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Abstract—Reaching a balance between performance and 

energy consumption has always been a difficult objective to 

achieve for energy and power-aware applications. The work 

presented in this paper investigates the impact of using different 

coding styles to achieve a balance between performance and 

energy efficiency. The research also studies how different 

compilers may affect not only the performance of the code but 

also the energy consumption. The research demonstrates and 

concludes the process of choosing the right combination of the 

coding style and compiler, the combination which works best 

with the nature of the application and the target hardware, is 

necessary if the balance between performance and energy is a 

software design goal. The study addresses some experimental 

aspects of the impact of coding style and choice of the compiler 

on energy and performance efficiency. It also shows how 

different coding practices for the same problem could produce 

different performance and energy consumption rates. 
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I. INTRODUCTION 

In software applications, code efficiency can mean different 
things depending on the system constraints. A time-constrained 
system is efficient when it runs fast, a power-constrained 
system is efficient when it runs on low power, and an energy 
constrained system is efficient when it consumes low total 
energy [1], [2]. Reaching the balance between performance, 
power and energy consumption has always been a difficult 
problem, as coding and compiling for performance do not 
always mean coding and compiling for power and energy [3]. 
When a program is executed on a computing device, it 
consumes energy based on how it uses the computing device’s 
resources [4]-[7]. Each instruction inside the program 
contributes to the resources usage and to the total energy being 
consumed. Those instructions get generated by the compiler 
used and based on how the program’s code is written. 

In this study, the authors show that the coding style along 
with the compiler choice have a great impact on the 
application’s performance, power, and energy consumption. 
The C++ will be used as the programming language in the case 
study, with code compiled by four different C++ compilers 
(MinGW GCC, Cygwin GCC, Borland C++, and Visual C++). 

Following is an outline of this paper. Section II discusses 
some of the related work done in the software energy 

optimization techniques. Section III explains the setup of the 
experiments, the three different coding styles to be studied, the 
energy model to be used, and the target machine details. 
Sections IV, V, VI and VII analyze and explain the results of 
executing the different coding styles using each of the selected 
compilers. At the end of each section, the specific compiler 
results are summarized in terms of which coding style best 
suits the system constraints. In Section VIII, the four compilers 
are compared and contrasted. Section IX validates the 
introduced software improvement on one of the well-known 
open source C/C++ applications, showing how much energy 
can be saved. Section X highlights the future work. Finally, 
Section XI draws the conclusions. 

II. RELATED WORK 

There are various hardware and software techniques and 
approaches to reducing energy consumption [1]. Although 
there is a considerable amount of work done in hardware 
power optimization, these techniques are best applied in early 
design stages [8]. Source-code level energy optimization is 
another way to reducing energy consumption, which is of 
particular importance when adhering to a strict power budget 
[9]. It is also believed to fill an important gap in providing a 
machine-independent computing cost reduction [10]. 

Ajit Pal in his study “Low-Power Software Approaches” 
[11], Vishal Dalal et al. in their study “Software power 
optimizations in an embedded system” [12], and Tajana 
Simunic et al. in their study “Energy-efficient design of 
battery-powered embedded systems” [13] have demonstrated 
various software optimization techniques for reducing energy 
consumption without modifying the underlying hardware. The 
studies discussed performing machine independent 
optimization techniques that do not require any knowledge of 
the underlying hardware architecture. Below are some of the 
code enhancement techniques examined in their studies, which 
can be applied manually or automatically as a compiler 
optimization: 

 Reducing the code size by removing the unnecessary 
computations e.g. removing non-reachable code and 
non-used variables. This results in less Central 
Processing Unit (CPU) work and memory usage, 
resulting in less power consumption.  

 Using local variables instead of global variables, so that 
variables can be easily assigned to a register. 
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 Avoiding multiple memory lookups by replacing 
pointers chain with a reference variable. 

 Reusing the already computed results, instead of 
computing it again. 

 Reducing conditional branches and jump statements, as 
it interferes with the prefetching of the instruction, 
causing a code slow down. 

 Optimizing the common case, focusing on the fast path. 

 Increasing the spatial locality of reference by placing 
the code and data together in memory, if they are 
accessed together in time. For example; exchanging 
inner loops with outer loops, when the loop variables 
index into an array. 

 Replacing a function call with the body of that function. 
This may lead to better memory space utilization at 
runtime. However, it has a reverse impact on 
performance in some cases, if the code size did not fit in 
the cache memory. 

 Unrolling the loops by duplicating the loop body 
multiple times to decrease the overhead of the loop 
conditions. 

 Moving the code outside the loop, when possible. 

 Replacing the slow mathematical operations with faster 
ones e.g. replacing a multiplication with a summation 
operation. 

 Merging multiple loops into a single one, aiming at 
reducing the loop conditions overhead. 

 Splitting the loop by removing the conditions that are 
only introduced to handle the first or last iterations. 

III. EXPERIMENTAL SETUP 

Compilers apply several optimizations to improve the 
quality of the final code. Some optimizations may result in 
better performance and energy efficiency. In some cases, they 
may cause performance loss and increased energy consumption 
[14]. In this particular study, the selected compilers are used 
with their default settings, without applying any compilation 
time enhancements, flags, or directives. Furthermore, the study 
did not assume or investigate whether or not the compilers 
performed any of the compiler optimization techniques covered 
in [8], [15]-[19]. Also, investigations were not carried out on 
how the executable files (exe) are generated, or how the 
instructions are created inside the exe files. 

A. Energy Model 

In this study, Windows Performance Analyzer is used to 
measure the energy consumption of the software applications. 
Windows Performance Analyzer (WPA) is an analysis tool 
developed by Microsoft. It creates graphs and data tables of 
Event Tracing for Windows (ETW) [20]. WPA analyzes all 
execution parts of the Windows operating System. It opens the 
ETL files which the Windows Performance Recorder (WPR) 
creates and it also utilizes graphs and tables to show the 

collected data for analysis. The WPA tool enables us to see the 
system activities, computation and power usage [21]-[23]. 

B. Execution Setup 

The case study is done on three coding styles of the 
Selection Sort algorithm. Sorting is done on an array of size 
500,000 elements, filled with randomly generated numbers, 
ranging from 0 to 32768. The sort algorithms have been given 
the same initial set of random numbers, to ensure that the 
algorithms have the same amount of work for each run. The 
initial set of random numbers is pre-generated in an external 
file, which is then populated to an array at the beginning of the 
execution. Each coding style is executed 10 times, to avoid any 
changes and discrepancies in the processing time results, and 
also to avoid the other processes overhead, which are 
considered as noise. The execution time is calculated for each 
run. The 10 executions are captured in 10 different power 
measurement sessions. The power measurements are then 
extracted from the Windows Performance Analyzer via 
filtering out the data by the name of process, where multiple 
power measurements can be extracted. The standard deviation 
is then calculated, to find out how close the data are to the 
average power. Whenever an average is calculated, the 
standard deviation is shown as an error bar at the top of the 
graph, to show how close the data are to the average. 

During the execution of the experiments, the Operating 
System may start a process that could impact the accuracy of 
our measurements. Whenever any of these anomalies are 
detected in the Windows Performance Analyzer, the 
measurement sample is discarded. Fig. 1 shows an example of 
the energy measurement anomaly, caused by the operating 
system. 

 

Fig. 1. Measurement anomaly – caused by the operating system. 

C. Processor Affinity 

Processor affinity exploits the way that remainders of a 
process running on a given processor may stay in that 
processor’s state, even after another process is executed on that 
processor. Scheduling the process to run on the same processor 
may allow it to utilize the processor’s cache and avoid cache 
misses [24]. In this experiment, the processor affinity will be 
set to a single processor all the time. Given that our 
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experimental applications are coded in a single threaded 
manner, using a processor affinity should not impact the 
experimented application’s execution. However, it will attempt 
to standardize the way the processor handles the tasks 
execution; especially around the processor’s local cache. 

It is also important to note that the Processor Affinity is just 
a direction sent to the CPU, where there is no guarantee that 
the CPU will adhere to it. In specific situations, such as two 
processor-intensive tasks having the same affinity to a single 
processor while another processor is not utilized, a Scheduling-
Algorithm implementation will switch a task execution to 
another processor to gain higher efficiency. In such cases, the 
application will bounce between different processors. 
However, this bouncing does not impact the sequential status 
of the application, and it also has never occurred in our 
experimentation results. 

D. Selected Coding Styles 

In any process, different instructions are performed by 
different components of the processor, resulting in different 
energy consumption for a variety of instructions. Since not 
every component of the processor is used for every instruction, 
components could be automatically switched off when they are 
not used; however, energy is also consumed when the 
components are switched on again [25]. In CMOS circuits, for 
example, power is dissipated in a gate when the gate output 
changes from 0 to 1 or from 1 to 0. A study on compiler 
optimization [26] claims that energy consumption 
enhancements can be made by minimizing the power 
dissipation at instruction-level, by scheduling instructions to 
reduce the power consumption on the instruction bus. 

In this paper we chose three different coding styles for the 
same algorithm, which investigates the performance and 

energy consumption impact of switching between processing-
intensive operations and other I/O operations, and to validate 
the above claims from a high-level coding perspective. Also, 
because the Operating System could interrupt the processing-
intensive operations by giving a lower priority to the process, 
we have investigated this situation by deliberately setting the 
process to a sleep mode. 

Table I shows code snippets of the three coding style, while 
the following subsections describes the three coding styles in 
more details. 

1) First Coding Style 
The first approach is to perform the sorting completely 

within its own loop, then print the output in a different loop. In 
this approach, there is a complete separation between the CPU 
intensive operations and the input/output (I/O) operations, so 
the impact on the energy consumption can be measured. 

2) Second Coding Style 
In the second coding style, the output is printed while the 

sorting is in progress. The second printing loop is left empty, 
so that the number of instructions remains the same as the first 
coding style, leaving the energy consumption difference 
focused on interrupting the CPU intensive instructions with the 
I/O instructions. 

3) Third Coding Style 
In the third coding style, everything is repeated from the 

first coding style, but with an extra sleep statement. The sleep 
statement is executed every 500 iterations, for 1 millisecond, 
giving a total of 1000 millisecond per algorithm run. The sleep 
statement shows whether interrupting the processor’s activity 
with a sleep statement is different from interrupting it with an 
I/O operation switch. 

TABLE I.  CODING STYLES – CODE SNIPPET 

First Coding Style Approach Second Coding Style Approach Third Coding Style Approach 

void selectionSortTest1(int *numArray) { 
   long i, j, first, temp; 

   //performing the selection sort 

   for (i = ARRAY_SIZE - 1; i > 0; i--) { 
      first = 0; 

      for (j = 1; j <= i; j++) { 

         if (numArray[j] < numArray[first]) { 
            first = j; 

         } 

      } 
      temp = numArray[first]; 

      numArray[first] = numArray[i]; 

      numArray[i] = temp; 
   } 

   //printing loop 

   for(i=ARRAY_SIZE-1;i>=0;i--) { 
      cout<<numArray[i]<<endl; 

   } 

} 

void selectionSortTest2(int *numArray) { 

   long i, j, first, temp; 
   //performing the selection sort 

   for (i = ARRAY_SIZE - 1; i > 0; i--) { 

      first = 0; 
      for (j = 1; j <= i; j++) { 

         if (numArray[j] < numArray[first]) { 

            first = j; 
         } 

      } 

      temp = numArray[first]; 
      numArray[first] = numArray[i]; 

      numArray[i] = temp; 

      //This line is moved up 
      cout<<numArray[i]<<endl; 

   } 

   cout<<numArray[0]; 
   //printing loop 

   for(i=0;i<ARRAY_SIZE;i++) { 

   } 
} 

void selectionSortTest3(int *numArray) { 
   long i, j, first, temp; 

   //performing the selection sort 

   for (i = ARRAY_SIZE - 1; i > 0; i--) { 
      first = 0; 

      for (j = 1; j <= i; j++) { 

         if (numArray[j] < numArray[first]) { 

            first = j; 

         } 

      } 
      temp = numArray[first]; 

      numArray[first] = numArray[i]; 

      numArray[i] = temp; 
      if(i%500 == 0) { 

         Sleep(1); 

      } 
   } 

   //printing loop 

   for(i=ARRAY_SIZE-1;i>=0;i--) { 
      cout<<numArray[i]<<endl; 

   } 

} 
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E. Machine Preparation 

Before the experiments are executed, some preparations 
were done to ensure the standardization of the experimental 
setup and neutralization of any external effect. The machine is 
prepared by switching off all network cards, in order to reduce 
the Operating System’s (OS) background update activities. The 
screen brightness is also set to the lowest brightness level, and 
the machine is switched to battery-powered mode. The 
machine is then shut down for half hour to allow the machine 
to cool down. When the machine is started back up, the 
machine is left idle for 15 minutes to make sure all the OS’s 
start-up activities are complete before the experiments are 
commenced. The case study was executed on a machine with 
the specifications mentioned in Table II. 

TABLE II.  MACHINE SPECIFICATIONS 

Model Dell Inspiron 7520 

Processor 
Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz (8 

CPUs), ~2.8GHz 

Hard Drive M.2 SSD / PCIe NVMe, OPAL2: 256GB 

Power mode Battery powered 

Battery 6-cell (47 Wh), internal 

Operating System 
Windows 10 Pro 64-bit (10.0, Build 15063) 

(15063.rs2_release.170317-1834) 

Display NVIDIA GTX 1050 Ti 2GB DDR5 graphics 

IV. EXPERIMENTATION ON MINGW 5.2.0 X86_64 GCC 

5.2.0 COMPILER 

This section compares the three coding styles mentioned in 
Section III. The code is compiled using MinGW32 GCC 6.3.0 
compiler, using the default compiler settings.  Table III, Fig. 2, 
3, and 4 present the results of the experiment. 

The first approach, which separates the CPU intensive 
instructions from the input/output instructions, showed the best 
execution time, with an average of 499.549 seconds. However, 
it showed the worst application power with an average of 484.2 
Milliwatt. It also showed a moderate application energy 
consumption, with an average of 219111 Millijoule. 

The second approach, which is printing the output while the 
sorting is in progress, has slightly increased the execution time 
by 2.8%. However, it showed an Improvement in power & 
energy consumption; the power has decreased by 0.53%, and 
the energy consumption has decreased by 1.1%. This makes 
the second approach a good fit in power and energy-aware 
applications. 

The third approach, which is interrupting the loop operation 
with a sleep statement, has increased the execution time by 
1.71% due to the extra sleep statements added to the code. It 
also increased the total energy consumption by 1.28% from the 
first approach. However, it showed the best power 
measurement with a 1.11% decrease from the first approach. 
This means that the third approach is a good fit in power-aware 
applications, but not good in the energy-aware ones. 

In conclusion, for the MinGW GCC compiler, switching 
between processing-intensive operations and I/O operations is 
a good approach for energy and power-aware systems. This 
approach reduces the power and energy consumption while 
having a small impact on the application performance. 

TABLE III.  MINGW GCC AVERAGE RESULTS 

Measurements 

Coding Styles 

First 

Approach 

Second 

Approach 
Third Approach 

Execution time (S) 499.549 513.525 508.123 

Application Power 

(mW) 
484 482 479 

Application Energy 

consumption (mJ) 
219112 216571 221920 

 

Fig. 2. MinGW average execution time graph. Error bars show standard 

deviation. 

 

Fig. 3. MinGW average application power graph. Error bars show standard 

deviation. 
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Fig. 4. MinGW average application energy consumption graph. Error bars 

show standard deviation. 

V. EXPERIMENTATION ON CYGWIN 2.0.4 X86_64 GCC 

4.9.3 COMPILER 

This section compares the three coding styles mentioned in 
Section III. The code is compiled using Cygwin 2.0.4 x86_64 
GCC 4.9.3 compiler, using the default compiler settings. 
Table IV, Fig. 5, 6 and 7 present the results of the experiment. 

The first approach showed the worst application power, at 
an average of 516 Milliwatt, and the worst application energy 
consumption, at an average of 220651 Millijoule. 

The second approach has the worst execution time with an 
increase of 0.9% from the first approach. However, it 
decreased the application energy consumption by 0.98%, and it 
showed the best application power with 3.1% decrease from 
the first approach. 

The third approach unexpectedly showed 3.60% less 
execution time than the first approach. It showed a moderate 
application power, a decrease of 1.93% from the first approach. 
It also showed the best application energy consumption, a 
decrease of 1.35% from the first approach. 

In conclusion, interrupting the processor’s activity with a 
sleep statement is a good approach to use with Cygwin GCC 
compiler. It showed the best energy consumption and a 
balanced power measurement, without compromising the 
application performance. 

TABLE IV.  CYGWIN AVERAGE RESULTS 

Measurements 

Coding Styles 

First 

Approach 

Second 

Approach 
Third Approach 

Execution time (S) 318.848 321.999 307.361 

Application Power 

(mW) 
516 500 506 

Application Energy 

consumption (mJ) 
220651 218467 217659 

 

Fig. 5. Cygwin average execution time graph. Error bars show standard 

deviation. 

 

Fig. 6. Cygwin average application power graph. Error bars show standard 

deviation. 

 

Fig. 7. Cygwin average energy consumption graph. Error bars show 

standard deviation. 
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VI. EXPERIMENTATION ON BORLAND C++ 5.5.1 FOR WIN32 

COMPILER 

This section compares the three coding styles mentioned in 
Section III. The code is compiled using Borland C++ 5.5.1 for 
Win32 compiler, using the default compiler settings. Table V, 
Fig. 8, 9 and 10 present the results of the experiment. 

The first approach showed the best execution time of 
202.723 seconds, and the best energy consumption of 79497 
Millijoule. However, it showed the worst application power of 
all the three approaches, at an average of 555 Milliwatt. This 
makes the first approach a good fit for energy-aware systems, 
but not for power-aware ones. 

The second approach showed balanced power, energy, and 
execution time measurements. It decreased the application 
power by 5.4% from the first approach, but increased the 
execution time by 1.98% and increased the energy 
consumption by 2.79%. 

The third approach showed the best application power of 
517 Milliwatt, with a 6.85% decrease from the first approach. 
However, it showed the worst execution time with an increase 
of 5.26% and the worst application energy consumption with 
an increase of 13.46% from the first approach. 

In conclusion, if the target of our code enhancements is 
building an energy-aware application without compromising 
the performance, then separating the processing intensive 
operations from the I/O operations is a good approach to use 
with Borland C++ compiler. If our main target is to reduce the 
application power regardless of the total energy or 
performance, then interrupting the processor’s activity with a 
sleep statement would be a good approach. 

 

Fig. 8. Borland C++ average execution time graph. Error bars show standard 

deviation. 

TABLE V.  BORLAND C++ AVERAGE RESULTS 

Measurements 

Coding Styles 

First 

Approach 

Second 

Approach 
Third Approach 

Execution time (S) 202.723 206.747 213.39 

Application Power 

(mW) 
555 525 517 

Application Energy 

consumption (mJ) 
79497 81719 90199 

 

Fig. 9. Borland C++ average application power graph. Error bars show 

standard deviation. 

 

Fig. 10. Borland C++ average energy consumption graph. Error bars show 

standard deviation. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 12, 2017 

138 | P a g e  

www.ijacsa.thesai.org 

VII. EXPERIMENTATION ON VISUAL STUDIO 2013 VISUAL 

C++ WIN32 CONSOLE APPLICATION 

This section compares the three coding styles mentioned in 
Section III. The code is compiled using Visual Studio 2017 
Visual C++ compiler, as a Win32 Console Application, using 
the default compiler settings. Table VI, Fig. 11, 12 and 13 
present the results of the experiment. 

The first approach showed a moderate execution time, with 
an average of 90.1515 seconds, a moderate application power, 
with an average of 0.5837 watts, and a moderate application 
energy consumption, with an average of 52.6019 joules. 

The second approach showed the worst execution time: it 
increased by 10.95% from the first approach. Although the 
second approach showed the best application power with a 
4.23% decrease, it showed the worst total application energy 
consumption with a 6.20% increase from the first approach. 
This is another indication that lower power does not always 
translate to lower total energy consumption. 

The third approach showed similar results to the first 
approach with a very low and insignificant difference. It 
decreased the execution time by 0.71%, increased the power by 
0.18%, and decreased the energy consumption by 0.51%.  This 
is considered to be the same result as the first approach. 

As a conclusion, separating the I/O instructions from the 
CPU intensive instructions is a good approach to follow when 
compiling with Visual C++. Interrupting the CPU intensive 
instructions with I/O instructions is only recommended for 
power-aware applications, but not highly recommended for 
performance and energy-aware applications when compiling 
with Visual C++. 

 

Fig. 11. Visual C++ 2013 average execution time graph. Error bars show 

standard deviation. 

TABLE VI.  VISUAL C++ AVERAGE RESULTS 

Measurements 

Coding Styles 

First 

Approach 

Second 

Approach 

Third 

Approach 

Execution time (S) 484.719 495.374 495.36 

Application Power (mW) 487 478 472 

Application Energy 

consumption (mJ) 
221655 216255 218420 

 

Fig. 12. Visual C++ 2013 average application power graph. Error bars show 

standard deviation. 

 

Fig. 13. Visual C++ 2013 average energy consumption graph. Error bars 
show standard deviation. 
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VIII. COMPILER COMPARISON 

It is evident that the choice of the compiler can heavily 
impact the execution time of an application. As shown in 
Fig. 15, Borland C++ compiler has an execution time of 58% ~ 
59.73% less than the execution time of MinGW, 30.57% ~ 
36.42% less than Cygwin, and 56.92% ~ 58.26% less than 
Visual C++. 

Visual C++ and MinGW compilers are showing the lowest 
application power; their average power measurements are very 
close. They have an application power of 4.4% ~ 6.71% less 
than Cygwin, and 8.7% ~ 12.79% less than Borland C++, 
Fig. 16. These results show that Visual C++ & MinGW are 
good choices for power-aware applications, but not for energy-
aware ones. 

Because the Borland C++ compiled application has a low 
execution time, it used less total energy than all the other 
compilers. Fig. 14 shows that Borland C++ has an application 
energy consumption of 59.35% ~ 63.71% less than MinGW, 
58.55% ~ 63.97% less than Cygwin, and 58.70% ~ 64.13 less 
than Visual C++. 

 

Fig. 14. Energy consumption comparison between different compilers. 

 

Fig. 15. Execution time comparison between different compilers. 

 

Fig. 16. Power comparison between different compilers. 
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IX. RESULTS VALIDATION 

For validation, the authors applied the findings of the 
research to one of the well-known open source C/C++ 
applications, showing how much energy can be saved. 
According to the findings in Sections IV, V, VI, VII and VIII; 
the best performance and least energy consumption can be 
achieved by compiling the code with Borland C++ 5.5. We can 
also achieve a lower power by applying a sleep statement in the 
middle of the CPU intensive operations. The above sections 
claim that will be validated in this section is that the 
applications compiled by Borland C++ 5.5 should consume 
58%~64 less energy than applications compiled with other 
compilers. 

SQLite3 is a self-contained, serverless, zero-configuration, 
transactional SQL database engine. It is a lightweight database 
that supports SQL syntax of standard relational databases for 
complex queries [27]. 

SQLite3 open source application has been chosen for this 
experiment because of its wide usage in a large variety of 
software and products [28]-[30]. For example, SQLite is used 
in Apple's many native Mac OS-X and IOS applications, used 
as a meta-data storage for Firefox web browser and the 
Thunderbird e-mail reader from Mozilla, used as an application 
file format for Adobe Photoshop Lightroom, used as a primary 
data store on the client-side of the Dropbox file archiving and 
synchronization service, and it is also used in Google's Android 
OS and the Chrome Web Browser. 

The source code has been downloaded from the official 
SQLite3 download page [31]; the downloaded package can be 
reached from [32]. The C code has been modified to fix the 
compilation issues raised from compiling with BorlandC55. It 
has also been modified to execute a sleep statement for 
1 millisecond, every 500 loop rounds, in the DROP TABLE 
method. This experiment will focus only on the DROP TABLE 
statement, by executing 200 DROP TABLE statement. Each 
table contains 6,856,019 records, and each record consists of 
two integer columns. The DB is saved in a single file with a 
size over 4 GB. 

The 200 statements are split over 5 execution sessions for 
power measurements. The reason for that split is to have 
multiple power measurements, where the standard deviation 
can be calculated, to find out how close the data are to average 
power. The average application power is then used along with 
the execution time to generate the average energy 
consumption. Whenever an average is calculated, the standard 
deviation is shown as an error bar at the top of the graph, to 
show how close the data are to the average. 

Finally, the BorlandC55 result is compared to the result of 
the EXE file downloaded from the official SQLite3 website 
[33], to compare the energy savings, and the execution time 
performance. 

A. Experimentation Result 

As shown in Table VII, Fig. 17, 18 and 19, the application 
that has been compiled with BorlandC55 with the sleep 
statement has shown a 52.16% decrease in application power, a 
58.13% decrease in application energy consumption, and a 

13.14% decrease in execution time. This result is a strong 
indication of the validity of the findings in Sections IV, V, VI, 
VII and VIII. 

 
Fig. 17. SQLite3- Average Execution Time – Error Bar shows standard 

deviation. 

 
Fig. 18. SQLite3 - Energy Comparison - Error Bar shows standard deviation. 
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Fig. 19. SQLite3 - Power Comparison - Error Bar shows standard deviation. 

TABLE VII.  SQLITE3 - EXPERIMENTATION RESULT 

Measurements 
BorlandC55 Compiled 

EXE 
Downloaded EXE 

Execution 

time (S) 
105.3220 121.2620 

Application Power (W) 0.1497 0.3130 

Application Energy 
consumption (Joule) 

15.7590 37.6385 

X. FUTURE WORK 

The main contribution of this research lies in highlighting 
the impact of coding style and choice of the compiler on 
energy and performance efficiency. However, there are several 
lines of research arising from this study which should be 
pursued. The experimentation results show that the magnitude 
of the differences between the four compilers is significant. 
However, further investigation of why the difference is large is 
yet to be done, e.g. how different is the assembly code? What 
optimizations does each compiler use by default? What 
libraries do the compilers use? How is initialization done? 
Where in memory does the program get loaded? Does this 
matter? 

The following points are some other ideas that could be an 
extension of this research: 

 Applying compilation time enhancements, flags, and 
directives, instead of using the compiler's default 
settings, and detect the difference in performance and 
energy consumption. 

 Implementing a dynamic power-aware framework, that 
automatically reduces the application’s power when it 
reaches a certain level. 

 Investigating the power-aware techniques for the 
Virtual Machine based programming languages, e.g. 
JAVA. 

XI. CONCLUSION 

This research has demonstrated that an important solution 
for finding the balance between performance, power, and 
energy consumption could be choosing the right coding style 
along with the right compiler that works best with the nature of 
the application and the target machine. 

It also has shown that although in most of the cases high 
CPU performance means high application power, this is not 
universally valid, and low power does not always translate to 
lower total energy consumption. 

The research also revealed that one coding style could work 
best for one compiler, but not for another compiler and that the 
most efficient coding style varies based on the system goals 
and constraints. In addition, enhancing the program's energy 
efficiency is not only dependent on the target machine and the 
type of program [34], but it is also dependent on how the 
program is written and compiled. 

Furthermore, the research showed that for some compilers, 
interrupting the CPU intensive instructions with a sleep 
statement could be a simple and easy way of controlling the 
application’s power. However, it may slightly impact the 
performance and total consumed energy. We have also shown 
that interrupting the CPU intensive instructions with I/O 
instructions is another way of reducing application power. 
However, in most of the cases, it negatively impacts the 
performance and the total energy consumption. 

All the experimental results were then put into one 
comparison between compilers, showing how compiler choice 
can impact the performance, the power, and the total energy 
consumption of the application. 

From the experimentations done on the selected four 
compilers and three coding styles, it has been found that the 
best performance and energy saving result can be achieved by 
compiling the application with Borland C++ 5.5 while 
separating the CPU intensive instructions from the input/output 
instructions. The lowest power, however, could be achieved by 
compiling the application with Visual C++ compiler while 
interrupting the CPU intensive instructions with a sleep 
statemen. 

Finally, and most importantly, the research team validated 
the newly introduced software improvement by applying it to 
one of the well-known open source C/C++ applications 
(SQLite3). The results have shown 52.16% decrease in 
application power, 58.13% decrease in the application’s energy 
consumption, and 13.14% decrease in execution time. 
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