
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

614 | P a g e

www.ijacsa.thesai.org

NoSQL Racket: A Testing Tool for Detecting NoSQL

Injection Attacks in Web Applications

Ahmed M. Eassa

Information Systems Department

Faculty of Computer & Information Sciences

Mansoura University

Mansoura, EGYPT

Omar H. Al-Tarawneh

Information Technology Department

Al-Zahra College for Women,

Muscat, Oman

Hazem M. El-Bakry

Information Systems Department

Faculty of Computer & Information Sciences

Mansoura University

Mansoura, EGYPT

Ahmed S. Salama

Computer and Information Systems Department

Sadat Academy for Management Sciences

Cairo, EGYPT

Abstract—A NoSQL injection attack targets interactive Web

applications that employ NoSQL database services. These

applications accept user inputs and use them to form query

statements at runtime. During NoSQL injection attack, an

attacker might provide malicious query segments as user input

which could result in a different database request. In this paper,

a testing tool is presented to detect NoSQL injection attacks in

web application which is called “NoSQL Racket”. The basic idea

of this tool depends on checking the intended structure of the

NoSQL query by comparing NoSQL statement structure in code

query statement (static code analysis) and runtime query

statement (dynamic analysis). But we faced a big challenge, there

is no a common query language to drive NoSQL databases like

the same way in relational database using SQL as a standardized

query language. The proposed tool is tested on four different

vulnerable web applications and its effectiveness is compared

against three different well known testers, none of them is able to

detect any NoSQL Injection attacks. However, the implemented

testing tool has the ability to detect the NoSQL injection attacks.

Keywords—NoSQL; injection attack; web application; web

security; testing tool

I. INTRODUCTION

The recent advance in cloud computing and web
applications has created the need to store large amount of data
in multi-different databases that provide high availability and
scalability. In last years, more and more of companies have
adopted different types of non-relational databases, commonly
referred to as NoSQL “Not only SQL” databases, and as the
applications they serve emerge, they gain wide market interest.
The NoSQL databases are not relational by definition and
therefore they do not support full SQL functionality, instead of
relational databases, they trade consistency and security for
performance and scalability. As increasingly sensitive data is
being stored in NoSQL databases, security issues become
growing concerns [1]-[3].

In this paper we propose a web based tool named “NoSQL
Racket”. This tool has ability to detect and prevent NoSQL
injection attacks in web applications.

II. RELATED WORK

Many researchers have contributed in the area of NoSQL
security. Bryan Sullivan [4] explained security issues related to
NoSQL databases and differences with relational databases,
and what extra set of issues need to be considered when
designing and developing systems using these types of data
stores. He discussed injection techniques against MongoDB
and then moved on to compelling examples of server-side
JavaScript injection using Node.js as an example. He discussed
risky constructs to look for, during code review and ways to
avoid some typical pitfalls.

Sooel S. et al. [5], describes the design and implementation
of Diglossia, a tool detects code injection attacks on server-side
Web applications generating SQL and NoSQL queries. To
detect injected code in a generated query, Diglossia parses the
query in tandem with its shadow and checks that the two parse
trees are syntactically isomorphic, and all code in the shadow
query is in shadow characters and, therefore, originated from
the application itself, as opposed to user input.

Okman, L. et al. [1], discusses two of the most common
NoSQL databases (Cassandra and MongoDb) and outlines
their main security weaknesses and problems.

IBM eBook report [6], it provides a basic introduction to
the topic of NoSQL and its rapid growth and adoption. In
addition to, it‟s focus on two primary areas around data
security and protection, and how “IBM InfoSphere Guardium”
solutions can help with both of them.

Adrian Lane [7], it examining security for “big data”
environments, reviewing built-in protections and weaknesses
of these systems which are depending on the Hadoop
framework and the other common NoSQL databases
(Cassandra, MongoDB, Couch, Riak, etc.).

Amreen and Dadapeer [8], Present a reversible
watermarking algorithm to provide the security for NoSQL by
using a unique watermark to mark the data and by using

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

615 | P a g e

www.ijacsa.thesai.org

reversible watermarking technique which allows recovery of
original data along with the embedded watermark information.

Aviv Ron and Alexandra Shulman-Peleg [9], Present a few
techniques for attacking NoSQL databases such as injections
and CSRF. Also, they present methodologies to mitigate these
attacks.

III. INJECTION ATTACKS TYPES

“The OWASP Top 10” [10] and “The 2011 CWE/SANS
Top 25” [11] lists injection attack as the most common security
risk to web applications. Injection is an entire class of attacks
that rely on injecting data into a web application in order to
facilitate the execution or interpretation of malicious data in an
unexpected manner. Examples of attacks within this class
include Cross-Site Scripting (XSS), SQL/NoSQL queries,
Header Injection, Log Injection and Full Path Disclosure.

OWASP 2010 defines injection as follows:

“Injection flaws occur when an application sends untrusted
data to an interpreter. Injection flaws are very prevalent,
particularly in legacy code, often found in SQL queries, LDAP
queries, XPath queries, OS commands, program arguments,
etc.”[12].

But this definition was modified several times by OWASP
from 2013 to 2017 and ended up defining injection which
includes NoSQL and became as follows:

“Injection flaws occur when an application sends untrusted
data to an interpreter. Injection flaws are very prevalent,
particularly in legacy code. They are often found in SQL,
LDAP, Xpath, or NoSQL queries; OS commands; XML
parsers, SMTP Headers, program arguments, etc.” [10], [13].

Injection attacks have ruled in the top of web application
vulnerability reports for much of the past decade. The OWASP
Top 10 Project (2013, 2017), which tests and evaluates the
most critical threat categories against web applications, places
„Unvalidated Input‟ in the top spot, followed by the related
XSS Flaws and Injection Flaws in 3th and 8th place
respectively. The CWE/SANS Top 25 Most Dangerous
Software Errors list also places high risk on the same
issues [11].

Injection attacks can be classified according to OWASP
into the following types:

 Blind SQL Injection.

 Blind XPath Injection.

 Buffer Overflow.

 Format String Attack.

 LDAP Injection.

 OS Commanding.

 SQL Injection.

 SSI Injection.

 XPath Injection.

 NoSQL Injection.

But for the purpose of this paper, we will be focusing on
NoSQL injection attack and will be discussed in the following
section.

IV. NOSQL INJECTION ATTACK

NoSQL injection refers to an injection attack through the
placement of malicious code (like other web attack ways) in
NoSQL statements through web page input controls. The
attacker takes the advantage of poorly filtered or not correctly
escaped characters within part of NoSQL statements and
injects arbitrary data into a string that‟s eventually run by the
NoSQL database engine (e.g. a login form) as shown in Fig. 1.

Fig. 1. NoSQL injection attack in web applications.

Through vulnerable Web applications, attacker can get
unauthorized access to a NoSQL database and can modify or
delete data. Currently almost all NoSQL databases such as
MongoDB, Hadoop/HBase, Cassandra, CouchDB, and Riak
are potentially vulnerable to NoSQL injection attacks. NoSQL
injection attack can occur in web applications through some
methods, such as Injection through web page input controls
and cookie files.

Web based forms allow somewhat access to back-end
NoSQL database to allow adding or modifying the stored data.
Any web form, even a simple login form, signup form or
search box (where user can input or modify data), might
provide access to back-end NoSQL database. This means
that there is a high probability for injecting malicious code and
attacker can bypasses firewalls and endpoint defenses.

The common reason that a web application is vulnerable to
NoSQL injection is incorrect filtering and poor validation for
user input. Web forms are quite common to collect data from
user. So, practically it is not suitable to lock all the entry points
to bar NoSQL injection attackers. To prevent attacks, web
developers must apply proper filtration/validation on all forms.
For more clarifying, we will show in the following an example
for NoSQL injection attack.

Let‟s suppose that some PHP web application requests
through the screen a user name and a password to access a
private area. The application will pick these values and it will

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

616 | P a g e

www.ijacsa.thesai.org

collect a query to send to the NoSQL database (e.g.
MongoDB).

The MongoDB collection “regusers” contains two
documents for authorized users as shown in Fig. 2.

The PHP webpage might look like Fig. 3.

Fig. 2. MongoDB collection “regusers”.

Fig. 3. PHP login webpage.

Supposing that is a PHP script selects a document from
MongoDB. The following NoSQL query string verifies a
username and password combination is valid or not:

$collection->find(array("username" => $_GET['username'],

 "password" => $_GET['password']));

In this case, attacker user can write some texts that will be
sent to the NoSQL database (MongoDB) without any
verification. Given the case of a malicious user, he could write
in the password field the string "$ne" =1 as shown in Fig. 4.

Fig. 4. NoSQL injection in password field.

In this case, the resulting query will be as follows:

$collection->find(array("username" => "drhazem",

"password" => array("$ne" => 1)));

“$ne” selects the documents where the value of the field is
not equal to “1”. So, this query will produce the same result as
if the admin user had introduced their password correctly.
According to this example, the web application will allow the
access to administration area to a user who doesn‟t know the
proper password.

V. PROPOSED TESTING TOOL “NOSQL RACKET”

There are now over 225 NoSQL databases available for use
with web applications. Each one offers different features and
limitations. So, we faced a big challenge because there is not a
common language between web applications and NoSQL
databases [10].

For this reason, our proposed tool offers a general testing
mechanism for detecting all NoSQL injection attacks without
depending on specific syntax and data model. To overcome
this challenge, we will create a simple database table named
“Driverstbl”. The table “Driverstbl” contains all query string
forms and its types such as reserved keywords, logical
operators and relational operators as shown in Table 1.

TABLE I. “DRIVERSTBL”

NoSQL

Database Type
String Type Syntax

MongoDB Reserved keywords (RK) db

MongoDB Reserved keywords (RK) find

MongoDB Reserved keywords (RK) update

MongoDB Operator(OP) $and

MongoDB Operator(OP) $exists

MongoDB Operator(OP) $ne

and so on for other
“String Types” in

MongoDB.

CouchDB Reserved keywords (RK) getDatabaseInfos

CouchDB Reserved keywords (RK) getDoc

CouchDB Reserved keywords (RK) storeDoc

CouchDB Operator(OP) &&

CouchDB Operator(OP) in

and so on for other

“String Types” in
CouchDB and so on for

other NoSQL Database

Types (Cassandra,
Amazon DynamoDB,)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

617 | P a g e

www.ijacsa.thesai.org

Each code query statement and runtime query statement
transformed into comparative patterns format depending on
“Driverstbl” table as shown in Fig. 5.

The “NoSQL Racket” testing tool returns an array that
contains the number of repetition for each string stored in
“Driverstbl” table. Supposing the following PHP script in static
code state is S1 and the same code statement in dynamic state
is S2:

S1:$collection->find(array("username" =>
$_GET['username'],

"password" => $_GET['password']));

S2:$collection->find(array("username" => "drhazem",

"password" => array("$ne" => 1)));

According to “Driverstbl”, The “NoSQL Racket” testing
tool generates the following patterns for S1, S2:

S1 pattern: Array ([0] => Array ([0] => PK [1] => find [2]

=> 1) [1] => Array ([0] => PK [1] => array [2] => 1) [2] =>

Array ([0] => OP [1] => => [2] => 2)).

S2 pattern: Array ([0] => Array ([0] => PK [1] => find [2]

=> 1) [1] => Array ([0] => OP [1] => $ne [2] => 1) [2] =>

Array ([0] => PK [1] => array [2] => 2) [3] => Array ([0] =>

OP [1] => => [2] => 3)).

Fig. 5. NoSQL injection in password field.

After generating patterns for each query statement code
(S1) and query statement in running state (S2), The “NoSQL
Racket” will check the matching between generated patterns as
shown in the following algorithm:

Step 1: Get Code Query Statement (S1) and Runtime Query
Statement (S2).

Step 2: Let DBT= NoSQL database type.

Step 3: Connect to nosqldbs and select all “String Type”
and “Syntax” from “Driverstbl” table where NoSQL Database
Type = DBT.

Step 4: Group and count words in S1 and S2 according to
selected data in Step3.

Step 5: Generate patterns for each statement S1, S2.

Step 6: Set Inj =0

Step 7: For each item in S1 and S2 patterns, repeat until end
of items.

Step 7.1: If S1[i] not equal to S2[i],then set Inj =1

Step 7.2: Go to Step 7.

Step 8: If Inj =1, then display error page and stop running,
else continue running & execute query.

According to the results of matching patterns and input
values, there are two decisions:

If the patterns are matched, the web application will
continue running.

If the patterns are not matched, the web application will be
terminated and the proposed algorithm displays an error page.

VI. EXPERIMENTS AND RESULTS

To investigate the effectiveness of the proposed tool
“NoSQL Racket”, we will examine the detection ability
through a comparative study with the most powerful testers for
example, Netsparker, Vega and Skipfish. On the other hand,
we will use four versions of web pages in our comparative
study which covers all NoSQL databases types which are
Document based, Column oriented and Key-valued. Each
version connected to different NoSQL database which are
(MongoDB, Cassandra, CouchDB and Amazon DynamoDB).

Also, we will examine the performance for our proposed
tool “NoSQL Racket” through performance testing tool called
“LoadComplete”.

A. Detection Ability Comparative Study

Four PHP web scripts are used for examination purpose
and all of them are vulnerable for NoSQL injection attack.
These scripts execute after submitting the user login button.
When user is submitting with correct username and password
against each NoSQL database, output will be “Authorized
User”, but on the other wise if any one of the field or both are
incorrect then the output will be “You are not authorized”.

1) MongoDB Detection Ability Results: In MongoDB, it is

possible to inject NoSQL keywords into submitted data from

the login webpage. This could for example look like this
http://127.0.0.1/phd/MongoDB/after_log.php?user=ahmed

&pass[$ne]=1&sbumit1=Submit

“$ne” selects the documents where the value of the field is
not equal (i.e. !=) to “1”. So, this query will produce the same
result as if the admin user had introduced their password
correctly. According to this example, the web application will
allow the access to administration area to a user who doesn‟t
know the proper password.

The login web page scanned by giving URL to each
following scanner tester tool:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

618 | P a g e

www.ijacsa.thesai.org

Netsparker testing results are figured out and shown in
Fig. 6.

Skipfish testing results are figured out are shown in Fig. 7.

Vega testing results are figured out and shown in Fig. 8.

Fig. 6. Netsparker testing results for MongoDB.

Fig. 7. Skipfish testing results for MongoDB.

Fig. 8. Vega testing results for MongoDB.

 “NoSQL Racket” testing results are figured out and shown
in Fig. 9.

Fig. 9. “NoSQL Racket” testing results for MongoDB.

The login web page scanned by giving URL to Netsparker,
Vega and Skipfish and none of them detect any issues related
to NoSQL Injection. But when “NoSQL Racket” used, the
NoSQL injection attack detected and testing results are figured
out and shown in Fig. 9.

2) Cassandra Detection Ability Results: In Cassandra, The

attacker may enter any user name and a password of:
ali'; DROP COLUMNFAMILY 'users

This results in a CQL query of:

('select * from reg_users where username = ali and
password = ali'; drop columnfamily 'users', ['usern' => ,'passw'
=> ali'; drop columnfamily 'users])

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

619 | P a g e

www.ijacsa.thesai.org

The login web page scanned by giving URL to Netsparker,
Vega and Skipfish and none of them detect any issues related
to NoSQL Injection. But when “NoSQL Racket” used, the
NoSQL injection attack detected and testing results are figured
out and shown in Fig. 10.

Fig. 10. “NoSQL Racket” testing results for Cassandra.

3) CouchDB Detection Ability Results: In CouchDB, The

attacker may enter any user name and a password of:
''or 1=1

This results in URL query of:

http://127.0.0.1/phd/CouchDB/after_log.php?user=test&pa
ss=%27%27or+1%3D1&sbumit1=Submit

The login web page scanned by giving URL to Netsparker,
Vega and Skipfish and none of them detect any issues related
to NoSQL Injection. But when “NoSQL Racket” used, the
NoSQL injection attack detected and testing result is figured
out are shown in Fig. 11.

Fig. 11. “NoSQL Racket” testing results for CouchDB.

4) Amazon DynamoDB Detection Ability Results: In

Amazon DynamoDB, it is possible to inject NoSQL keywords

into submitted data from the login webpage. This could for

example look like this:
http://127.0.0.1/phd/AmazonDynamoDB/after_log.php?use

r=ahmed&pass[$gt]=1&sbumit1=Submit

“$gt” selects those documents or keys where the value of
the field is greater than (i.e. >) the specified value. Thus above
statement compares password in database with empty string for
greatness, which returns true. According to this example, the
web application will allow the access to administration area to
a user who doesn‟t know the proper password.

The login web page scanned by giving URL to Netsparker,
Vega and Skipfish and none of them detect any issues related
to NoSQL Injection. But when “NoSQL Racket” used, the
NoSQL injection attack detected and testing result is figured
out are shown in Fig. 12.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

620 | P a g e

www.ijacsa.thesai.org

Fig. 12. “NoSQL Racket” testing results for Amazon DynamoDB.

The following Table 2 shows the comparison of detection
ability for all testing tools with the proposed tool “NoSQL
Racket” over the four NoSQL databases which are used in
testing process.

TABLE II. COMPARISON OF DETECTION ABILITY FOR ALL TESTING

TOOLS

 NoSQL Databases

Testing Tools

M
o
n
g

o
D

B

C
assan

d
ra

C
o
u

ch
D

B

A
m

azo
n

D
y

n
am

o
D

B

Netsparker    

Vega    

Skipfish    

The proposed tool “NoSQL Racket”    

According to scanning results, the most common
application injection scanners such as Netsparker, Vega and
Skipfish not are able to detect any issues related to NoSQL
Injection. However, the proposed implemented approach was
able to detect the NoSQL Injection attack.

B. Performance Testing for “NoSQL Racket”

Performance testing is performed on the “NoSQL Racket”
using LoadComplete testing tool. The LoadComplete testing
tool is the desktop tool for load, stress, testing of website and
web application.

The testing process is applied by increasing the number of
concurrent users every one second. In this work test is firstly
conducted for single user. Then number of concurrent users is
increased by 50 concurrent users every one second. The testing
environment consists of a machine running Windows 8.1- x64
with Intel core i7 processor and 8 GB RAM. The testing results
can be shown in the following graphs:

Load Graph: The graph shown in Fig. 13 shows the

relation between the number of concurrent users and the test

execution time. As showed in the graph, it is observed that the

proposed tool “NoSQL Racket” can load 50 simulated

concurrent users every one second.

Fig. 13. Load graph.

Passed Requests Graph: The graph shown in Fig. 14

shows the relation between the number of concurrent users,

the number of successfully passed requests and test execution

time. As showed in the graph, it is observed that the proposed

tool “NoSQL Racket” can pass 47 requests successfully from

50 requests every one second.

Fig. 14. Passed requests graph.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

621 | P a g e

www.ijacsa.thesai.org

Warnings and Errors Graph: The graph shown in

Fig. 15 shows the relation between the number of concurrent

users, the number of web pages simulated with warnings and

errors and the test run time. As showed in the graph, no any

warnings or errors are detected.

Fig. 15. Warnings and errors graph.

Page Load Time Graph: Page load time is the time

period to download the web page content, including all the

HTML tags, images, scripts, CSS files, and so on. The graph

shown in Fig. 16 shows the relation between the page load

time and the number of concurrent users. As showed in the

graph, the maximum page load time is 850 ms and the average

page load time is 75 ms.

Fig. 16. Page load time graph.

Request Transfer Speed Graph: The request transfer

speed refers to the speed of data transfer when the request was

sent to the server.

The graph shown in Fig. 17 shows the relation between the
number of concurrent users, the Request transfer speed metric
and test execution time. As showed in the graph, the slowest
speed for the requests transfer is 200 kB/s.

Fig. 17. Request transfer speed graph.

Response Transfer Speed Graph: The Response transfer

speed refers to the speed of data transfer when the server sent

back the response.

The graph shown in Fig. 18 shows the relation between the
number of concurrent users, the Response transfer speed metric
and test execution time. As showed in the graph, the slowest
speed for the responses transfer is 1.52 MB/s.

Fig. 18. Response transfer speed graph.

VII. CONCLUSION

This paper has presented a testing tool for detecting
NoSQL Injection attacks which is called “NoSQL Racket”, this
tool implemented as a PHP function. If no any NoSQL
injection attacks detected, it will continue running for the nosql
query; if it fails and one or more NoSQL injection attacks
detected, it will display error page and stop running for the
nosql query.

The proposed tool “NoSQL Racket” has been applied on
four different NoSQL Databases which are MongoDB,
Cassandra, CouchDB and Amazon DynamoDB. Also, its
ability for detection and prevention has been compared with
the most powerful web application testing tools which are
Netsparker, Vega and Skipfish. According to the scanning
results, none of mentioned tools has been able to detect NoSQL

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

622 | P a g e

www.ijacsa.thesai.org

Injection attack. However, the proposed implemented approach
has the ability to detect the NoSQL Injection attack.

REFERENCES

[1] Okman L., Gal-Oz N., Gonen Y., Gudes, E., Abramov J, Security Issues
in NoSQL Databases. Trust, Security and Privacy in Computing and
Communications (TrustCom), pp.541:547, 2011.

[2] Nance Cory, Losser Travis, Iype Reenu, and Harmon Gary, NOSQL VS
RDBMS - WHY THERE IS ROOM FOR BOTH. SAIS 2013
Proceedings 27, 2013.

[3] Aaron Schram, Kenneth M. Anderson, MySQL to NoSQL: data
modelling challenges in supporting scalability. SPLASH '12
Proceedings of the 3rd annual conference on Systems, programming,
and applications: software for humanity, 2012, pp.191:202.

[4] B. Sullivan, Server-side JavaScript injection, 2011.
http://media.blackhat.com/bh-us-
11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf. Accessed 7
March 2017

[5] Sooel Son and Kathryn S. McKinley, Diglossia: Detecting Code
Injection Attacks with Precision and Efficiency. 20th ACM Conference
on Computer and Communications Security (CCS), pp.1181:1192, 2013.

[6] IBM Corporation, NoSQL does not have to mean no security: Data
security and compliance best practices for NoSQL data systems, 2016.

http://whitepapers.theregister.co.uk/paper/view/4306/nosql-does-not-
have-to-mean-no-security.pdf. Accessed 7 March 2017

[7] Adrian Lane, Securing Big Data: Security Recommendations for
Hadoop and NoSQL Environments, pp.4:6, 2012.

[8] Amreen and Dadapeer, A Survey on Robust security mechanism for
NoSQL databases. International Journal of Innovative Research in
Computer and Communication Engineering, pp.7662:7666, 2016.

[9] Aviv Ron, Alexandra Shulman-Peleg, Emanuel Bronshtein, No SQL, No
Injection? Examining NoSQL Security”, 36th IEEE Symposium on
Security and Privacy 1, 2015.

[10] OWASP Top 10, web application security risks report for 2013.

 https://www.owasp.org/index.php/Top_10_2013-A1-Injection. Accessed
7 March 2017

[11] CWE/SANS Top 25 Most Dangerous Software Errors.

 http://cwe.mitre.org/top25/. Accessed 7 March 2017

[12] OWASP Top 10, web application security risks report for 2010.

 https://www.owasp.org/index.php/Top_10_2010-Injection. Accessed 7
March 2017

[13] OWASP Top 10, web application security risks report for 2017.

 https://www.owasp.org/index.php/Top_10_2017-A1-Injection. Accessed
1 November 2017.

