
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

171 | P a g e

www.ijacsa.thesai.org

Distributed GPU-Based K-Means Algorithm for

Data-Intensive Applications: Large-Sized Image

Segmentation Case

Hicham Fakhi*, Omar Bouattane, Mohamed Youssfi, Hassan Ouajji

Signals, Distributed Systems and Artificial Intelligence Laboratory

ENSET, University Hassan II,

Casablanca, Morocco

Abstract—K-means is a compute-intensive iterative

algorithm. Its use in a complex scenario is cumbersome,

specifically in data-intensive applications. In order to accelerate

the K-means running time for data-intensive application, such as

large sized image segmentation, we use a distributed multi-agent

system accelerated by GPUs. In this K-means version, the input

image data are divided into subsets of image data which can be

performed independently on GPUs. In each GPU, we offloaded

the data assignment and the K-centroids recalculation steps of

the K-means algorithm for a massively parallel processing. We

have implemented this K-means version on the Nvidia GPU with

Compute Unified Device Architecture. The distributed multi-

agent system was written with Java Agent Development

framework.

Keywords—Distributed computing; GPU computing; K-means;

image segmentation

I. INTRODUCTION

In our decade, a huge amount of data must be processed
continuously by computers to meet the needs of the end users
in many business areas. By a simple search on Google, we
found lot of official statistics that show how big the big data
processed in image processing is, in web semantics, data
storage, profiling and other scientific fields used by Google and
Facebook. For example, Facebook stores 300 petabytes, and
processes 600 terabytes per days. It deals with 1 billion users
per month, and finally 300 million photos are uploaded per
day. In addition, Google stores much more than Facebook.
Google stores 15 exabytes; it processes 100 petabytes per day;
it indexes 60 trillion pages and performs 2.3 million searches
per second. In brief, the data to be processed in many
application areas become more than ever increasingly large.

In this paper, we focus on image processing and their
applications. Understanding images and extracting information
from them so that the information can be used for other tasks is
an important aspect, as for example cancer detection in
Magnetic Resonance Imaging (MRI). Such analyses and
extraction of useful information from images are ensured by
image processing techniques such as image segmentation [6],
[7] which is one of the clustering problems. The K-means is an
unsupervised learning algorithm that solves the clustering
problem. It is an iterative algorithm. Each iteration consists of
two steps, the assignment of data objects and K centroids
recalculation.

Nonetheless, there are two important factors to consider
when doing image segmentation. First is the number of images
to be processed in a given use case. Second is the image quality
which has known an important evolution during the last few
years, i.e., the number of pixels that make up an image has
been multiplied by 200 from the 720 x 480 pixels to 9600 x
7200 pixels. This has resulted in a much better definition of the
image (more detail visibility) and more nuances in the colors
and shades.

Thus, during last decade, image processing techniques have
become cumbersome in computing time for monolithic
computers due to the huge number of pixels. This obvious need
has led naturally to more powerful computers to allow image
processing researchers to use new High-Performance
Computing (HPC) strategies based on the parallelism and
distributed approaches such as 2D or 3D reconfigurable mesh
[10], FPGA, and recently GPU [8], [9] and Hadoop.

In GPU computing, the most important advance is the
Nvidia CUDA (Compute Unified Device Architecture)
solution. The Nvidia TITAN X is the fastest GPU at the time of
this writing. This GPU has 3584 shader units also called
CUDA cores or elementary processors. It has 1417 MHz as
base clock which can be boosted to 1531 MHz, and 12 Gbits of
GDDR5 memory with 480 Gbits/s of memory bandwidth. To
have more computational power, four TITAN X GPUs can be
interconnected with Nvidia‟s Scalable Link Interface (4-way
SLI), the result being a powerful GPU with 14336 CUDA
cores and 48 Gbits of GDDR5 memory which in collaboration
with the Intel Core i7 5960X CPU can give an interesting
optimization not only for image processing but also for many
other domains of applications. Unfortunately, in some cases,
the use of multi-GPU systems is not sufficient to obtain a high-
enough performance computing for certain scientific or
engineering applications. In the case where these applications
have to process a large amount of data and perform complex
tasks, as for instance in medical imaging to perform an analysis
on large-sized MRI cerebral images using image-processing
techniques such as the K-means clustering algorithm. In
addition, the scalability is not guaranteed and strongly depends
on the evolution of GPU and CPU hardware proposed by
Nvidia, AMD and Intel. Thus, using a multi-GPU system on a
single node is constrained by hardware limitations. In other
words, the computing and data communications capabilities of
the processing environment become the dominating bottleneck.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

172 | P a g e

www.ijacsa.thesai.org

To overcome these limitations, we have studied distributed
programming libraries with the objective of combining GPU
computing and distributed computing paradigms.

In the distributed computing paradigm, we found a set of
distributed programming libraries and standards, as for
instance MPI (Message Passing Interface) [13], [14], OpenMP
(Open Multi-Processing) [15], [16], or HPX [19], Hadoop [20].
The idea of distributed computing is to combine machines,
which is typically commodity hardware, that can be used to
parallelize tasks, as for example the libraries and standards
cited above that were used in more than scientific domains
[11], [12], [17], [18]. But the limitation of the distributed
system lies in the fact that these machines are limited in
computing power (number of processors in each machine) and
the data storage capacity. The scalability of such as system is
slow and expensive. To improve the computation power of
such a distributed system, we have to connect new machines.
For example, to have 384 more processors in the system, we
must connect 48 machine octa processors.

Additionally, in the distributed computing paradigm, all
researchers agree that the challenge is to find a library or a
framework which provides ease of programming with a high-
level programming language (without memory management or
other low-level programming routines) and the best
performance exploitation of hardware. Unfortunately, these
two goals are contradictory due to the fact that some
researchers obtained best performance by using low-level
communication libraries known to be error-prone like MPI
(Message Passing Interface) [21,24] or OpenMP (Open Multi-
Processing) [22], [23], Other researchers [25], [26] have used
libraries and frameworks with a high-level programming
language which ensures simplicity of programming and
portability of the code, although bringing a loss of performance
and preventing an efficient access to CPU and GPU due to
high-level abstractions of the hardware.

To tackle these problems, we have used a distributed Multi-
Agent System (MAS) on GPU-accelerated nodes to accelerate
the large-sized image segmentation using the K-means
algorithm. The MAS distributed on connected nodes is used to
divide the data into a subset of dispatched data through
accelerated compute nodes with the GPU. Each subset of data
will be processed separately in a node using GPUs. In this
version, we used CUDA C/C++ to write the K-means kernel
code that will be executed on the GPUs. On the other hand, the
multi-agent system was programmed using the JADE platform
which is based on Java.

This paper presents the role of the MAS on the data and
task distribution between remote GPUs across interconnected
nodes during the K-means execution and will show the
experimental results.

II. LITERATURE REVIEW

In the literature, researchers have shown a special interest
to improving the K-means algorithm, by adopting K-means for
parallel and distributed platforms such as GPU CUDA [4], [5],
[28]-[30], OpenCL (Open Computing Language), MPI,
OpenMP (Open Multi-Processor) [3], Hadoop [2] and JADE

[31]. From our experience, GPU CUDA and Hadoop
implementations are by far the most efficient.

Poteras et al. [27] focused on optimization of the data
assignment step of the K-means algorithm. The idea is that for
each iteration before the data assignment step, they add a
procedure that determines which of the data objects could be
affected by a move. Thus, they no longer need to visit all the
data objects to define their membership, but just a small list of
data objects.

Fang et al. [4] propose a GPU-based implementation of K-
means. This version copies all the data to the texture memory,
which uses a cache mechanism. Then it uses constant memory
to store the K-centroids, which is also more efficient than using
global memory. Each thread is responsible for finding the
nearest centroid of a data point; each block has 256 threads,
and the grid has n/256 blocks.

The workflow of [4] is straightforward. First, each thread
calculates the distance from one corresponding data point to
every centroid and finds the minimum distance and
corresponding centroid. Second, each block calculates a
temporary centroid set based on a subset of data points, and
each thread calculates one dimension of the temporary
centroid. Third, the temporal centroid sets are copied from
GPU to CPU, and then the final new centroid set is calculated
on CPU.

In [4] each data point is assigned to one thread and utilizes
the cache mechanism to get a high reading efficiency.
However, the efficiency could be further improved by other
memory access mechanisms such as registers and shared
memory.

Che et al. [5] present another optimized K-means
implementation of GPU-based K-means in a single node. They
store all input data in the global memory, and load k-centroids
to the shared memory. Each block has 128 threads, and the grid
has n/128 blocks. The main characteristic of [5] is the design of
a bitmap. The workflow of [5] is as follows. First, each thread
calculates the distance from one data point to every centroid,
and changes the suitable bit into true bit in the bit array, which
stores the nearest centroid for each data point. Second, each
thread is responsible for one centroid, finds all the
corresponding data points from the bitmap and takes the mean
of those data points as the new centroids. The main problem of
[5] is the poor utilization of GPU memory, since [5] accesses
most of the data (input data points) directly from the global
memory.

Mao et al. [2] present a distributed implementation of the
K-means using Hadoop. This research work deals with a data-
intensive clustering application. A virtual Hadoop cluster based
on cloud computing with CloudStack was established with the
aim to implement the distributed K-Means clustering algorithm
based on the MapReduce pattern. The initial centroid selection
and number of iterations was optimized. The initial centroid
selection was improved using the furthest first (FF) algorithm
to select the next farthest point. To improve the iteration time,
they use the result of a previous iteration for the next iteration
of the centroid point in the Map calculation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

173 | P a g e

www.ijacsa.thesai.org

The article of Baydoun et al. [3] proposes two improved
versions of the Kernel K-means on CPU and GPU. The CPU
version was based on OpenMP, Cilk Plus and BLAS Libraries.
The GPU version was based the Nvidia CUDA. These versions
of Kernel K-Means utilize the Kernelization approach [1] to
divide given data into a set of clusters using an approach
mainly based on K-Means.

III. IMAGE SEGMENTATION USING THE K-MEANS

CLUSTERING ALGORITHM

The K-Means is a clustering algorithm that classifies the
input data points S of n attribute vectors into c classes (clusters
 = 1…c) based on their inherent distances from each other.
The algorithm assumes that the data features form a vector
space and tries to find natural clustering among them. The
points are clustered around class centers (centroids) which are
obtained by minimizing the objective function:

 ∑

 ∑ ∑ ()

 (1)

Where is the centroid of the th class, and () is
the distance between th center and the th data of S. We use
the Euclidean distance to define the objective function as
follows:

 ∑

 ∑ ∑

 (2)

As described in MacQueen‟s paper [32], an initial
clustering (= 1…) is created by choosing random
centroids from the set of n data points S. This is known as
centroids initialization. Next, an assignment step is executed
where each data point S (= 1…) is assigned to the

cluster for which () is minimal. Each centroid is

then recalculated by the mean of all data points . The

assignment and K-centroid recalculations steps are executed
repeatedly until no longer changes. This algorithm is known
to converge to a local minimum subject to the initial centroids.
In our application, the clustering K-means algorithms is used
for the image segmentation. Thus, the flow chart of the
algorithm in the Fig. 1 takes a 2-dimensional image as data in
input, each point (pixel) of this image having an intensity.

The K-means algorithm can be directly implemented on
CPU using several “for” loops embedded in one “while” loop
with the aim to be performed on a CPU. In “for” loops
calculations of distances between each pixel and the centroids
is performed. Next, recalculation of the new K-centroids for
the next iteration of the “while” loop is also done in a “for”
loop. The “while” loop condition for another iteration is
inequality between the centroids intensities from a previous
iteration and the next iteration. If the centroids do not change,
the loop is broken, and the algorithm stops.

In brief, K-means chooses the centroids intelligently and it
compares centroids with the data points based on the intensities
and characteristics and finds the distances. The data points
which are similar to the centroid are assigned to the cluster
having that centroid. New centroids are calculated and thus
K-clusters are formed by finding out the data points nearest to
the clusters.

Fig. 1. K-means flow chart.

IV. PROPOSED K-MEANS VERSION

A. Runtime Environment

The data distribution is based on the agent interactions
within MAS deployed on multiple nodes. The MAS used was
implemented by JADE [33] in accordance with the standards of
the Foundation for Intelligent Physical Agents. The
interactions between the agents are based on asynchronous
communication mechanisms in accordance with the ACL.

Each running instance of the JADE runtime environment is
called a container as it can contain several agents. The JADE
platform is a set of active containers distributed on nodes.
JADE agents are identified by a unique name and, provided
they know each other‟s name, they can communicate
transparently regardless of their actual location in the same
container or different containers in the same platform.

N
 t

im
e
s

 𝑢𝑖𝑗 1 𝑖𝑓 𝑥𝑗 𝑐𝑖

≤ 𝑥𝑗 𝑐𝑘

 ∀𝑘 ≠ 𝑖

0 𝑒𝑙𝑠𝑒

Data assignment: Cluster the points based on distance of their
intensities from the centroid intensities. The clustered points can

be defined by a binary membership matrix 𝑈(𝑐 𝑛), where each

element 𝑢𝑖𝑗 is formulated by:

Where 𝑖 = 1...c, 𝑗 = 1...n and n is the total number of points in S

Start

Input data

Centroids initialization: Initialize the centroid 𝐶𝑖 (𝑖 = 1…c)

with 𝑐 random point intensities.

𝑐𝑖
1

 𝐶𝑖
 𝑥𝑘
𝑘 𝑥𝑘 𝐶𝑖

K-centroids recalculations: Compute the new centroid for each

cluster using the equation:

End

Converge?

Yes

No

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

174 | P a g e

www.ijacsa.thesai.org

Fig. 2. Runtime environnement architecture.

As shown in Fig. 2 the runtime environment consists of two
types of containers. The first is the main container which is a
JADE main container which must always be active in a
platform. All other containers register with it as soon as they
start. Note that only one main container must be launched at
first to start the JADE platform. The main container has the
ability of accepting registrations from other non-main
containers. A main container holds two special agents,
automatically started when the main container is launched. The
first one is the AMS (Agent Management System) that
provides the naming service (i.e. ensures that each agent in the
platform has a unique name) and represents the authority in the
platform (for instance it is possible to create/kill agents on
remote containers by requesting that to the AMS). The second
one is the DF (Directory Facilitator) that provides a Yellow
Pages service by means of which an agent can find other agents
providing the services he requires in order to reach his goals.
Additionally, the main container holds dispatcher agents and a
main agent.

The second type of container is the compute containers
which are JADE normal („non-main‟) containers, each
compute container register with the main container as soon as
it starts and must “be told” where to find (host and port) its
main container. In compute containers, we find worker agents
and one team leader agent.

B. Workflow

In this section, we show how K-means application on a
large-sized image is performed within the MAS, and how
agents interact with each other across nodes to achieve efficient
tasks and data communications. Fig. 3 illustrates the steps and
interactions established within the multi-agent system during k-
means application on large-sized image.

At the beginning, in the main container, the main agent
chooses K data randomly as initial centroids. After that, it
divides the large-sized image data into a subsets of image data.
The stream of subsets of image data will then be sent to
dispatcher agents. The role of these agents is to compress and
dispatch the data subsets through the computer container.

In the compute containers, team leader agents listen to
queries and data subsets data sent by dispatcher agents. For
each data subset received, the team leader agent delegates it to
a worker agent. Thus, each worker agent decompresses the
subset of data image received and performs the data
assignment step of K-means using independent GPU
computing units i.e. the Streaming Multiprocessor (SM). For
each image data subset of the stream to process, the SMs of the
GPUs have their own queue used to collaborate with a worker
agent. After that, each of the worker agent returns the
membership matrix containing the membership labels of each
pixel of the processed data image subsets.

The main agent performs the data rearrangement which
consists of calculating the sum of the pixels intensities of each
cluster and calculating the number of elements of each cluster
with the aim to calculate the new centroids.

In summary, the purpose of these interactions is to send
subsets of data images to the worker agents. They then perform
the data assignment step of K-means using the SMs of the
GPUs, as shows in the Algorithm 1 below. The initiation
routine, data rearrangement (described by the Algorithm 2) and
the convergence test steps are performed by the main agent
using the CPU. After that, running the K centroids
recalculations depends on K which is the number of clusters
declared during the initiation routine. If K is less than 100 the
main agent itself performs the K centroids recalculation step, or
else it delegates the recalculations to a team leader agent for
parallel execution using the GPU (Algorithm 3) in
collaboration with a worker agent.

C. K-Means Execution Steps

Beyond the data communication and synchronization
among agents across the MAS, each agent has a role to
perform the specific K-means steps as summarized in the
following:

 Centroids initialization: The main agent selects K
points randomly as initial clustering centroids.

Host

Main container

CPU GPU

Compute container n

CPU GPU

Compute container 2

Host Device

Compute container 1

Network

Dispatcher agent

Worker agent

Team leader agent

 Main agent

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

175 | P a g e

www.ijacsa.thesai.org

Fig. 3. K-means workflow.

Start

The main agent performs algorithm 2

Centroids initialization: The main agent randomly selects K data randomly as

initial centroids

A dispatcher agent

sends data to a team

leader agent

Main agent delegates each small image to a dispatcher agent

The main agent with Id=0 divides image into N small images, where N is the

number of dispatcher agents in the main container

The main agent sends centroids to all team leaders in the MAS

A dispatcher agent

sends data to a team

leader agent

A dispatcher agent

sends data to a team

leader agent

The team leader agent delegates the receivied

data to a worker agent

A worker agent perform algorithm 3 using GPU

Return the new centroids results

The main agent checks the convergence criteria

Start

A Compute container Main container

K>10

0

Converge?

The team leader agent delegates the received data to a

worker agent

111111111111111111111111111111111

A Worker agent

perform

algorithm 1

using GPU

A Worker agent

perform

algorithm 1

using GPU

A Worker agent

perform

algorithm 1

using GPU

Return the

submembership

results

Return the

submembership

results

Return the

submembership

results

The main agent sends the running

results of the algorithm 2

(SumIntensities[𝒊] Cardinals[𝒊]) to a

team leader agent

YE

S

NO

The main agent performs

centroids calculations using CPU

YES

NO

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

176 | P a g e

www.ijacsa.thesai.org

 Data assignment: Each worker agent performs this step
on the received subsets of image data in collaboration
with an SM of GPU. This step consists to calculating
the distance between each points and centroids, and
clusters the points using these distances. Each point
data sets will be delegated to a processor in GPU:

 Data rearrangement: The main agent rearranges all

data, and calculates sumIntensites [] and Cardinals[]
where = 1…c, which will be used to calculates the
new centroids:

 K-centroids recalculations: This step is performed by

the main agent sequentially if K is less than 100, or else
the maim agent delegate it to a team leader in a
computer container in order to be performed using
GPUs in collaboration with an agent worker. The agent

worker uses GPU to recalculate the new centroids of
each cluster. Every thread block in the GPU is
responsible for a new centroid:

In recapitulation, the data assignment, K-centroids
recalculations are parallel performed on the SMs of GPUs. The
main agent is responsible for centroids initialization, data
rearrangement and controlling the iteration process.

V. EXPERIMENTAL RESULTS

In this section, we use a set of large sized images to
compare the total processing time of these images using our
proposed GPU-based K-means distributed on multiple
computer nodes using Multi Agent System, with the total
processing time of the same set of images using GPU-based k-
means performed on GPUs on a single node.

All experiments were concluded on 4 nodes equipped with
Intel Core i7-3610QM CPU 2.30GHz (8 CPUs), 8GB main
memory and GeForce GTX 660M, 835 MHz engine clock
speed, 2048 MB GDDR5 of device RAM, and 384 processors,
organized into 3 streaming multiprocessors. Additionally, we
use 4 external GPUs GeForce GTX 750Ti connected by PCIe
using a PE4C V2.1 connectors. This environment was
assembled and tested in our laboratory for testing purposes.
The GTX 750Ti have 1020 MHz engine clock speed, 2048 MB
GDDR5 of device RAM, and 640 processors, organized into 5
streaming multiprocessors. All GPUs used in this study use
single-precision floating-point arithmetic.

The results were obtained using sets of large-sized images,
All Euclidean distance calculations were done in single-
precision. The performance of our K-means algorithm version
depends on the actual data and task communication between
agents across nodes. To observe the influence of data size on
the total running time, large-sized images with thousands of
intensity points were used as show in Table I below:

TABLE I. THE IMAGE DATA USED FOR THE TESTS

Image Id Image points(px) Image height Image width

I1 20006400 5120 3840

I2 39052992 7216 5412

I3 69120000 9600 7200

I4 100000000 10000 10000

I5 400000000 20000 20000

The test scenarios were carried out on the five large-sized
images with three different hardware configurations. The first
scenario was made using 2 compute Nodes with 4 GPUs. The

1. #include <math.h>

2. extern "C"

3. __global__ void dataAssignement(float * dataStream,

4. float * centroids,

5. float * dataStreamMembership)

6. {

7. int v = 0;

8. int t = threadIdx.x + blockIdx.x * blockDim.x;

9. float dist = 0,

10. float distMin = fabs(dataStream[t] - centroids[0]);

11. dataStreamMembership[t] = 1;

12. for(v = 1;v < 5; v ++)

13. {

14. dist = fabs(dataStream[t] - centroids[v]);

15. if (dist <= distMin)

16. {

17. dataStreamMembership[t] = v+1

18. distMin = dist;

19. }

20. }

21. }

Algorithm 1: Data assignment step (device code)

1. private static void dataRearrangement(float[] cardinal,

2. float[] sumDistances,

3. float[] sumIntensites,

4. float[] dataStream,

5.

float[] dataStreamMembership)

6. {

7. for (int i = 0; i < cardinal.length; i++)

8. {

9. // reset counters

10. sumIntensites [i]=0;

11. cardinal[i]=0;

12. }

13. // calculate sumIntensites and calculate the number element of

14. // each cluster

15. for (int i = 0; i < dataStreamMembership.length; i++)

16. {

17. sumIntensites[(int) dataStreamMembership[i]-

1]+=dataStream[i];

18. cardinal[(int) dataStreamMembership[i] - 1]++;

19. }

Algorithm 2: Data rearrangement step (host code)

1. # include < math.h >

2. extern "C"

3. __global__ void centroidsRecalculation(float * centroids,

4. float * cardinal,

5. float * sumIntensites)

6. {

7. int t = threadIdx.x;

8. centroids[t] = sumIntensites[t] / cardinal[t];

9. }

Algorithm 3: K centroids recalculation step (device code)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

177 | P a g e

www.ijacsa.thesai.org

second was made using 4 compute nodes with 6 GPUs, and
third was made with 4 compute nodes with 8 GPUs.

The measurements taken were the total processing time,
which includes data transfer. Total processing time of GPU-
based K-means on single node is denoted by GKtt, and our
distributed GPU-based K-means are denoted by DGKtt. The
results obtained are presented in Table II. The initial class
centers are chosen as: ()
(1 2 0 100 12 1 0 1 200 2).

TABLE II. TOTAL RUNNING TIME OF THE LARGE SIZED IMAGES

SEGMENTATION USING THREE DIFFERENT HARDWARE CONFIGURATIONS

Image

Id

Image

points(px)
GKtt

DGKtt

2

compute

Nodes

with 4

GPUs

4

compute

Nodes

with 6

GPUs

4

compute

Nodes

with 8

GPUs

I1I 20006400 14862,64 3125,04 1562,52 781,26

I2I 39052992 24609,62 5468,88 2878,36 1204,60

 I3 69120000 46871,94 9375,12 5208,40 2410,06

II44
10000000

0
61351,96 13773,72 11478,10 3935,35

I5
40000000
0

224129,0
3

54250,86 28553,08 18083,62

The speedup of our GPU-based K-means could reach from
4 to 5 of the CPU-based K-means in the first scenario and 8 to
9,5 in the second and 12 to 20 in the third scenario. This
performance improvement benefits from the high parallel
computing ability of the GPU using CUDA, the data
rearrangement and the division of the problem to lightweight
subproblem. In addition, in CUDA GPU, processors and
CUDA Streams are all indistinctive, and not distinguished by
pixel and vertex, so that they can run at the same time without
any idle time.

VI. DISCUSSION

Using distributed computing based on agent combined with
GPU computing show the advantages of easily encoding data
and task communication among computer nodes. In addition,
the agent communication language used (ACL) which follows
the FIPA specifications make the communication transparent
and make exchanges between computer nodes structured.
Specifically, the use of the JADE platform or similar platform
with Nvidia GPU in compute-intensive and data-intensive
application such as K-means applied for image segmentation,
allows using a high-level programming language like java to
write Host code with JNI wrapper, and CUDA C/C++ for
device code.

In our work we focus on how to solve the problem of
segmentation of large-sized images using the combination of
two powerful computing paradigms. Unlike [4, 5] who focused
on the memory management and the communication of the
thread blocks in single GPU, and in the case of data-intensive
application it will be complicated to guarantee their
effectiveness.

Despite of the great performance of [2], specifically for the
massively image processing, it is possible to speed up the
computer nodes with GPUs to have more computing power.

Thus, to implements a K-means version with Hadoop and
GPU, the programmer needs to understand the low-level
communication routines and storage mechanism of Hadoop
framework in order to be able to write scalable algorithm,
which in this case will be a mixture between Hadoop and
CUDA code.

Furthermore, the overhead of the data and task
synchronization between agents across nodes is limited by the
efficiency of the connected network where is deployed; as
instance, using standard Local area network (LAN) with
54Mbits/s or 100Mbits/s, the latency can be quite high. This
last can be reduced using a different physical medium for data
communication as the Fiber Distributed Data Interface (FDDI),
with 1Gbits/s; or the IEEE 802.3 gigabit Ethernet, with
10Gbits/s (e.g. 1000Base-LX or 1000Base-SX series); or the
well-suited InfiniBand bus which was used in this research.
There are many such studies to demonstrate communication
latency and process synchronization; however, they are out of
the scope of this research.

VII. CONCLUSION

This K-means version was implemented using the agent-
based distributed computing and GPU computing to solves the
problem of hardware limitations, specifically the number of
elementary processors and storage capacity. Also, instead of
using low-level libraries like MPI or OpenMP which can be
error-prone in some complex cases such as massively image
processing, we used programming paradigm based on agent
with JADE framework to overcome difficulty of the
communication and synchronization between nodes in the
distributed system and this being based on the FIPA
specifications.

Our implementation of K-means allowed us to confirm the
possibility of using this type of model based on two HPC
paradigms (Distributed and GPU computing) to solve problems
of hardware limitations and opening the possibility of
designing more scalable HPC models.

REFERENCES

[1] J. Shawe-Taylor and N. Cristianini, “Kernel Methods for Pattern
Analysis”. Cambridge University Press, 2004.

[2] Yingchi Mao, Ziyang Xu, Ping Ping, Longbao Wang, “An Optimal
Distributed K-Means Clustering Algorithm Based on CloudStack”, In :
Information and Automation, 2015 IEEE International Conference on.
IEEE, 2015. pp. 3149-3156.

[3] Mohammed Baydoun, Mohammad Dawi, and Hassan Ghaziri , “Parallel
Kernel K-Means on the CPU and the GPU”, In : Proceedings of the
International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA). The Steering Committee of The
World Congress in Computer Science, Computer Engineering and
Applied Computing (WorldComp), 2016. pp. 117.

[4] W. Fang, K. K. Lau, M. Lu, X. Xiao, C. K. Lam, P. Y. Yang, B. He, Q.
Luo, P. V. Sande, and K. Yang, “Parallel Data Mining on Graphics
Processors”, Technical Report HKUSTCS08, 2008.

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron,
“A Performance Study of General-Purpose Applications on Graphics
Processors Using CUDA”, Journal of Parallel and Distributed
Computing, 2008.

[6] ZHOU, Nanrun, ZHANG, Aidi, ZHENG, Fen, et al. “Novel image
compression–encryption hybrid algorithm based on key-controlled
measurement matrix in compressive sensing”. Optics & Laser
Technology, 2014, vol. 62, pp. 152-160.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

178 | P a g e

www.ijacsa.thesai.org

[7] Anders Eklund, Paul Dufort, Daniel Forsberg, Stephen M. La Conte
“Medical image processing on the GPU – Past, present and future”
Medical Image Analysis, Volume 17, Issue 8, December 2013, pp.
1073-1094.

[8] David Kirk. “NVIDIA Cuda software and GPU parallel computing
architecture”. In: Proceedings of the 6th International Symposium on
Memory Management, New York, NY, USA, 2007, vol. 7, pp. 103-104.

[9] Nvidia Corporation. “Whitepaper NVIDIA GeForce GTX 750 Ti”,
2014.

[10] Ihirri Soukaina, Errami Ahmed and Khaldoun Mohamed. “Parallel and
Reconfigurable Mesh Architecture for Low and Medium Level Image
Processing Applications”. In : Proceedings of the Advances in
Ubiquitous Networking 2, Casablanca, Morocco, 2016, pp. 529-544.

[11] Cédric Augonnet, Olivier Aumage, Nathalie Furmento, Raymond
Namyst and Samuel Thibault. “StarPU-MPI: Task programming over
clusters of machines enhanced with accelerators”. 2014. Ph.D.
Dissertation. Institut national de recherche en informatique et en
automatique (INRIA), 2012.

[12] Alan Kaminsky. “The Parallel Java 2 Library”. In: The International
Conference for High Performance Computing, Networking, Storage and
Analysis, New Orleans, LA, USA, November 18, 2014, Poster Session.

[13] Marc Snir. “MPI--The Complete Reference: Volume 1”, The MPI core.
MIT press, second edition, 1998.

[14] William Gropp, Ewing Lusk and Anthony Skjellum. “Using MPI:
portable parallel programming with the message-passing interface”. MIT
Press, seconde edition, 1999.

[15] Leonardo Dagum and Ramesh Menon. “OpenMP: an industry-standard
API for shared-memory programming”. IEEE Computational Science
and Engineering, 1998, vol. 5, issue 1, pp. 46-55.

[16] Rohit Chandra, Ramesh Menon, Leo Dagum, David Kohr, Dror Maydan
and Jeff McDonald. “Parallel programming in OpenMP”. Morgan
Kaufmann, 2001.

[17] Rolf Rabenseifner, Georg Hager and Gabriele Jost. “Hybrid
MPI/OpenMP parallel programming on clusters of multi-core SMP
nodes”. In: Proceeding of the 17th Euromicro International Conference
on Parallel, Distributed and Network-based Processing, Weimar,
Germany, 2009. pp. 427-436.

[18] Haoqiang Jin, Dennis Jespersen, Piyush Mehrotra, Rupak Biswas, Lei
Huang and Barbara Chapman. “High performance computing using MPI
and OpenMP on multi-core parallel systems”. Parallel Computing, 2011,
vol. 37, issue 9, pp. 562-575.

[19] Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio
and Dietmar Fey. “Hpx: A task based programming model in a global
address space”. In: Proceedings of the 8th International Conference on
Partitioned Global Address Space Programming Models, Eugene,
Oregon, USA, 2014, 6 October, pp. 6.

[20] Tom White. “Hadoop: The Definitive Guide”, O'Reilly Media, 2012.

[21] Brian L. Claus and Stephen R. Johnson. “Grid computing in large
pharmaceutical molecular modeling”. Drug Discovery Today, 2008, vol.

13, issues 13-14, pp. 578-583.

[22] Bogdan SATARIĆ, Vladimir SLAVNIĆ, Aleksandar BELIĆ et al.
“Hybrid OpenMP/MPI programs for solving the time-dependent Gross–
Pitaevskii equation in a fully anisotropic trap”. Computer Physics
Communications, 2016, vol. 200, pp. 411-417.

[23] Thorsten KURTH, Brandon COOK, Jack DESLIPPE et al. “OpenMP
Parallelization and Optimization of Graph-Based Machine Learning
Algorithms”. In : OpenMP: Memory, Devices, and Tasks: 12th
International Workshop on OpenMP, IWOMP 2016, Nara, Japan,
October 5-7, 2016, Proceedings. Springer, 2016, pp. 17.

[24] Massimiliano ALVIOLI and Rex L. BAUM. “Parallelization of the
TRIGRS model for rainfall-induced landslides using the message
passing interface”. Environmental Modelling & Software, 2016, vol. 81,
pp. 122-135.

[25] Siddhartha KHAITAN. “MASTER: A JAVA Based Work-Stealing
Technique For Parallel Contingency Analysis”. 2016. Doctoral Thesis.
Iowa State University.

[26] Saliya EKANAYAKE, Supun KAMBURUGAMUVE and Geoffrey C
FOX. “SPIDAL Java: high performance data analytics with Java and
MPI on large multicore HPC clusters”. In: Proceedings of the 24th High
Performance Computing Symposium. Society for Computer Simulation
International, 2016, pp. 3.

[27] Cosmin Marian POTERAŞ, Marian Cristian MIHĂESCU, and Mihai
MOCANU. “An optimized version of the K-Means clustering
algorithm”. In : Computer Science and Information Systems (FedCSIS),
2014 Federated Conference on. IEEE, 2014, pp. 695-699.

[28] Jadran SIROTKOVIĆ, Hrvoje DUJMIĆ, and Vladan PAPIĆ. “K-means
image segmentation on massively parallel GPU architecture”. In :
MIPRO, 2012 Proceedings of the 35th International Convention. IEEE,
2012. pp. 489-494.

[29] Kai J.KOHLHOFF, Vijay S.PANDE, and Russ B.ALTMAN. “K-means
for parallel architectures using all-prefix-sum sorting and updating
steps”. IEEE Transactions on Parallel and Distributed Systems, 2013,
vol. 24, no 8, pp. 1602-1612.

[30] Borislav ANTIĆ, Dragan LETIĆ, Dubravko ĆULIBRK et al. “K-means
based segmentation for real-time zenithal people counting”. In : Image
Processing (ICIP), 2009 16th IEEE International Conference on. IEEE,
2009, pp. 2565-2568.

[31] Fatéma Zahra BENCHARA, Mohamed YOUSSFI, Omar
BOUATTANE et al. “Distributed C-means algorithm for big data image
segmentation on a massively parallel and distributed virtual machine
based on cooperative mobile agents”. Journal of Software Engineering
and Applications, 2015, vol. 8, no 03, p. 103.

[32] James MacQueen. “Some methods for classification and analysis of
multivariate observations”. In: Proceedings of the 5th Berkeley
Symposium on Mathematical Statistics and Probability, University of
California, Berkeley, 1967, pp. 281-297.

[33] Fabio. Bellifemine, Giovanni Caire and Domonic Greenwood.
“Developing Multi-Agent Systems with JADE”. Wiley, 2007.

