
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

132 | P a g e

www.ijacsa.thesai.org

Performance vs. Power and Energy Consumption:

Impact of Coding Style and Compiler

Hesham H M Hassan

Computer Science Department

Faculty of Computer and

Information, Cairo University

Cairo, Egypt

Ahmed Shawky Moussa

Computer Science Department

Faculty of Computer and

Information, Cairo University

Cairo, Egypt

Ibrahim Farag

Computer Science Department

Faculty of Computer and

Information, Cairo University

Cairo, Egypt

Abstract—Reaching a balance between performance and

energy consumption has always been a difficult objective to

achieve for energy and power-aware applications. The work

presented in this paper investigates the impact of using different

coding styles to achieve a balance between performance and

energy efficiency. The research also studies how different

compilers may affect not only the performance of the code but

also the energy consumption. The research demonstrates and

concludes the process of choosing the right combination of the

coding style and compiler, the combination which works best

with the nature of the application and the target hardware, is

necessary if the balance between performance and energy is a

software design goal. The study addresses some experimental

aspects of the impact of coding style and choice of the compiler

on energy and performance efficiency. It also shows how

different coding practices for the same problem could produce

different performance and energy consumption rates.

Keywords—Energy consumption; energy efficiency; power-

aware; performance; coding styles; coding practice; compilers

I. INTRODUCTION

In software applications, code efficiency can mean different
things depending on the system constraints. A time-constrained
system is efficient when it runs fast, a power-constrained
system is efficient when it runs on low power, and an energy
constrained system is efficient when it consumes low total
energy [1], [2]. Reaching the balance between performance,
power and energy consumption has always been a difficult
problem, as coding and compiling for performance do not
always mean coding and compiling for power and energy [3].
When a program is executed on a computing device, it
consumes energy based on how it uses the computing device’s
resources [4]-[7]. Each instruction inside the program
contributes to the resources usage and to the total energy being
consumed. Those instructions get generated by the compiler
used and based on how the program’s code is written.

In this study, the authors show that the coding style along
with the compiler choice have a great impact on the
application’s performance, power, and energy consumption.
The C++ will be used as the programming language in the case
study, with code compiled by four different C++ compilers
(MinGW GCC, Cygwin GCC, Borland C++, and Visual C++).

Following is an outline of this paper. Section II discusses
some of the related work done in the software energy

optimization techniques. Section III explains the setup of the
experiments, the three different coding styles to be studied, the
energy model to be used, and the target machine details.
Sections IV, V, VI and VII analyze and explain the results of
executing the different coding styles using each of the selected
compilers. At the end of each section, the specific compiler
results are summarized in terms of which coding style best
suits the system constraints. In Section VIII, the four compilers
are compared and contrasted. Section IX validates the
introduced software improvement on one of the well-known
open source C/C++ applications, showing how much energy
can be saved. Section X highlights the future work. Finally,
Section XI draws the conclusions.

II. RELATED WORK

There are various hardware and software techniques and
approaches to reducing energy consumption [1]. Although
there is a considerable amount of work done in hardware
power optimization, these techniques are best applied in early
design stages [8]. Source-code level energy optimization is
another way to reducing energy consumption, which is of
particular importance when adhering to a strict power budget
[9]. It is also believed to fill an important gap in providing a
machine-independent computing cost reduction [10].

Ajit Pal in his study “Low-Power Software Approaches”
[11], Vishal Dalal et al. in their study “Software power
optimizations in an embedded system” [12], and Tajana
Simunic et al. in their study “Energy-efficient design of
battery-powered embedded systems” [13] have demonstrated
various software optimization techniques for reducing energy
consumption without modifying the underlying hardware. The
studies discussed performing machine independent
optimization techniques that do not require any knowledge of
the underlying hardware architecture. Below are some of the
code enhancement techniques examined in their studies, which
can be applied manually or automatically as a compiler
optimization:

 Reducing the code size by removing the unnecessary
computations e.g. removing non-reachable code and
non-used variables. This results in less Central
Processing Unit (CPU) work and memory usage,
resulting in less power consumption.

 Using local variables instead of global variables, so that
variables can be easily assigned to a register.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

133 | P a g e

www.ijacsa.thesai.org

 Avoiding multiple memory lookups by replacing
pointers chain with a reference variable.

 Reusing the already computed results, instead of
computing it again.

 Reducing conditional branches and jump statements, as
it interferes with the prefetching of the instruction,
causing a code slow down.

 Optimizing the common case, focusing on the fast path.

 Increasing the spatial locality of reference by placing
the code and data together in memory, if they are
accessed together in time. For example; exchanging
inner loops with outer loops, when the loop variables
index into an array.

 Replacing a function call with the body of that function.
This may lead to better memory space utilization at
runtime. However, it has a reverse impact on
performance in some cases, if the code size did not fit in
the cache memory.

 Unrolling the loops by duplicating the loop body
multiple times to decrease the overhead of the loop
conditions.

 Moving the code outside the loop, when possible.

 Replacing the slow mathematical operations with faster
ones e.g. replacing a multiplication with a summation
operation.

 Merging multiple loops into a single one, aiming at
reducing the loop conditions overhead.

 Splitting the loop by removing the conditions that are
only introduced to handle the first or last iterations.

III. EXPERIMENTAL SETUP

Compilers apply several optimizations to improve the
quality of the final code. Some optimizations may result in
better performance and energy efficiency. In some cases, they
may cause performance loss and increased energy consumption
[14]. In this particular study, the selected compilers are used
with their default settings, without applying any compilation
time enhancements, flags, or directives. Furthermore, the study
did not assume or investigate whether or not the compilers
performed any of the compiler optimization techniques covered
in [8], [15]-[19]. Also, investigations were not carried out on
how the executable files (exe) are generated, or how the
instructions are created inside the exe files.

A. Energy Model

In this study, Windows Performance Analyzer is used to
measure the energy consumption of the software applications.
Windows Performance Analyzer (WPA) is an analysis tool
developed by Microsoft. It creates graphs and data tables of
Event Tracing for Windows (ETW) [20]. WPA analyzes all
execution parts of the Windows operating System. It opens the
ETL files which the Windows Performance Recorder (WPR)
creates and it also utilizes graphs and tables to show the

collected data for analysis. The WPA tool enables us to see the
system activities, computation and power usage [21]-[23].

B. Execution Setup

The case study is done on three coding styles of the
Selection Sort algorithm. Sorting is done on an array of size
500,000 elements, filled with randomly generated numbers,
ranging from 0 to 32768. The sort algorithms have been given
the same initial set of random numbers, to ensure that the
algorithms have the same amount of work for each run. The
initial set of random numbers is pre-generated in an external
file, which is then populated to an array at the beginning of the
execution. Each coding style is executed 10 times, to avoid any
changes and discrepancies in the processing time results, and
also to avoid the other processes overhead, which are
considered as noise. The execution time is calculated for each
run. The 10 executions are captured in 10 different power
measurement sessions. The power measurements are then
extracted from the Windows Performance Analyzer via
filtering out the data by the name of process, where multiple
power measurements can be extracted. The standard deviation
is then calculated, to find out how close the data are to the
average power. Whenever an average is calculated, the
standard deviation is shown as an error bar at the top of the
graph, to show how close the data are to the average.

During the execution of the experiments, the Operating
System may start a process that could impact the accuracy of
our measurements. Whenever any of these anomalies are
detected in the Windows Performance Analyzer, the
measurement sample is discarded. Fig. 1 shows an example of
the energy measurement anomaly, caused by the operating
system.

Fig. 1. Measurement anomaly – caused by the operating system.

C. Processor Affinity

Processor affinity exploits the way that remainders of a
process running on a given processor may stay in that
processor’s state, even after another process is executed on that
processor. Scheduling the process to run on the same processor
may allow it to utilize the processor’s cache and avoid cache
misses [24]. In this experiment, the processor affinity will be
set to a single processor all the time. Given that our

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

134 | P a g e

www.ijacsa.thesai.org

experimental applications are coded in a single threaded
manner, using a processor affinity should not impact the
experimented application’s execution. However, it will attempt
to standardize the way the processor handles the tasks
execution; especially around the processor’s local cache.

It is also important to note that the Processor Affinity is just
a direction sent to the CPU, where there is no guarantee that
the CPU will adhere to it. In specific situations, such as two
processor-intensive tasks having the same affinity to a single
processor while another processor is not utilized, a Scheduling-
Algorithm implementation will switch a task execution to
another processor to gain higher efficiency. In such cases, the
application will bounce between different processors.
However, this bouncing does not impact the sequential status
of the application, and it also has never occurred in our
experimentation results.

D. Selected Coding Styles

In any process, different instructions are performed by
different components of the processor, resulting in different
energy consumption for a variety of instructions. Since not
every component of the processor is used for every instruction,
components could be automatically switched off when they are
not used; however, energy is also consumed when the
components are switched on again [25]. In CMOS circuits, for
example, power is dissipated in a gate when the gate output
changes from 0 to 1 or from 1 to 0. A study on compiler
optimization [26] claims that energy consumption
enhancements can be made by minimizing the power
dissipation at instruction-level, by scheduling instructions to
reduce the power consumption on the instruction bus.

In this paper we chose three different coding styles for the
same algorithm, which investigates the performance and

energy consumption impact of switching between processing-
intensive operations and other I/O operations, and to validate
the above claims from a high-level coding perspective. Also,
because the Operating System could interrupt the processing-
intensive operations by giving a lower priority to the process,
we have investigated this situation by deliberately setting the
process to a sleep mode.

Table I shows code snippets of the three coding style, while
the following subsections describes the three coding styles in
more details.

1) First Coding Style
The first approach is to perform the sorting completely

within its own loop, then print the output in a different loop. In
this approach, there is a complete separation between the CPU
intensive operations and the input/output (I/O) operations, so
the impact on the energy consumption can be measured.

2) Second Coding Style
In the second coding style, the output is printed while the

sorting is in progress. The second printing loop is left empty,
so that the number of instructions remains the same as the first
coding style, leaving the energy consumption difference
focused on interrupting the CPU intensive instructions with the
I/O instructions.

3) Third Coding Style
In the third coding style, everything is repeated from the

first coding style, but with an extra sleep statement. The sleep
statement is executed every 500 iterations, for 1 millisecond,
giving a total of 1000 millisecond per algorithm run. The sleep
statement shows whether interrupting the processor’s activity
with a sleep statement is different from interrupting it with an
I/O operation switch.

TABLE I. CODING STYLES – CODE SNIPPET

First Coding Style Approach Second Coding Style Approach Third Coding Style Approach

void selectionSortTest1(int *numArray) {
 long i, j, first, temp;

 //performing the selection sort

 for (i = ARRAY_SIZE - 1; i > 0; i--) {
 first = 0;

 for (j = 1; j <= i; j++) {

 if (numArray[j] < numArray[first]) {
 first = j;

 }

 }
 temp = numArray[first];

 numArray[first] = numArray[i];

 numArray[i] = temp;
 }

 //printing loop

 for(i=ARRAY_SIZE-1;i>=0;i--) {
 cout<<numArray[i]<<endl;

 }

}

void selectionSortTest2(int *numArray) {

 long i, j, first, temp;
 //performing the selection sort

 for (i = ARRAY_SIZE - 1; i > 0; i--) {

 first = 0;
 for (j = 1; j <= i; j++) {

 if (numArray[j] < numArray[first]) {

 first = j;
 }

 }

 temp = numArray[first];
 numArray[first] = numArray[i];

 numArray[i] = temp;

 //This line is moved up
 cout<<numArray[i]<<endl;

 }

 cout<<numArray[0];
 //printing loop

 for(i=0;i<ARRAY_SIZE;i++) {

 }
}

void selectionSortTest3(int *numArray) {
 long i, j, first, temp;

 //performing the selection sort

 for (i = ARRAY_SIZE - 1; i > 0; i--) {
 first = 0;

 for (j = 1; j <= i; j++) {

 if (numArray[j] < numArray[first]) {

 first = j;

 }

 }
 temp = numArray[first];

 numArray[first] = numArray[i];

 numArray[i] = temp;
 if(i%500 == 0) {

 Sleep(1);

 }
 }

 //printing loop

 for(i=ARRAY_SIZE-1;i>=0;i--) {
 cout<<numArray[i]<<endl;

 }

}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

135 | P a g e

www.ijacsa.thesai.org

E. Machine Preparation

Before the experiments are executed, some preparations
were done to ensure the standardization of the experimental
setup and neutralization of any external effect. The machine is
prepared by switching off all network cards, in order to reduce
the Operating System’s (OS) background update activities. The
screen brightness is also set to the lowest brightness level, and
the machine is switched to battery-powered mode. The
machine is then shut down for half hour to allow the machine
to cool down. When the machine is started back up, the
machine is left idle for 15 minutes to make sure all the OS’s
start-up activities are complete before the experiments are
commenced. The case study was executed on a machine with
the specifications mentioned in Table II.

TABLE II. MACHINE SPECIFICATIONS

Model Dell Inspiron 7520

Processor
Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz (8

CPUs), ~2.8GHz

Hard Drive M.2 SSD / PCIe NVMe, OPAL2: 256GB

Power mode Battery powered

Battery 6-cell (47 Wh), internal

Operating System
Windows 10 Pro 64-bit (10.0, Build 15063)

(15063.rs2_release.170317-1834)

Display NVIDIA GTX 1050 Ti 2GB DDR5 graphics

IV. EXPERIMENTATION ON MINGW 5.2.0 X86_64 GCC

5.2.0 COMPILER

This section compares the three coding styles mentioned in
Section III. The code is compiled using MinGW32 GCC 6.3.0
compiler, using the default compiler settings. Table III, Fig. 2,
3, and 4 present the results of the experiment.

The first approach, which separates the CPU intensive
instructions from the input/output instructions, showed the best
execution time, with an average of 499.549 seconds. However,
it showed the worst application power with an average of 484.2
Milliwatt. It also showed a moderate application energy
consumption, with an average of 219111 Millijoule.

The second approach, which is printing the output while the
sorting is in progress, has slightly increased the execution time
by 2.8%. However, it showed an Improvement in power &
energy consumption; the power has decreased by 0.53%, and
the energy consumption has decreased by 1.1%. This makes
the second approach a good fit in power and energy-aware
applications.

The third approach, which is interrupting the loop operation
with a sleep statement, has increased the execution time by
1.71% due to the extra sleep statements added to the code. It
also increased the total energy consumption by 1.28% from the
first approach. However, it showed the best power
measurement with a 1.11% decrease from the first approach.
This means that the third approach is a good fit in power-aware
applications, but not good in the energy-aware ones.

In conclusion, for the MinGW GCC compiler, switching
between processing-intensive operations and I/O operations is
a good approach for energy and power-aware systems. This
approach reduces the power and energy consumption while
having a small impact on the application performance.

TABLE III. MINGW GCC AVERAGE RESULTS

Measurements

Coding Styles

First

Approach

Second

Approach
Third Approach

Execution time (S) 499.549 513.525 508.123

Application Power

(mW)
484 482 479

Application Energy

consumption (mJ)
219112 216571 221920

Fig. 2. MinGW average execution time graph. Error bars show standard

deviation.

Fig. 3. MinGW average application power graph. Error bars show standard

deviation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

136 | P a g e

www.ijacsa.thesai.org

Fig. 4. MinGW average application energy consumption graph. Error bars

show standard deviation.

V. EXPERIMENTATION ON CYGWIN 2.0.4 X86_64 GCC

4.9.3 COMPILER

This section compares the three coding styles mentioned in
Section III. The code is compiled using Cygwin 2.0.4 x86_64
GCC 4.9.3 compiler, using the default compiler settings.
Table IV, Fig. 5, 6 and 7 present the results of the experiment.

The first approach showed the worst application power, at
an average of 516 Milliwatt, and the worst application energy
consumption, at an average of 220651 Millijoule.

The second approach has the worst execution time with an
increase of 0.9% from the first approach. However, it
decreased the application energy consumption by 0.98%, and it
showed the best application power with 3.1% decrease from
the first approach.

The third approach unexpectedly showed 3.60% less
execution time than the first approach. It showed a moderate
application power, a decrease of 1.93% from the first approach.
It also showed the best application energy consumption, a
decrease of 1.35% from the first approach.

In conclusion, interrupting the processor’s activity with a
sleep statement is a good approach to use with Cygwin GCC
compiler. It showed the best energy consumption and a
balanced power measurement, without compromising the
application performance.

TABLE IV. CYGWIN AVERAGE RESULTS

Measurements

Coding Styles

First

Approach

Second

Approach
Third Approach

Execution time (S) 318.848 321.999 307.361

Application Power

(mW)
516 500 506

Application Energy

consumption (mJ)
220651 218467 217659

Fig. 5. Cygwin average execution time graph. Error bars show standard

deviation.

Fig. 6. Cygwin average application power graph. Error bars show standard

deviation.

Fig. 7. Cygwin average energy consumption graph. Error bars show

standard deviation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

137 | P a g e

www.ijacsa.thesai.org

VI. EXPERIMENTATION ON BORLAND C++ 5.5.1 FOR WIN32

COMPILER

This section compares the three coding styles mentioned in
Section III. The code is compiled using Borland C++ 5.5.1 for
Win32 compiler, using the default compiler settings. Table V,
Fig. 8, 9 and 10 present the results of the experiment.

The first approach showed the best execution time of
202.723 seconds, and the best energy consumption of 79497
Millijoule. However, it showed the worst application power of
all the three approaches, at an average of 555 Milliwatt. This
makes the first approach a good fit for energy-aware systems,
but not for power-aware ones.

The second approach showed balanced power, energy, and
execution time measurements. It decreased the application
power by 5.4% from the first approach, but increased the
execution time by 1.98% and increased the energy
consumption by 2.79%.

The third approach showed the best application power of
517 Milliwatt, with a 6.85% decrease from the first approach.
However, it showed the worst execution time with an increase
of 5.26% and the worst application energy consumption with
an increase of 13.46% from the first approach.

In conclusion, if the target of our code enhancements is
building an energy-aware application without compromising
the performance, then separating the processing intensive
operations from the I/O operations is a good approach to use
with Borland C++ compiler. If our main target is to reduce the
application power regardless of the total energy or
performance, then interrupting the processor’s activity with a
sleep statement would be a good approach.

Fig. 8. Borland C++ average execution time graph. Error bars show standard

deviation.

TABLE V. BORLAND C++ AVERAGE RESULTS

Measurements

Coding Styles

First

Approach

Second

Approach
Third Approach

Execution time (S) 202.723 206.747 213.39

Application Power

(mW)
555 525 517

Application Energy

consumption (mJ)
79497 81719 90199

Fig. 9. Borland C++ average application power graph. Error bars show

standard deviation.

Fig. 10. Borland C++ average energy consumption graph. Error bars show

standard deviation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

138 | P a g e

www.ijacsa.thesai.org

VII. EXPERIMENTATION ON VISUAL STUDIO 2013 VISUAL

C++ WIN32 CONSOLE APPLICATION

This section compares the three coding styles mentioned in
Section III. The code is compiled using Visual Studio 2017
Visual C++ compiler, as a Win32 Console Application, using
the default compiler settings. Table VI, Fig. 11, 12 and 13
present the results of the experiment.

The first approach showed a moderate execution time, with
an average of 90.1515 seconds, a moderate application power,
with an average of 0.5837 watts, and a moderate application
energy consumption, with an average of 52.6019 joules.

The second approach showed the worst execution time: it
increased by 10.95% from the first approach. Although the
second approach showed the best application power with a
4.23% decrease, it showed the worst total application energy
consumption with a 6.20% increase from the first approach.
This is another indication that lower power does not always
translate to lower total energy consumption.

The third approach showed similar results to the first
approach with a very low and insignificant difference. It
decreased the execution time by 0.71%, increased the power by
0.18%, and decreased the energy consumption by 0.51%. This
is considered to be the same result as the first approach.

As a conclusion, separating the I/O instructions from the
CPU intensive instructions is a good approach to follow when
compiling with Visual C++. Interrupting the CPU intensive
instructions with I/O instructions is only recommended for
power-aware applications, but not highly recommended for
performance and energy-aware applications when compiling
with Visual C++.

Fig. 11. Visual C++ 2013 average execution time graph. Error bars show

standard deviation.

TABLE VI. VISUAL C++ AVERAGE RESULTS

Measurements

Coding Styles

First

Approach

Second

Approach

Third

Approach

Execution time (S) 484.719 495.374 495.36

Application Power (mW) 487 478 472

Application Energy

consumption (mJ)
221655 216255 218420

Fig. 12. Visual C++ 2013 average application power graph. Error bars show

standard deviation.

Fig. 13. Visual C++ 2013 average energy consumption graph. Error bars
show standard deviation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

139 | P a g e

www.ijacsa.thesai.org

VIII. COMPILER COMPARISON

It is evident that the choice of the compiler can heavily
impact the execution time of an application. As shown in
Fig. 15, Borland C++ compiler has an execution time of 58% ~
59.73% less than the execution time of MinGW, 30.57% ~
36.42% less than Cygwin, and 56.92% ~ 58.26% less than
Visual C++.

Visual C++ and MinGW compilers are showing the lowest
application power; their average power measurements are very
close. They have an application power of 4.4% ~ 6.71% less
than Cygwin, and 8.7% ~ 12.79% less than Borland C++,
Fig. 16. These results show that Visual C++ & MinGW are
good choices for power-aware applications, but not for energy-
aware ones.

Because the Borland C++ compiled application has a low
execution time, it used less total energy than all the other
compilers. Fig. 14 shows that Borland C++ has an application
energy consumption of 59.35% ~ 63.71% less than MinGW,
58.55% ~ 63.97% less than Cygwin, and 58.70% ~ 64.13 less
than Visual C++.

Fig. 14. Energy consumption comparison between different compilers.

Fig. 15. Execution time comparison between different compilers.

Fig. 16. Power comparison between different compilers.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

140 | P a g e

www.ijacsa.thesai.org

IX. RESULTS VALIDATION

For validation, the authors applied the findings of the
research to one of the well-known open source C/C++
applications, showing how much energy can be saved.
According to the findings in Sections IV, V, VI, VII and VIII;
the best performance and least energy consumption can be
achieved by compiling the code with Borland C++ 5.5. We can
also achieve a lower power by applying a sleep statement in the
middle of the CPU intensive operations. The above sections
claim that will be validated in this section is that the
applications compiled by Borland C++ 5.5 should consume
58%~64 less energy than applications compiled with other
compilers.

SQLite3 is a self-contained, serverless, zero-configuration,
transactional SQL database engine. It is a lightweight database
that supports SQL syntax of standard relational databases for
complex queries [27].

SQLite3 open source application has been chosen for this
experiment because of its wide usage in a large variety of
software and products [28]-[30]. For example, SQLite is used
in Apple's many native Mac OS-X and IOS applications, used
as a meta-data storage for Firefox web browser and the
Thunderbird e-mail reader from Mozilla, used as an application
file format for Adobe Photoshop Lightroom, used as a primary
data store on the client-side of the Dropbox file archiving and
synchronization service, and it is also used in Google's Android
OS and the Chrome Web Browser.

The source code has been downloaded from the official
SQLite3 download page [31]; the downloaded package can be
reached from [32]. The C code has been modified to fix the
compilation issues raised from compiling with BorlandC55. It
has also been modified to execute a sleep statement for
1 millisecond, every 500 loop rounds, in the DROP TABLE
method. This experiment will focus only on the DROP TABLE
statement, by executing 200 DROP TABLE statement. Each
table contains 6,856,019 records, and each record consists of
two integer columns. The DB is saved in a single file with a
size over 4 GB.

The 200 statements are split over 5 execution sessions for
power measurements. The reason for that split is to have
multiple power measurements, where the standard deviation
can be calculated, to find out how close the data are to average
power. The average application power is then used along with
the execution time to generate the average energy
consumption. Whenever an average is calculated, the standard
deviation is shown as an error bar at the top of the graph, to
show how close the data are to the average.

Finally, the BorlandC55 result is compared to the result of
the EXE file downloaded from the official SQLite3 website
[33], to compare the energy savings, and the execution time
performance.

A. Experimentation Result

As shown in Table VII, Fig. 17, 18 and 19, the application
that has been compiled with BorlandC55 with the sleep
statement has shown a 52.16% decrease in application power, a
58.13% decrease in application energy consumption, and a

13.14% decrease in execution time. This result is a strong
indication of the validity of the findings in Sections IV, V, VI,
VII and VIII.

Fig. 17. SQLite3- Average Execution Time – Error Bar shows standard

deviation.

Fig. 18. SQLite3 - Energy Comparison - Error Bar shows standard deviation.

105.3220

121.2620

0

20

40

60

80

100

120

Average Execution time (S)

Average Execution Time

BorlandC55 Downloaded

15.7590

37.6385

0

5

10

15

20

25

30

35

40

Average Application Energy consumption (Joule)

Energy Comparison

BorlandC55 Downloaded

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

141 | P a g e

www.ijacsa.thesai.org

Fig. 19. SQLite3 - Power Comparison - Error Bar shows standard deviation.

TABLE VII. SQLITE3 - EXPERIMENTATION RESULT

Measurements
BorlandC55 Compiled

EXE
Downloaded EXE

Execution

time (S)
105.3220 121.2620

Application Power (W) 0.1497 0.3130

Application Energy
consumption (Joule)

15.7590 37.6385

X. FUTURE WORK

The main contribution of this research lies in highlighting
the impact of coding style and choice of the compiler on
energy and performance efficiency. However, there are several
lines of research arising from this study which should be
pursued. The experimentation results show that the magnitude
of the differences between the four compilers is significant.
However, further investigation of why the difference is large is
yet to be done, e.g. how different is the assembly code? What
optimizations does each compiler use by default? What
libraries do the compilers use? How is initialization done?
Where in memory does the program get loaded? Does this
matter?

The following points are some other ideas that could be an
extension of this research:

 Applying compilation time enhancements, flags, and
directives, instead of using the compiler's default
settings, and detect the difference in performance and
energy consumption.

 Implementing a dynamic power-aware framework, that
automatically reduces the application’s power when it
reaches a certain level.

 Investigating the power-aware techniques for the
Virtual Machine based programming languages, e.g.
JAVA.

XI. CONCLUSION

This research has demonstrated that an important solution
for finding the balance between performance, power, and
energy consumption could be choosing the right coding style
along with the right compiler that works best with the nature of
the application and the target machine.

It also has shown that although in most of the cases high
CPU performance means high application power, this is not
universally valid, and low power does not always translate to
lower total energy consumption.

The research also revealed that one coding style could work
best for one compiler, but not for another compiler and that the
most efficient coding style varies based on the system goals
and constraints. In addition, enhancing the program's energy
efficiency is not only dependent on the target machine and the
type of program [34], but it is also dependent on how the
program is written and compiled.

Furthermore, the research showed that for some compilers,
interrupting the CPU intensive instructions with a sleep
statement could be a simple and easy way of controlling the
application’s power. However, it may slightly impact the
performance and total consumed energy. We have also shown
that interrupting the CPU intensive instructions with I/O
instructions is another way of reducing application power.
However, in most of the cases, it negatively impacts the
performance and the total energy consumption.

All the experimental results were then put into one
comparison between compilers, showing how compiler choice
can impact the performance, the power, and the total energy
consumption of the application.

From the experimentations done on the selected four
compilers and three coding styles, it has been found that the
best performance and energy saving result can be achieved by
compiling the application with Borland C++ 5.5 while
separating the CPU intensive instructions from the input/output
instructions. The lowest power, however, could be achieved by
compiling the application with Visual C++ compiler while
interrupting the CPU intensive instructions with a sleep
statemen.

Finally, and most importantly, the research team validated
the newly introduced software improvement by applying it to
one of the well-known open source C/C++ applications
(SQLite3). The results have shown 52.16% decrease in
application power, 58.13% decrease in the application’s energy
consumption, and 13.14% decrease in execution time.

REFERENCES

[1] Hassan, Hesham, and Ahmed Shawky Moussa. "Power Aware
Computing Survey." International Journal of Computer Applications 90,
no. 3, 2014.

[2] Osman S. Unsal. “System-Level Power-Aware Computing in Complex
Real-Time and Multimedia Systems” Doctor of Philosophy Doctoral
Dissertation, Department of Electrical and Computer Engineering,
University of Massachusetts, Amherst, 2008.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

142 | P a g e

www.ijacsa.thesai.org

[3] Valluri, Madhavi, and Lizy K. John. "Is Compiling for
Performance==Compiling for Power?" In Interaction between
Compilers and Computer Architectures, pp. 101-115. Springer US,
2001.

[4] Orgerie, Anne-Cecile, Laurent Lefevre, and Jean-Patrick Gelas.
"Demystifying energy consumption in grids and clouds." In Green
Computing Conference, 2010 International, pp. 335-342. IEEE, 2010.

[5] Mittal, Radhika, Aman Kansal, and Ranveer Chandra. "Empowering
developers to estimate app energy consumption." In Proceedings of the
18th annual international conference on Mobile computing and
networking, pp. 317-328. ACM, 2012.

[6] Carroll, Aaron, and Gernot Heiser. "An Analysis of Power Consumption
in a Smartphone." In USENIX annual technical conference, vol. 14.
2010.

[7] Perrucci, Gian Paolo, Frank HP Fitzek, and Jörg Widmer. "Survey on
energy consumption entities on the smartphone platform." In Vehicular
Technology Conference (VTC Spring), 2011 IEEE 73rd, pp. 1-6. IEEE,
2011.

[8] Ortiz, David A., and Nayda G. Santiago. "Impact of source code
optimizations on power consumption of embedded systems." In Circuits
and Systems and TAISA Conference, 2008. NEWCAS-TAISA 2008.
2008 Joint 6th International IEEE Northeast Workshop on, pp. 133-136.
IEEE, 2008.

[9] Pallister, James, Simon J. Hollis, and Jeremy Bennett. "Identifying
compiler options to minimize energy consumption for embedded
platforms." The Computer Journal 58, no. 1 (2015): 95-109.

[10] Ayse, Md Ashfaquzzaman Khan Can Hankendi, and Kivilcim Coskun
Martin C. Herbordt. "Application Level Optimizations for Energy
Efficiency and Thermal Stability." Power (W) 20, no. 10: 0.

[11] Pal, Ajit. "Low-Power Software Approaches." In Low-Power VLSI
Circuits and Systems, pp. 355-386. Springer India, 2015.

[12] Dalal, Vishal, and C. P. Ravikumar. "Software power optimizations in
an embedded system." In VLSI Design, 2001. Fourteenth International
Conference on, pp. 254-259. IEEE, 2001.

[13] Simunic, Tajana, Luca Benini, and Giovanni De Micheli. "Energy-
efficient design of battery-powered embedded systems." IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 9, no. 1
(2001): 15-28.

[14] De Lima, Ewerton Daniel, Tiago Cariolano de Souza Xavier, Anderson
Faustino da Silva, and Linnyer Beatryz Ruiz. "Compiling for
performance and power efficiency." In Power and Timing Modeling,
Optimization and Simulation (PATMOS), 2013 23rd International
Workshop on, pp. 142-149. IEEE, 2013.

[15] Pallister, James, Simon J. Hollis, and Jeremy Bennett. "Identifying
compiler options to minimize energy consumption for embedded
platforms." The Computer Journal 58, no. 1 (2015): 95-109, 2015.

[16] Purini, Suresh, and Lakshya Jain. "Finding good optimization sequences
covering program space." ACM Transactions on Architecture and Code
Optimization (TACO) 9, no. 4 (2013): 56

[17] Huang, Qijing, Ruolong Lian, Andrew Canis, Jongsok Choi, Ryan Xi,
Shannon Brown, and Jon Anderson. "The effect of compiler
optimizations on high-level synthesis for FPGAs." In Field-
Programmable Custom Computing Machines (FCCM), 2013 IEEE 21st
Annual International Symposium on, pp. 89-96. IEEE, 2013.

[18] Pan, Zhelong, and Rudolf Eigenmann. "Fast and effective orchestration

of compiler optimizations for automatic performance tuning." In Code
Generation and Optimization, 2006. CGO 2006. International
Symposium on, pp. 12-pp. IEEE, 2006.

[19] Haneda, Masayo, Peter MW Knijnenburg, and Harry AG Wijshoff.
"Automatic selection of compiler options using non-parametric
inferential statistics." In Parallel Architectures and Compilation
Techniques, 2005. PACT 2005. 14th International Conference on, pp.
123-132. IEEE, 2005.

[20] Windows Performance Analyzer, https://msdn.microsoft.com/en-
us/library/windows/hardware/hh448170.aspx (accessed at: 12/10/2017
3:00pm).

[21] Introduction to WPA, https://msdn.microsoft.com/en-
us/library/windows/hardware/hh448171.aspx (accessed at: 12/10/2017
3:30pm).

[22] WPA Features, https://msdn.microsoft.com/en-us/library/hh448220.aspx
(accessed at: 12/10/2017 4:00pm)

[23] Introduction to the WPA User Interface, https://docs.microsoft.com/en-
us/windows-hardware/test/wpt/introduction-to-the-wpa-user-interface.
(accessed at: 12/10/2017 4:00pm)

[24] Markatos, Evangelos P., and Thomas J. LeBlanc. "Using processor
affinity in loop scheduling on shared-memory multiprocessors." IEEE
Transactions on Parallel and Distributed systems 5, no. 4 (1994): 379-
400.

[25] Hannah Bayer and Markus E. Nebel, 2009, “Evaluating Algorithms
according to their Energy Consumption”, Mathematical Theory and
Computational Practice.

[26] Chingren Lee, Jenq Kuen Lee, and TingTing Hwang, 2000, “Compiler
Optimization on Instruction Scheduling for Low Power”, 13th
International Symposium on System Synthesis (ISSS'00), Madrid,
Spain, 20-22.

[27] Zhao, Aite, Zhiqiang Wei, and Yongquan Yang. "Research on SQLite
Database Query Optimization Based on Improved PSO Algorithm."
International Journal of Database Theory and Application 9, no. 4
(2016): 239-246, 2016

[28] Jeon, Sangjun, Jewan Bang, Keunduck Byun, and Sangjin Lee. "A
recovery method of deleted record for SQLite database." Personal and
Ubiquitous Computing 16, no. 6 (2012): 707-715, 2012.

[29] Owens, Mike, and Grant Allen. SQLite. Apress LP, 2010.

[30] Well-Known Users of SQLite, https://www.sqlite.org/famous.html
(accessed at: 06/09/2016 08:26pm)

[31] SQLite official download page, https://www.sqlite.org/download.html
(accessed at: 08/07/2016 4:01pm)

[32] C source code as an amalgamation, version 3.13.0. (sha1:
b46e199f06aa6f644989076da40227da68db7b6a)https://www.sqlite.org/
2016/sqlite-amalgamation-3130000.zip - (Downloaded at: 08/07/2016
4:01pm)

[33] bundle of command-line tools for managing SQLite database files,
including the command-line shell program, the sqldiff.exe program, and
the sqlite3_analyzer.exe program. (sha1:
d74226e1cd38853f792266b221ae70c6c7b26835)https://www.sqlite.org/
2016/sqlite-tools-win32-x86-3130000.zip - A (Downloaded at:
08/07/2016 4:01pm).

[34] Cooper, Keith D., and Todd Waterman. "Understanding energy
consumption on the c62x." In Workshop on Compilers and Operating
Systems for Low Power (COLP 02, co-located with PACT 02). 2002.

