 
of the domain of interest [9], [10]. Rules have been used 
widely as a powerful way for representing knowledge. 
However, in the domain of model transformation, authoring the 
transformation rules is not a trivial task. It might be easier for 
the domain expert to provide examples of the transformation 
rather than introducing consistent and complete rules. Thus, it 
is desirable to utilize the accumulated experience by 
automatically capturing the transformation rules from 
examples [11]. 

The primary contribution of this paper is to define a 
methodology, with an associated tools-chain, for the 
incremental design of model transformation rules. The 
increments in the rule design are automatically derived by 
defining positive and negative examples on a given training set 
of models (i.e. learning models). As a secondary contribution, 
we propose the application of such an inferred set of model 
transformation rules in order to refactor actual 
domain/conceptual artifacts (referred as “analysis models”) 
toward design solutions. These contributions are interesting for 
both the communities working on Model Driven Engineering 
and on Software Engineering, and the context defined here 
with their solution may be worth for the attention also to a 
wider audience from others communities. 

In a particular, we use ILP to automatically capture the 
expertise manifested in previous analysis-design pairs, and 
consequently, represent such expertise in a form of declarative 
rules. These rules can be applied to a new design problem to 
suggest a possible design to given analysis models. Such 
design suggestion can be adopted “as is” by the designer or at 
least be reviewed and refined by the designer before adoption. 
In either cases, this would offer effort saving and, accordingly, 
cost reduction. Moreover, this would offer indirect reuse of 
best practice that would in turn improve quality. We applied 
the approach to various case studies collected from different 
sources. A considerable part of the data have been used for 
training to induce rules regarding two major software design 
tasks: class packaging and introducing Façade design. 

The rest of this paper is organized as follows. Section II 
introduces the needed technical background. Section III 
reviews the literature survey, while Section IV introduces the 
proposed transformation system. Section V describes the 
transformations tasks. While Section VI demonstrates the 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 11, 2017 

532 | P a g e  

www.ijacsa.thesai.org 

conducted experiments, Section VII discusses the findings and 
the open issues.  Finally, Section VIII concludes the paper. 

II. TECHNICAL BACKGROUND 

In this section, we give the background necessary to follow 
the rest of the paper. 

A. Model Driven Development Transformations 

The goal of this work is to facilitate the transformation 
from the analysis models toward the software design models by 
reusing previous experience. That is, based on the given 
requirements, the existing requirement-design pairs from 
previous systems can be utilized to build the new system’s 
design. Indeed rule-based transformation approaches rely on 
transformation rules that were obtained empirically [12]. 
However, it might be a difficult task to define, express, and 
maintain the transformation rules, particularly for non-widely 
used formalisms. That is, it is most important to gather the 
knowledge in a form of rules, not only to decide about the 
transformation language [13], [14]. Thus, the objective of this 
paper is to use ILP, discussed next, to capture such 
transformation rules. 

B. Inductive Logic Programming 

ILP can be seen as the intersection of machine learning and 
logic programming. An ILP problem is defined as follows: 
Given a background theory B, and a set of examples E 
(represented as ground literals) that consists of  positive E+ and 
negative E- examples, the target is to find a hypothesis H such 
that                                       
[9], [10]. Thus, the problem of learning a particular hypothesis 
can be designed as a search problem through a space of models 
[15]. To perform a search two main strategies were used: 
generate-and-test and data-driven. In both, the applied 
algorithms can proceed either bottom-up or top-down. A 
combination of those strategies and algorithms can be 
exploited. Examples of ILP systems are FOIL [16], GOLEM 
[17], PROGOL [18], ALEPH [19] and others. ALEPH (A 
Learning Engine for Proposing Hypotheses) employed in this 
work, has different evaluation functions and search strategies 
that can be applied, and it has been applied successfully in 
many domains [20]-[25]. 

III. LITERATURE SURVEY 

In this section, we present a literature survey that addresses 
two views presented below. It is noteworthy that the terms 
transformation links, transformation mappings and 
transformation traces have been used interchangeably in the 
literature to refer to the links between the artifacts in the source 
model and their corresponding artifacts in the target model. In 
the rest of the paper, we use the term transformation mapping. 

A. Model Transformation by Examples Approaches 

MTBE approach has been initiated by Varró [1], where he 
derives the transformation rules from an initial set of examples 
that includes interrelated source and target models. The user 
provides the examples, and then the developers refine the 
derived rules. The transformation rules are produced using an 
ad-hoc algorithm by utilizing transformation mapping and 
corresponding meta-models. Balogh and Varró [21] improve 
the original work of Varró by using ILP instead of the original 

ad-hoc heuristic. Nevertheless, a semi-automatic process needs 
interacting with the ILP inference engine and requires detailed 
transformation mappings. Wimmer et al. [26] generates ATL 
(ATLAS Transformation Language) rules [27] with using 
transformation mappings to assist the derivation of model 
transformation rules. Dolques et al. [28] use Relational 
Concept Analysis [29]  to derive commonalities between the 
source and target meta-models and transformation mappings. 
However, the transformation patterns cannot be executed 
directly. This approach was extended by Saada et al. [30] to 
learn transformation patterns from the examples, then those 
patterns are analyzed, filtered and transformed into operational 
transformation rules. Some MTBE approaches generate n-to-m 
transformation rules. In [31], [32], the rules are generated from 
meta-models to satisfy some developer constraints. ATL has 
been used to implement the generated rules. Another many-to-
many rules generator proposed by Faunes et al. [13]. They 
adapted genetic programming to generate transformation rules 
expressed in Jess, a fact-based rule language. Jess

1
 is a tool for 

building a type of intelligent software i.e., expert systems. 

In conclusion, the conducted survey revealed that most of 
the approaches that derive transformation rules use 
transformation example pairs and, with the exception of one 
work [13], all of them use transformation mappings. In 
addition, to the best of our knowledge none of the current 
approaches address the problem of transforming requirement 
analysis models into software design models. Moreover, most 
of MTBE approaches require the source, target models and 
their meta-models as well as the detailed mapping between 
these models to derive the transformation rules. Unlike these 
MTBE approaches, our approach aims to use the minimal 
inputs, the source and target models only, to derive the 
transformation rules. The most similar work to ours is [21]; 
however they differ in many facets. First, they considered the 
problem of transforming class diagrams into relational schema 
models that is different from our problem of transforming 
analysis models into design models. Second, they also used the 
connectivity analysis that is considered as transformation 
mappings at the meta-model level. In contrast, the approach 
presented in this paper requires only the concrete models 
without meta-models or connectivity analysis. 

B. Using Inductive Logic Programming to Generate Rules 

ILP has been widely utilized for discovery of concept and 
classification in data mining algorithms. In concept discovery, 
the idea is to induce rules based on the existing data. For 
classification, according to the given data, general rules are 
generated and used for grouping the unseen data. In reality, 
ILP has been successfully applied to a wide range of real-world 
problems in different domains since it is concerned with the 
induction of logic theories from examples [33]. In particular, 
ILP has been used in solving software engineering problems 
[21], [34]. 

IV. ILP-BASED TRANSFORMATION SYSTEM 

Our proposed transformation system comprises of three 
main components.  Fig. 1 demonstrates the system’s 
components and other supporting functions. It is a generic 

                                                           
1 http://www.jessrules.com/jess/index.shtml  
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structure where different ILP systems can be employed to 
induce rules [34]. 

ILP systems often start with a preliminary pre-processing 
stage and ends with a post-processing stage [35]. ALEPH 
requires that the given information should be in the form of 
clauses. Thus, the preprocessing step in our transformation 
system focuses on the conversion of the UML models (given in 
XMI format) into first order logic predicates. XMI stands for 
XML (Extensible Markup Language) Metadata Interchange. It 
is an Object Management Group standard for exchanging 
metadata information via XML. XMI is considered as the de-
facto standard format used commonly as an interchange format 
for UML models. 

TABLE I. defines a set of predicates used to represent the 
UML models artifacts. In our work, each used example pair 
consists of two UML models: source and target. The former is 
translated to be the background knowledge, whereas the latter 
is used to present the positive examples. The given UML 
models have no negative examples. In such cases, Closed 
World Assumption (CWA) [36] is used to generate the 
negative examples. An intermediate step between the rules 
generation and rule application is considered to translate the 
rules generalized by ALEPH into fact-based rule language. 
Finally, the post-processing stage concentrates on improving 
the efficiency by removing the redundant clauses in the 
induced theory. 

A. Transformation Rules Generation and Generalization 

Generally, the transformation problem needs a set of 
transformation rules in order to cover all the aspects in the 

transformation problem. The transformation rule here is used to 
analyze a particular aspect of the analysis requirements given 
as input and synthesize the corresponding software design to be 
presented as output. In this context, the transformation system 
can be encoded as a set of transformation rules R={r1, r2, …, 
rn}. Each rule can be encoded as a pair of promise and 
conclusion ri={P, C} where P is the analysis artifacts to search 
for in the source model and C is the design artifacts to 
instantiate when producing the target model. 

Algorithm 1 demonstrates the steps we follow to generate 
the transformation rules. Using ALEPH system, an 
independent run is performed to produce hypothesis or more 
for a single predicate from the given examples with 
background knowledge. To run the ALEPH system, there is a 
need to feed three files containing the knowledge background, 
the positive and the negative examples. What is significant 
limitation in most of the current ILP systems is the need to 
predefine the target predicate before starting the learning 
process. Two parts included in the background knowledge 
rules structure and artifacts descriptions. The former guides the 
construction of a single rule, while the latter describes source 
models artifacts. Although the same knowledge background 
file can be used in different runs, the modes (modeh and 
modeb) declarations need to be adjusted to help determine what 
type of rules to learn. While modeh describes the head of the 
target hypothesis, modeb describes the atoms expected to 
appear in the target body. TABLE II. shows examples of two 
different inputs. 

 
Fig. 1. Architecture of the proposed transformation system.
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TABLE I.  PREDICATES FOR THE BACKGROUND KNOWLEDGE 

REPRESENTATION 

Predicate Meaning  

package(p) It defines p as a package. 

class(c) It defines c as a class.  

packagehasClass (p, c) Class c is located into a package p. 

classhasOperation(c, op) Class c has an operation op. 

classhasAttribute(c, a) Class c has an attribute a. 

inheritance(c1, c2) Class c2 is a subclass of class c1. 

association(c1, c2) 
Class c1 keeps a reference to class c2 
where both classes are located in same 

package. 

associationAcrossPackages 

(p1, c1, p2, c2) 

Class c1 keeps a reference to class c2 
where both classes are located in 

different packages p1 and p2. 

packageOfClasses({set of 

classes}) 

A set consists of one or more class 

classes located in one package. 

interface(p, f) 

A package p has an interface f that links 
the classes located in package p to the 

classes placed outside of package p to 

minimize the external relations. 

B. Rules Translation and Application 

All the induced rules are initially stored in the rule base 
(RB) in logic programs form. These are then translated into 
jess script. When a new instance of source model (i.e. 
requirement analysis) is presented, the models are converted to 
logic program. 



Applying the translated rules on the new source model 
means that rule(s) might fire when some facts satisfy its 
conditions. Firing a rule means some facts are asserted or some 
others may be retracted. The obtained facts, after application, 
are supposed to represent the corresponding software design, 
shown in Algorithm 2. 
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(a)        (b) 

Fig. 2. The UML class diagram for analysis-design pair (a) the source model (requirement analysis) and (b) the target model (software design). 

 
(a)        (b) 

Fig. 3. Part of class diagram of application (a) the source model and (b) the target model.

C. Rules Evaluation and Refinement 

Before and after the rules application, different measures 
were used to evaluate their performance. Completeness and 
consistency measures refer to the positive and negative 
examples covered by the induced rules. This can indicate the 
accuracy of the induced rules based on the learning examples. 
Furthermore, the transformation designer can validate the 
correctness of the produced rules after applying them on 
additional test cases. The rule-created target model can be 
compared to the actual target for the sake of performance 
evaluation of the transformation rules. Several performance 
measures, shown in Algorithm 3, are used in this context (more 
details are given in Section B). 

Human expert evaluation for the resulted design can be 
considered. This type of evaluation may help to update the 
priority of the rules application. In addition, expert feedback 
would help refining. Expert opinions may contribute to the rule 
base by adding new rules or relaxing the application of others. 
Here, we allow automatic assignment of priorities to the rules 
where the higher the application frequency, the higher the 
priority. The number of positive examples used to induce the 
rule determines the rule priority. That is the higher number of 
positive examples the higher the priority. Thus, each rule starts 
by initial priority equals to the number of positive examples 
used to induce the rule; this priority is then tuned based on the 
rule’s application frequency and input from experts. 
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V. SAMPLE TRANSFORMATION TASKS 

This section is dedicated to explain the two transformation 
problems investigated in this work. In the following, we 
describe each case study briefly. 

A. Packaging Class Diagram 

One of the common tasks when moving from analysis to 
design is the task of structuring the system classes into 
packages [37]. During the analysis phase, the class diagram 
depicts all the classes used in the system and the relations 
between them. The aim is to develop highly cohesive and 
loosely coupled packages. In this experiment, we use our 
proposed approach to learn packaging rules from analysis-
design pair examples. Together Fig. 2(a) and (b) represent a 
simple example of the analysis-design pair. They show the 
analysis model of one of the used examples along with the 
corresponding initial design model respectively. The initial 
design model shows the analysis model after introducing the 
packages (This example has been used in [28] to introduce the 
initial idea). 

B. Introducing Façade Design 

It is considered another high-level software design activity: 
introducing façade design. It is common for a class in a 
particular package to have external relations with classes in 
other packages. The Façade design pattern is used to simplify 
the interaction process and improve the overall design coupling 
and cohesion.  A façade provides a one “point of contact” to a 
package of classes (i.e., component). It hides the 
implementation of the component from its clients, making the 
component easier to use. In addition, it results in loosely 
coupled software. For this design task, we used several 
examples to derive a rule for introducing façades to packages. 
Fig. 3 depicts one of such examples. It shows a class diagram 
that has many inter-packages relationships making the design 
highly coupled and less maintainable. To overcome this 
problem the designer introduces façades as another step of 
transformation from requirement analysis to software design. 
Based on the presented examples, ALEPH generalizes a 
hypothesis as shown in TABLE III.  

VI. EXPERIMENTS 

This section is dedicated to the setup of the experiments 
performed in this work to produce a set of rules. The objective 
of these experiments is to provide a proof-of-concept that the 
proposed approach can be used to build a transformation 
system from requirement analysis to software design. 

A. Problem and Solution Representations 

The given UML models are presented in XMI format. To 
induce a general hypothesis using ALEPH, we converted the 
problem, represented by XMI models, to logic programs 
comprised two part: background knowledge and positive 
examples. TABLE II.  demonstrates the conversion of the 
UML model presented in Fig. 2 and 3; with background 
knowledge and positive examples, respectively. In addition, the 
generated negative examples under CWA. 

TABLE II.  THE PROBLEM REPRESENTATION WRITTEN IN ALEPH (I.E., 
PROLOG SYNTAX) 

Input Type Packaging Class Diagram   

Types and 

Modes 

Declarations  

 

Background 
Knowledge  

 

Positive 

Examples 

 

Negative 

Examples 

 

Input Type Introducing Façade Design 

Types and 
Modes 

Declarations  

 

Background 

Knowledge  

 

Positive 
Examples 

 

Negative 

Examples 
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TABLE III.  THE SOLUTION REPRESENTATION 

Example Induced Rule  

Packaging 

Class 
Diagram  

 
When there is an inheritance relation between the classes A 
and B, these two classes are grouped together in one 

package 

 
When three classes A, B and C have association relations, 

such that class A is linked to class B, and Class C, also, 
Class B is linked to Class C, and then the three classes can 

be grouped in one package. 

 
When three classes A, B, C and D have the presented 

relationships, such that class A is the parent of classes B, C 
and D then the four classes can be grouped in one package 

Introducing 

Façades 
Example 

 
When there is a class D, which is placed in a package C, has 

a reference to another class E placed in a different package 
A, a façade interface B is introduced to the destination 

package A. 

In TABLE III. the second column represents samples of the 
rules produced by ALEPH system based on the predefined 
modes and given examples.  In this set of rules, LHS (left-hand 
side) represents the conclusion (introduce a package) in order 
to group different classes into a single package wherever RHS 
(right-hand side) which is the premise is satisfied. 

B. Solution Evaluation 

For the problem solved by ILP-based systems, usually the 
performance can be measured by grouping the results as true 
positive (TP), true negative (TN), false positive (FP) and false 
negative (FN). The equations demonstrated in Algorithm 3 are 
collected during experimentation. We focused on validating the 
generated artifacts. To do that, we compared the generated 
artifacts with the actual ones provided as part of the given pair. 
As shown in algorithm 3, we used five different measures in 
the conducted experiments. Although we considered two 
transformation tasks, here is an explanation how we evaluate 
the solution in the task of packaging the classes. 

TP refers to the correctly placed classes in the created 
package    while TN refers to the classes that are not placed in 

   correctly. FP indicates the extra classes placed in     while 

they do not exist in   . Finally, FN indicates the number of 
classes that are exist in    but not placed in   . As a last step, 

we calculate the average across all packages for all the 
measures. It is worth mentioning that, for the experiments 
related to the second task, it was not applicable to calculate TN 
so we exclude some measures. 

TABLE IV.  DATASETS STATISTICS 

Artifacts Min Max 

Packages 3 27 

Classes and Interfaces 10 151 

Relationships 11 188 

When validating the generated packages, we need to pay 
attention of their content. Let AD= {p1, p2, …, pn} be the 
number of packages of the actual design. Let GD= { 1,   2, …, 
 m} be the number of packages of the corresponding rule-
created (generated) design, where m could be less than, equal 
to, or greater than n. In AD each pi consists of a number of 
classes ci1, ci2, …, cik and the corresponding package pj in GD 
may consists of the same, more or less classes cj1, cj2, …, cjl. 

C. ALEPH Settings 

ALEPH has many settings to adjust the search process, and 
the ones we perform the experiments with are explained in this 
section. We use default ALEPH settings. Different search 
strategies (such as heuristic, depth first) have been used; 
however the results obtained were comparable. All presented 
results in the following came from these settings. 

D. Datasets 

The datasets used in the experiments comprises around 34 
systems. Each system consists of the analysis and design 
models. These cases were collected mostly from academic 
projects, examples from textbooks, and by reserve engineering. 
Each system consists of analysis/design pair. In turn, each 
design system comprises at least three packages. The total 
number of packages in the base is 217 while the total number 
of classes and interfaces is 1540. TABLE IV.  shows brief 
statistics of the systems’ artifacts i.e., packages, classes, 
interfaces, and relationships such as association, generalization, 
aggregation and others. 

E. Experimental Results / Quantitative Validation 

This section shows the results obtained from the two 
conducted experiments by using the described datasets. The 
available examples were divided into learning set and 
validation set in the ratio 2:1. Each set has been selected 
randomly with ensuring that no system has been selected twice. 

During learning phase, all the 22 learning systems have 
been used as input to generalize a set of transformation rules 
that have been evaluated later in two ways to select the best 
rules. Then the final rules were validated against the validation 
set which consists of 12 systems. Samples of the induced 
transformation rules are demonstrated in TABLE V.  

1) Measuring the packaging rules performance 
We measured the performance of the induced rules 

individually. The performance of each rule was measured by 
applying the rule on all systems in one run. Fig. 5 shows two 
types of experiments that were conducted to measure the rules 
performance. In one experiment, shown in Fig. 5(a), individual 
rule performance was evaluated by applying the rule on all the 
learning systems, batched together. The rules showing low 
performance have been retracted form the rules base to avoid 
impact the overall system performance, e.g. rules 9-10. Then a 
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genetic algorithm-based procedure was used to find subsets of 
remaining rules that gives the best results against the learning 
systems one by one. Fig. 5(b) presents the accuracy measures 
for the learning systems. 

This experiment paid attention for the number of times each 
rule was considered to give the best accuracy with each system. 
Fig. 4 shows the percentage of times the rules applied. We aim 
here to provide a kind of score of each rule that assist selecting 
the rules in the future when apply the rules on real applications 
that have no the actual target model. To rank the rules, we need 
for assigning these scores (discussed in Algorithm 3). Then the 
rules were applied on the validation systems based on their 
ranking. 

 

Fig. 4. Rules ranked accoding to the frquency of application. 

TABLE V.  SAMPLES OF THE INDUCED TRANSFORMATION RULES 

Task  Induced Transformation Rule 

Packaging 
Class 

Diagram 

 

 

 

Introducing 
Façades 

 

 
(a)   (b) 

Fig. 5. (a) Individual rule application- overall systems, (b) GA-procedure - learning systems. 
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2) Validating the best induced rules 
The final rules resulted from the learning phase have been 

validated in this experiment against the set of validation 
systems. According to the rules scores, this experiment started 
by applying first two rules then added one rule each run. Fig. 6 
demonstrates the overall average of accuracy measures resulted 
from validation using 12 systems with different number of 
rules. Obviously the performance was stable when considering 
3, 4 or 5 rules, since we considered the best rules came from 
two-ways evaluations. Increasing or decreasing the number of 
rules vary form one system to another, i.e., some systems have 
a steady accuracy measures starting for different number of 
rules, while accuracy measures of others improved/impacted 
when adding more rules. However, these changes are slightly 
small, thus the overall average shows a comparable values. 
When applying all the rules the performance was impacted 
because the rules 1 and 2 were included. The two rules can 
group classes from different packages together. Thus we 
noticed that their applications frequencies equal zero when 
using learning samples. 

 
Fig. 6. Average of accuracy measures with different number of rules - 

validation systems. 

 
(a) 

 
(b) 

Fig. 7. Accuracy measures of applying façade rules (a) learning results, (b) 

validation results. 

3) Accuracy measures of Façades rules 
For introducing Façade design pattern only 13 systems, that 

use this practice, have been used for learning and validation in 
the ratio 2:1. The learning systems present different forms of 
using Façade. Nevertheless, ALPEH induces only one rule for 
all training data. When ALEPH generalizes the target clause, it 
looks for the minimal number of atoms that can cover the given 
examples. When generalizing the given learning examples, the 
learner considers only the type of relations not the count. Thus 
the problem is seen like this; when a package p has an external 
relation linked to one of its classes, add a façade to the package 
p. Fig. 7(a) shows the accuracy measures when applying the 
induced unique rule on eight learning systems. It is worth 
mentioning that, only three measurements used for this 
experiment because there are true negatives can be collected 
here. In the same way, the induced rule has been applied on the 
validation systems. Fig. 7(b) demonstrates the accuracy 
measures when applying the rules on the validation systems. 

VII. DISCUSSION 

Although ALEPH has been used widely in the literature, 
the induced hypotheses in the tackled problems have small 
arity in their head predicates. For instance, the arity of 
packageOfClasses(X,Y) is two. ALEPH requires to specify 
each argument type and whether it is input (+) or input (-) as 
used in TABLE II. The types should be maintained also in the 
body predicates. In our context, the arity of packageOfClasses 
changes based on the number of classes located on the 
corresponding package. Thus, there is a need to adjust the used 
modes and types in each run. This caused a problem when 
having a large arity. Owing to the space limitation of this 
paper, we ignore these details. During rules induction phase, 
we noticed that when providing examples of packages having 
five classes or more, it was not possible to generalize 
hypotheses for such examples. Another observation is that, 
ALEPH needs at least two similar examples to generalize a 
hypothesis. If no similar patterns are seen in the given 
examples while training, it will not be possible to synthesize 
the right output. In reality, for one example has a large arity, 
the opportunity to find another example having the same 
number and type of relations is low. On the other hand for the 
examples consist of two/three classes, all the examples have 
been covered. Inversely, the opportunity to find a similar 
example is better where the possible relations among the 
classes are limited. 

Moreover, it is noticeable the measures presented in 
Section E vary from one system to another. The reason behind 
that is the nature of the used examples to generate the 
transformation rules. For example, the performance in case of 
Sys 19, presented in the learning, was the worst. This system 
has 28 classes placed in 4 packages. When learning the rules it 
was not possible to learn such rules as explained above. In the 
other hand, the relations among the classes are not easy to be 
covered by the already induced rules. The application of the 
rules follows their ranking which shows their how many times 
they were selected to get the best accuracy. When applying the 
rules against the validation set, small set of rules can give a 
comparable accuracy measures. When adding more rules 
means that, more classes can be grouped in incorrect packages. 
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Fig. 8. Example to show the drawback of the derived rule. 

Another observation, the number of the rule-created 
interfaces in the different learning and validation systems is 
either equal or more than the number of interfaces in the actual 
design. Thus, we get a full recall in almost all the cases, shown 
in Fig. 6. The reason behind that is that the rule will introduce 
an interface between two packages whenever there is a relation 
between their classes. 

A. Threat to Validity 

The main threats to validity, as with any software 
engineering research, are the data scarcity and the bias of the 
datasets selection. Another dimension of scarcity we 
encountered is the need to use source/target pairs. It is 
noteworthy here different resource have been considered to 
collect the datasets (student projects, textbooks, reverse 
engineering). Using different sources helps ensuring that the 
datasets are collected in unbiased manner. In addition, selecting 
randomly learning systems that are different from the 
validation set would give the results of the experiments some 
credibility as not being biased. Nevertheless, this does not 
necessarily mean that the derived transformation rules are 
complete. Another threat to validity of this work is the 
incompleteness in terms of transformation problems coverage. 
We have considered two major designs activities to show the 
power of ILP in generalizing rules in MDD context. Future 
effort will try to make contact with some potential software 
houses to allow using their repositories and expertise in 
evolving a generic transformation system. The scalability of 
the approach will be tested more realistically in this case. 

B. Open Issues and Future Work 

In this section, we discuss some open issues related to the 
usage of ALEPH system to derive analysis-design 
transformation rules. Almost all the current ILP systems, 
including ALEPH, enforce modes declarations for any clause 
hypothesized by the ILP system. That is, it is supposed to 
predefine the head and body of the target hypothesis. 

ALEPH system uses the given background knowledge 
along with the given examples to generalize rules. Thus, it 
expects more than one positive example to learn the rule, 
otherwise it returns the unique positive example as it is (i.e., 
without induction of rules). However, occasionally, generating 
a rule from just one example might be desirable for future 
improvement as more examples emerge, as with the case of 
incremental learning. In the conducted experiments, many 
examples have not been covered using ALEPH because the 
relations represented are unique i.e. no similar example 
especially for the packages have many classes. 

Our experiments revealed that when two artifacts have 
more than one relation of the same type (e.g. association). 
ALEPH induces a rule that considers only the type of the rule 
regardless of the number of instances. That is, when two 
artifacts (packages or classes) have two (or more) associations 
connecting each other, ALEPH shows only the type of the 
relation not their counts. This has an impact on the generated 
mappings since the number of associations among a set of 
artifacts surely influences corresponding design decisions. A 
simple example is shown in Fig. 8 to give a glance of this 
shortcoming. Fig. 8(a) (source model) depicts that there are 
four relations linking “Package1” to “Package 2”. Based on 
these relations, a façade is introduced shown in Fig. 8(b) (target 
model). However, the induced rule by ALEPH considers only 
the type of the relation and ignores the count of the relations. 
Clearly, as manifested in this example, the count is important 
factor for introducing façades. For further discussion of the 
recorded limitations in this context, the reader may consultant 
our recent work [38]. In future work, there is a need to 
investigate more the aforementioned open issues and to find 
appropriate solutions. 

VIII. CONCLUSION 

Different model transformation by examples (MTBE) 
approaches have been proposed in the literature. However, 
none of the proposed approaches tried to tackle the analysis-
design transformations problem using ILP.  Moreover, none of 
the proposed approaches considered reusing designers’ 
expertise manifested in previous design effort in proposing 
design options to given software requirements.  In this work, 
we target building a software design-support system by using 
ILP to induce transformation rules from available 
requirement/design pairs. The idea is to use existing knowledge 
(manifested in the given examples) to automatically derive a 
set of model transformation rules. 

We conducted experiments using 34 systems with different 
sizes and form different sources. The systems were divided 
into learning and validation sets. The obtained performance 
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measures show that the approach is promising.  The more 
examples presented to the system, the more trustful rules the 
system can generate. 
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