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Abstract—K-means is a compute-intensive iterative 

algorithm. Its use in a complex scenario is cumbersome, 

specifically in data-intensive applications. In order to accelerate 

the K-means running time for data-intensive application, such as 

large sized image segmentation, we use a distributed multi-agent 

system accelerated by GPUs. In this K-means version, the input 

image data are divided into subsets of image data which can be 

performed independently on GPUs. In each GPU, we offloaded 

the data assignment and the K-centroids recalculation steps of 

the K-means algorithm for a massively parallel processing. We 

have implemented this K-means version on the Nvidia GPU with 

Compute Unified Device Architecture. The distributed multi-

agent system was written with Java Agent Development 

framework. 
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I. INTRODUCTION 

In our decade, a huge amount of data must be processed 
continuously by computers to meet the needs of the end users 
in many business areas. By a simple search on Google, we 
found lot of official statistics that show how big the big data 
processed in image processing is, in web semantics, data 
storage, profiling and other scientific fields used by Google and 
Facebook. For example, Facebook stores 300 petabytes, and 
processes 600 terabytes per days. It deals with 1 billion users 
per month, and finally 300 million photos are uploaded per 
day. In addition, Google stores much more than Facebook. 
Google stores 15 exabytes; it processes 100 petabytes per day; 
it indexes 60 trillion pages and performs 2.3 million searches 
per second. In brief, the data to be processed in many 
application areas become more than ever increasingly large. 

In this paper, we focus on image processing and their 
applications. Understanding images and extracting information 
from them so that the information can be used for other tasks is 
an important aspect, as for example cancer detection in 
Magnetic Resonance Imaging (MRI). Such analyses and 
extraction of useful information from images are ensured by 
image processing techniques such as image segmentation [6], 
[7] which is one of the clustering problems. The K-means is an 
unsupervised learning algorithm that solves the clustering 
problem. It is an iterative algorithm. Each iteration consists of 
two steps, the assignment of data objects and K centroids 
recalculation. 

Nonetheless, there are two important factors to consider 
when doing image segmentation. First is the number of images 
to be processed in a given use case. Second is the image quality 
which has known an important evolution during the last few 
years, i.e., the number of pixels that make up an image has 
been multiplied by 200 from the 720 x 480 pixels to 9600 x 
7200 pixels. This has resulted in a much better definition of the 
image (more detail visibility) and more nuances in the colors 
and shades. 

Thus, during last decade, image processing techniques have 
become cumbersome in computing time for monolithic 
computers due to the huge number of pixels. This obvious need 
has led naturally to more powerful computers to allow image 
processing researchers to use new High-Performance 
Computing (HPC) strategies based on the parallelism and 
distributed approaches such as 2D or 3D reconfigurable mesh 
[10], FPGA, and recently GPU [8], [9] and Hadoop. 

In GPU computing, the most important advance is the 
Nvidia CUDA (Compute Unified Device Architecture) 
solution. The Nvidia TITAN X is the fastest GPU at the time of 
this writing. This GPU has 3584 shader units also called 
CUDA cores or elementary processors. It has 1417 MHz as 
base clock which can be boosted to 1531 MHz, and 12 Gbits of 
GDDR5 memory with 480 Gbits/s of memory bandwidth. To 
have more computational power, four TITAN X GPUs can be 
interconnected with Nvidia‟s Scalable Link Interface (4-way 
SLI), the result being a powerful GPU with 14336 CUDA 
cores and 48 Gbits of GDDR5 memory which in collaboration 
with the Intel Core i7 5960X CPU can give an interesting 
optimization not only for image processing but also for many 
other domains of applications. Unfortunately, in some cases, 
the use of multi-GPU systems is not sufficient to obtain a high-
enough performance computing for certain scientific or 
engineering applications. In the case where these applications 
have to process a large amount of data and perform complex 
tasks, as for instance in medical imaging to perform an analysis 
on large-sized MRI cerebral images using image-processing 
techniques such as the K-means clustering algorithm. In 
addition, the scalability is not guaranteed and strongly depends 
on the evolution of GPU and CPU hardware proposed by 
Nvidia, AMD and Intel. Thus, using a multi-GPU system on a 
single node is constrained by hardware limitations. In other 
words, the computing and data communications capabilities of 
the processing environment become the dominating bottleneck. 
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To overcome these limitations, we have studied distributed 
programming libraries with the objective of combining GPU 
computing and distributed computing paradigms. 

In the distributed computing paradigm, we found a set of 
distributed programming libraries and standards, as for 
instance MPI (Message Passing Interface) [13], [14], OpenMP 
(Open Multi-Processing) [15], [16], or HPX [19], Hadoop [20]. 
The idea of distributed computing is to combine machines, 
which is typically commodity hardware, that can be used to 
parallelize tasks, as for example the libraries and standards 
cited above that were used in more than scientific domains 
[11], [12], [17], [18]. But the limitation of the distributed 
system lies in the fact that these machines are limited in 
computing power (number of processors in each machine) and 
the data storage capacity. The scalability of such as system is 
slow and expensive. To improve the computation power of 
such a distributed system, we have to connect new machines. 
For example, to have 384 more processors in the system, we 
must connect 48 machine octa processors. 

Additionally, in the distributed computing paradigm, all 
researchers agree that the challenge is to find a library or a 
framework which provides ease of programming with a high-
level programming language (without memory management or 
other low-level programming routines) and the best 
performance exploitation of hardware. Unfortunately, these 
two goals are contradictory due to the fact that some 
researchers obtained best performance by using low-level 
communication libraries known to be error-prone like MPI 
(Message Passing Interface) [21,24] or OpenMP (Open Multi-
Processing) [22], [23], Other researchers [25], [26] have used 
libraries and frameworks with a high-level programming 
language which ensures simplicity of programming and 
portability of the code, although bringing a loss of performance 
and preventing an efficient access to CPU and GPU due to 
high-level abstractions of the hardware. 

To tackle these problems, we have used a distributed Multi-
Agent System (MAS) on GPU-accelerated nodes to accelerate 
the large-sized image segmentation using the K-means 
algorithm. The MAS distributed on connected nodes is used to 
divide the data into a subset of dispatched data through 
accelerated compute nodes with the GPU. Each subset of data 
will be processed separately in a node using GPUs. In this 
version, we used CUDA C/C++ to write the K-means kernel 
code that will be executed on the GPUs. On the other hand, the 
multi-agent system was programmed using the JADE platform 
which is based on Java. 

This paper presents the role of the MAS on the data and 
task distribution between remote GPUs across interconnected 
nodes during the K-means execution and will show the 
experimental results. 

II. LITERATURE REVIEW 

In the literature, researchers have shown a special interest 
to improving the K-means algorithm, by adopting K-means for 
parallel and distributed platforms such as GPU CUDA [4], [5], 
[28]-[30], OpenCL (Open Computing Language), MPI, 
OpenMP (Open Multi-Processor) [3], Hadoop [2] and JADE 

[31]. From our experience, GPU CUDA and Hadoop 
implementations are by far the most efficient. 

Poteras et al. [27] focused on optimization of the data 
assignment step of the K-means algorithm. The idea is that for 
each iteration before the data assignment step, they add a 
procedure that determines which of the data objects could be 
affected by a move. Thus, they no longer need to visit all the 
data objects to define their membership, but just a small list of 
data objects. 

Fang et al. [4] propose a GPU-based implementation of K-
means. This version copies all the data to the texture memory, 
which uses a cache mechanism. Then it uses constant memory 
to store the K-centroids, which is also more efficient than using 
global memory. Each thread is responsible for finding the 
nearest centroid of a data point; each block has 256 threads, 
and the grid has n/256 blocks. 

The workflow of [4] is straightforward. First, each thread 
calculates the distance from one corresponding data point to 
every centroid and finds the minimum distance and 
corresponding centroid. Second, each block calculates a 
temporary centroid set based on a subset of data points, and 
each thread calculates one dimension of the temporary 
centroid. Third, the temporal centroid sets are copied from 
GPU to CPU, and then the final new centroid set is calculated 
on CPU. 

In [4] each data point is assigned to one thread and utilizes 
the cache mechanism to get a high reading efficiency. 
However, the efficiency could be further improved by other 
memory access mechanisms such as registers and shared 
memory. 

Che et al. [5] present another optimized K-means 
implementation of GPU-based K-means in a single node. They 
store all input data in the global memory, and load k-centroids 
to the shared memory. Each block has 128 threads, and the grid 
has n/128 blocks. The main characteristic of [5] is the design of 
a bitmap. The workflow of [5] is as follows. First, each thread 
calculates the distance from one data point to every centroid, 
and changes the suitable bit into true bit in the bit array, which 
stores the nearest centroid for each data point. Second, each 
thread is responsible for one centroid, finds all the 
corresponding data points from the bitmap and takes the mean 
of those data points as the new centroids. The main problem of 
[5] is the poor utilization of GPU memory, since [5] accesses 
most of the data (input data points) directly from the global 
memory. 

Mao et al. [2] present a distributed implementation of the 
K-means using Hadoop. This research work deals with a data-
intensive clustering application. A virtual Hadoop cluster based 
on cloud computing with CloudStack was established with the 
aim to implement the distributed K-Means clustering algorithm 
based on the MapReduce pattern. The initial centroid selection 
and number of iterations was optimized. The initial centroid 
selection was improved using the furthest first (FF) algorithm 
to select the next farthest point.  To improve the iteration time, 
they use the result of a previous iteration for the next iteration 
of the centroid point in the Map calculation. 
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The article of Baydoun et al. [3] proposes two improved 
versions of the Kernel K-means on CPU and GPU. The CPU 
version was based on OpenMP, Cilk Plus and BLAS Libraries. 
The GPU version was based the Nvidia CUDA. These versions 
of Kernel K-Means utilize the Kernelization approach [1] to 
divide given data into a set of clusters using an approach 
mainly based on K-Means. 

III. IMAGE SEGMENTATION USING THE K-MEANS 

CLUSTERING ALGORITHM 

The K-Means is a clustering algorithm that classifies the 
input data points S of n attribute vectors into c classes (clusters 
      = 1…c) based on their inherent distances from each other. 
The algorithm assumes that the data features form a vector 
space and tries to find natural clustering among them. The 
points are clustered around class centers (centroids) which are 
obtained by minimizing the objective function: 

  ∑   
 
    ∑ ∑  (     )       

 
               (1) 

Where    is the centroid of the  th class, and   (     ) is 
the distance between  th center   and the  th data of S. We use 
the Euclidean distance to define the objective function as 
follows: 

  ∑   
 
    ∑ ∑           

 
       

 
              (2) 

As described in MacQueen‟s paper [32], an initial 
clustering      (  = 1…   ) is created by choosing   random 
centroids from the set of n data points S. This is known as 
centroids initialization. Next, an assignment step is executed 
where each data point     S (  = 1…  ) is assigned to the 

cluster     for which  (     ) is minimal. Each centroid    is 

then recalculated by the mean of all data points         . The 

assignment and K-centroid recalculations steps are executed 
repeatedly until     no longer changes. This algorithm is known 
to converge to a local minimum subject to the initial centroids. 
In our application, the clustering K-means algorithms is used 
for the image segmentation. Thus, the flow chart of the 
algorithm in the Fig. 1 takes a 2-dimensional image as data in 
input, each point (pixel) of this image having an intensity. 

The K-means algorithm can be directly implemented on 
CPU using several “for” loops embedded in one “while” loop 
with the aim to be performed on a CPU. In “for” loops 
calculations of distances between each pixel and the centroids 
is performed. Next, recalculation of the new K-centroids for 
the next iteration of the “while” loop is also done in a “for” 
loop. The “while” loop condition for another iteration is 
inequality between the centroids intensities from a previous 
iteration and the next iteration. If the centroids do not change, 
the loop is broken, and the algorithm stops. 

In brief, K-means chooses the centroids intelligently and it 
compares centroids with the data points based on the intensities 
and characteristics and finds the distances. The data points 
which are similar to the centroid are assigned to the cluster 
having that centroid. New    centroids are calculated and thus 
K-clusters are formed by finding out the data points nearest to 
the clusters. 

 

Fig. 1. K-means flow chart. 

IV. PROPOSED K-MEANS VERSION 

A. Runtime Environment 

The data distribution is based on the agent interactions 
within MAS deployed on multiple nodes. The MAS used was 
implemented by JADE [33] in accordance with the standards of 
the Foundation for Intelligent Physical Agents. The 
interactions between the agents are based on asynchronous 
communication mechanisms in accordance with the ACL. 

Each running instance of the JADE runtime environment is 
called a container as it can contain several agents. The JADE 
platform is a set of active containers distributed on nodes. 
JADE agents are identified by a unique name and, provided 
they know each other‟s name, they can communicate 
transparently regardless of their actual location in the same 
container or different containers in the same platform. 
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Where 𝑖 = 1...c, 𝑗 = 1...n and n is the total number of points in S 
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Fig. 2. Runtime environnement architecture. 

As shown in Fig. 2 the runtime environment consists of two 
types of containers. The first is the main container which is a 
JADE main container which must always be active in a 
platform. All other containers register with it as soon as they 
start. Note that only one main container must be launched at 
first to start the JADE platform. The main container has the 
ability of accepting registrations from other non-main 
containers. A main container holds two special agents, 
automatically started when the main container is launched. The 
first one is the AMS (Agent Management System) that 
provides the naming service (i.e. ensures that each agent in the 
platform has a unique name) and represents the authority in the 
platform (for instance it is possible to create/kill agents on 
remote containers by requesting that to the AMS).  The second 
one is the DF (Directory Facilitator) that provides a Yellow 
Pages service by means of which an agent can find other agents 
providing the services he requires in order to reach his goals. 
Additionally, the main container holds dispatcher agents and a 
main agent. 

The second type of container is the compute containers 
which are JADE normal („non-main‟) containers, each 
compute container register with the main container as soon as 
it starts and must “be told” where to find (host and port) its 
main container. In compute containers, we find worker agents 
and one team leader agent. 

B. Workflow 

In this section, we show how K-means application on a 
large-sized image is performed within the MAS, and how 
agents interact with each other across nodes to achieve efficient 
tasks and data communications. Fig. 3 illustrates the steps and 
interactions established within the multi-agent system during k-
means application on large-sized image. 

At the beginning, in the main container, the main agent 
chooses K data randomly as initial centroids. After that, it 
divides the large-sized image data into a subsets of image data. 
The stream of subsets of image data will then be sent to 
dispatcher agents. The role of these agents is to compress and 
dispatch the data subsets through the computer container. 

In the compute containers, team leader agents listen to 
queries and data subsets data sent by dispatcher agents. For 
each data subset received, the team leader agent delegates it to 
a worker agent. Thus, each worker agent decompresses the 
subset of data image received and performs the data 
assignment step of K-means using independent GPU 
computing units i.e. the Streaming Multiprocessor (SM). For 
each image data subset of the stream to process, the SMs of the 
GPUs have their own queue used to collaborate with a worker 
agent. After that, each of the worker agent returns the 
membership matrix containing the membership labels of each 
pixel of the processed data image subsets. 

The main agent performs the data rearrangement which 
consists of calculating the sum of the pixels intensities of each 
cluster and calculating the number of elements of each cluster 
with the aim to calculate the new centroids. 

In summary, the purpose of these interactions is to send 
subsets of data images to the worker agents. They then perform 
the data assignment step of K-means using the SMs of the 
GPUs, as shows in the Algorithm 1 below. The initiation 
routine, data rearrangement (described by the Algorithm 2) and 
the convergence test steps are performed by the main agent 
using the CPU. After that, running the K centroids 
recalculations depends on K which is the number of clusters 
declared during the initiation routine. If K is less than 100 the 
main agent itself performs the K centroids recalculation step, or 
else it delegates the recalculations to a team leader agent for 
parallel execution using the GPU (Algorithm 3) in 
collaboration with a worker agent. 

C. K-Means Execution Steps 

Beyond the data communication and synchronization 
among agents across the MAS, each agent has a role to 
perform the specific K-means steps as summarized in the 
following: 

 Centroids initialization: The main agent selects K 
points randomly as initial clustering centroids. 
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Fig. 3. K-means workflow.

Start 

The main agent performs algorithm 2 
 

Centroids initialization: The main agent randomly selects K data randomly as 

initial centroids 

A dispatcher agent 

sends data to a team 

leader agent 

 

Main agent delegates each small image to a dispatcher agent  

The main agent with Id=0 divides image into N small images, where N is the 

number of dispatcher agents in the main container 

 

The main agent sends centroids to all team leaders in the MAS 

 

A dispatcher agent 

sends data to a team 

leader agent 

 

A dispatcher agent 

sends data to a team 

leader agent 

 

The team leader agent delegates the receivied 

data to a worker agent 
 

A worker agent perform algorithm 3 using GPU 

 

Return the new centroids results 
 

The main agent checks the convergence criteria 
 

Start 

A Compute container Main container 

K>10

0 

Converge? 

The team leader agent delegates the received data to a 

worker agent 

111111111111111111111111111111111 

A Worker agent 

perform       

algorithm 1 

using GPU 

A Worker agent 

perform       

algorithm 1 

using GPU 

A Worker agent 

perform       

algorithm 1 

using GPU 

Return the 

submembership 

results 

Return the 

submembership 

results 

Return the 

submembership 

results 

The main agent sends the running 

results of the algorithm 2 

(SumIntensities[𝒊] Cardinals[𝒊]) to  a 

team leader agent 
 

 

YE

S 

NO 

The main agent performs 

centroids calculations using CPU 

YES 

NO 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 12, 2017 

176 | P a g e  

www.ijacsa.thesai.org 

 Data assignment: Each worker agent performs this step 
on the received subsets of image data in collaboration 
with an SM of GPU. This step consists to calculating 
the distance between each points and centroids, and 
clusters the points using these distances. Each point 
data sets will be delegated to a processor in GPU: 

 
 Data rearrangement: The main agent rearranges all 

data, and calculates sumIntensites [ ] and Cardinals[ ] 
where   = 1…c, which will be used to calculates the 
new centroids: 

 
 K-centroids recalculations: This step is performed by 

the main agent sequentially if K is less than 100, or else 
the maim agent delegate it to a team leader in a 
computer container in order to be performed using 
GPUs in collaboration with an agent worker. The agent 

worker uses GPU to recalculate the new centroids of 
each cluster. Every thread block in the GPU is 
responsible for a new centroid: 

In recapitulation, the data assignment, K-centroids 
recalculations are parallel performed on the SMs of GPUs. The 
main agent is responsible for centroids initialization, data 
rearrangement and controlling the iteration process. 

 

V. EXPERIMENTAL RESULTS 

In this section, we use a set of large sized images to 
compare the total processing time of these images using our 
proposed GPU-based K-means distributed on multiple 
computer nodes using Multi Agent System, with the total 
processing time of the same set of images using GPU-based k-
means performed on GPUs on a single node. 

All experiments were concluded on 4 nodes equipped with 
Intel Core i7-3610QM CPU 2.30GHz (8 CPUs), 8GB main 
memory and GeForce GTX 660M, 835 MHz engine clock 
speed, 2048 MB GDDR5 of device RAM, and 384 processors, 
organized into 3 streaming multiprocessors. Additionally, we 
use 4 external GPUs GeForce GTX 750Ti connected by PCIe 
using a PE4C V2.1 connectors. This environment was 
assembled and tested in our laboratory for testing purposes.  
The GTX 750Ti have 1020 MHz engine clock speed, 2048 MB 
GDDR5 of device RAM, and 640 processors, organized into 5 
streaming multiprocessors. All GPUs used in this study use 
single-precision floating-point arithmetic. 

The results were obtained using sets of large-sized images, 
All Euclidean distance calculations were done in single- 
precision. The performance of our K-means algorithm version 
depends on the actual data and task communication between 
agents across nodes. To observe the influence of data size on 
the total running time, large-sized images with thousands of 
intensity points were used as show in Table I below: 

TABLE I.  THE IMAGE DATA USED FOR THE TESTS 

Image Id Image points(px) Image height Image width 

I1 20006400  5120 3840 

I2 39052992 7216 5412 

I3 69120000 9600 7200 

I4 100000000 10000 10000 

I5 400000000 20000 20000 

The test scenarios were carried out on the five large-sized 
images with three different hardware configurations.  The first 
scenario was made using 2 compute Nodes with 4 GPUs. The 

1. #include <math.h>  

2. extern "C"   

3. __global__ void dataAssignement(float * dataStream,  

4.                                 float * centroids,  

5.                                 float * dataStreamMembership)  

6. {   

7.   int v = 0;   

8.   int t = threadIdx.x + blockIdx.x * blockDim.x;   

9.   float dist = 0,  

10.   float distMin = fabs(dataStream[t] - centroids[0]);   

11.   dataStreamMembership[t] = 1;   

12.   for(v = 1;v < 5;   v  ++)  

13.    {   

14.      dist = fabs(dataStream[t] - centroids[v]);   

15.      if (dist <= distMin) 

16.      {   

17.        dataStreamMembership[t] = v+1 

18.        distMin = dist;   

19.      }   

20.    }   

21. }   
 

Algorithm 1:  Data assignment step (device code) 

1. private static void dataRearrangement(float[] cardinal,  

2.                                       float[] sumDistances,  

3.                                       float[] sumIntensites,  

4.                                       float[] dataStream,  

5.                                       

float[] dataStreamMembership)  

6. {   

7.   for (int i = 0; i < cardinal.length; i++)  

8.   {  

9.    // reset counters 

10.    sumIntensites [i]=0;   

11.    cardinal[i]=0;   

12.   }  

13.   // calculate sumIntensites and calculate the number element of

14.   // each cluster   

15.   for (int i = 0; i < dataStreamMembership.length; i++)  

16.   {   

17.    sumIntensites[(int) dataStreamMembership[i]-

1]+=dataStream[i];   

18.    cardinal[(int) dataStreamMembership[i] - 1]++;   

19.   }   

Algorithm 2:  Data rearrangement step (host code) 

1. # include < math.h >  

2. extern "C"   

3. __global__ void centroidsRecalculation(float * centroids,  

4.                                        float * cardinal,  

5.                                        float * sumIntensites)  

6. {   

7.   int t = threadIdx.x;   

8.   centroids[t] = sumIntensites[t] / cardinal[t];   

9. }   

 

Algorithm 3:  K centroids recalculation step (device code) 
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second was made using 4 compute nodes with 6 GPUs, and 
third was made with 4 compute nodes with 8 GPUs. 

The measurements taken were the total processing time, 
which includes data transfer. Total processing time of GPU-
based K-means on single node is denoted by GKtt, and our 
distributed GPU-based K-means are denoted by DGKtt. The 
results obtained are presented in Table II. The initial class 
centers are chosen as: (                               )  
(1 2   0    100 12  1 0 1   200 2  ). 

TABLE II.  TOTAL RUNNING TIME OF THE LARGE SIZED IMAGES 

SEGMENTATION USING THREE DIFFERENT HARDWARE CONFIGURATIONS 

Image 

Id 

Image 

points(px) 
GKtt 

DGKtt 

2 

compute 

Nodes 

with 4 

GPUs 

4 

compute 

Nodes 

with 6 

GPUs 

4 

compute 

Nodes 

with 8 

GPUs 

I1I 20006400 14862,64 3125,04 1562,52 781,26 

I2I 39052992 24609,62 5468,88 2878,36 1204,60 

     I3 69120000 46871,94 9375,12 5208,40 2410,06 

II44 
10000000

0 
61351,96 13773,72 11478,10 3935,35 

I5 
40000000
0 

224129,0
3 

54250,86 28553,08 18083,62 

The speedup of our GPU-based K-means could reach from 
4 to 5 of the CPU-based K-means in the first scenario and 8 to 
9,5 in the second and 12 to 20 in the third scenario. This 
performance improvement benefits from the high parallel 
computing ability of the GPU using CUDA, the data 
rearrangement and the division of the problem to lightweight 
subproblem. In addition, in CUDA GPU, processors and 
CUDA Streams are all indistinctive, and not distinguished by 
pixel and vertex, so that they can run at the same time without 
any idle time. 

VI. DISCUSSION 

Using distributed computing based on agent combined with 
GPU computing show the advantages of easily encoding data 
and task communication among computer nodes. In addition, 
the agent communication language used (ACL) which follows 
the FIPA specifications make the communication transparent 
and make exchanges between computer nodes structured. 
Specifically, the use of the JADE platform or similar platform 
with Nvidia GPU in compute-intensive and data-intensive 
application such as K-means applied for image segmentation, 
allows using a high-level programming language like java to 
write Host code with JNI wrapper, and CUDA C/C++ for 
device code. 

In our work we focus on how to solve the problem of 
segmentation of large-sized images using the combination of 
two powerful computing paradigms. Unlike [4, 5] who focused 
on the memory management and the communication of the 
thread blocks in single GPU, and in the case of data-intensive 
application it will be complicated to guarantee their 
effectiveness. 

Despite of the great performance of [2], specifically for the 
massively image processing, it is possible to speed up the 
computer nodes with GPUs to have more computing power. 

Thus, to implements a K-means version with Hadoop and 
GPU, the programmer needs to understand the low-level 
communication routines and storage mechanism of Hadoop 
framework in order to be able to write scalable algorithm, 
which in this case will be a mixture between Hadoop and 
CUDA code. 

Furthermore, the overhead of the data and task 
synchronization between agents across nodes is limited by the 
efficiency of the connected network where is deployed; as 
instance, using standard Local area network (LAN) with 
54Mbits/s or 100Mbits/s, the latency can be quite high. This 
last can be reduced using a different physical medium for data 
communication as the Fiber Distributed Data Interface (FDDI), 
with 1Gbits/s; or the IEEE 802.3 gigabit Ethernet, with 
10Gbits/s (e.g. 1000Base-LX or 1000Base-SX series); or the 
well-suited InfiniBand bus which was used in this research. 
There are many such studies to demonstrate communication 
latency and process synchronization; however, they are out of 
the scope of this research. 

VII. CONCLUSION 

This K-means version was implemented using the agent-
based distributed computing and GPU computing to solves the 
problem of hardware limitations, specifically the number of 
elementary processors and storage capacity. Also, instead of 
using low-level libraries like MPI or OpenMP which can be 
error-prone in some complex cases such as massively image 
processing, we used programming paradigm based on agent 
with JADE framework to overcome difficulty of the 
communication and synchronization between nodes in the 
distributed system and this being based on the FIPA 
specifications. 

Our implementation of K-means allowed us to confirm the 
possibility of using this type of model based on two HPC 
paradigms (Distributed and GPU computing) to solve problems 
of hardware limitations and opening the possibility of 
designing more scalable HPC models. 
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