
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

32 | P a g e

www.ijacsa.thesai.org

Training an Agent for FPS Doom Game using Visual

Reinforcement Learning and VizDoom

Khan Adil, Feng Jiang,

Shaohui Liu*, Aleksei Grigorev

School of Computer Science

and Technology

Harbin Institute of Technology

NO. 92, Xidazhi Street, Harbin,

Heilongjiang, China

B.B. Gupta

National Institute of

Technology

Kurukshetra,

India

Seungmin Rho

Sungkyul University,

Media Software, 306 Sungkyul Hall

Sungkyuldaehakro 53 Anyang,

Korea, 432749

Abstract—Because of the recent success and advancements in

deep mind technologies, it is now used to train agents using deep

learning for first-person shooter games that are often

outperforming human players by means of only screen raw pixels

to create their decisions. A visual Doom AI Competition is

organized each year on two different tracks: limited death-match

on a known map and a full death-match on an unknown map for

evaluating AI agents, because computer games are the best test-

beds for testing and evaluating different AI techniques and

approaches. The competition is ranked based on the number of

frags each agent achieves. In this paper, training a competitive

agent for playing Doom’s (FPS Game) basic scenario(s) in a semi-

realistic 3D world ‘VizDoom’ using the combination of

convolutional Deep learning and Q-learning by considering only

the screen raw pixels in order to exhibit agent’s usefulness in

Doom is proposed. Experimental results show that the trained

agent outperforms average human player and inbuilt game

agents in basic scenario(s) where only move left, right and shoot

actions are allowed.

Keywords—Visual reinforcement learning; Deep Q-learning;

FPS; CNN; computational intelligence; Game-AI; VizDoom;

agent; bot; DOOM

I. INTRODUCTION

Doom is an FPS (First person shooter) game developed by
Id-software. Its first installment was released on December 10,
1993, for the platform of „DOS‟ and its second installment
„Doom II: Hell on Earth‟ was released in the following year
(1994) for Microsoft Windows, play-station, and Xbox-360.
Its third installment Doom-3 was released for Microsoft
Windows on August 3, 2004, which was later adapted for
Linux and MacOSX. Also, later on, „Vicarious Visions‟
ported the game to the Xbox and released it on April 3, 2005.
Now the very recent and latest installment is „DOOM‟
developed by id-software and published by „Bethesda
Softworks‟. It was released worldwide on Microsoft
Windows, play-station 4 and X box-one as well on May 13,
2016. A common screen of the Doom game is shown in Fig. 1.

These days the research community is very active in
research on „Doom‟ for being a hot area of research using
techniques like deep reinforcement learning or visual
reinforcement learning. Besides, different Doom-based
research platforms like „VizDoom‟, „CocoDoom‟ and

„ResearchDoom‟ [1] is developed for implementing deep
learning techniques or methods. In the same way, every year
different visual Doom AI competitions are organized where
the agents (bots) are confirmed to exhibit human-like actions
and to show that visual reinforcement learning in 3D FPS
game environments is feasible.

Fig. 1. A typical Doom Game screen.

Like other domains, the deep learning has become well-
known in computer video games as well, in showing improved
performance than conventional approaches in managing high
dimensional records such as bulky visual inputs [2]. Also,
playing games in artificial intelligence (AI) has often been
used as methods for benchmarking agents [3]-[6]. So, because
of such reasons it was thought to propose deep learning with
Q-learning in training the agent using the Doom-based
research platform „VizDoom‟, similar to the approach
proposed in [7] but unlike in learning method (parameters)
and the environment used for the experiments because the
proposed agent‟s learning parameters, experimental
environment, total learning and testing lasting time, and partial
settings are different (see Section III) which is a part of the
contribution to this paper. Further, in comparison to the total
reward achieved by the authors agent, the proposed agent‟s
total score is higher and always positive in numbers, also,
initially the training reward of the author‟s agent is negative in
numbers where the proposed agent training percentage is
always positive in numbers. Besides, the proposed neural
network architecture is also different than the one proposed by
the authors. In order to introduce and explain the proposed

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

33 | P a g e

www.ijacsa.thesai.org

work further in detail, this paper is organized into different
sections. Section II presents related work, Section III describes
the proposed method and experimental work and Section IV
shows the results. Finally, Section V concludes the paper with
the future work.

II. RELATED WORK

The initial implementations of reinforcement learning
based on visual inputs were performed in [8] and [9] in which
the robots football-playing skills were developed. But since
the availability of VizDoom for research community there are
many other contemporary works on training a „Doom AI‟
based agents using the VizDoom platform that includes the
efforts in [10] where the authors presented CLYDE: a deep
reinforcement learning Doom playing agent, participated in
Visual Doom AI Competition held at the IEEE Conference on
Computational Intelligence and Games 2016 where CLYDE
competed with 8 other agents and managed to achieve 3rd
place. Table I shows the CLYDE performance and results of
the Visual Doom AI Competition 2016. Considering its
relative simplicity and the fact that the authors deliberately
avoided a high level of customization to keep the algorithm
generic, it performed very well in a partially observable multi-
agent 3D environment using Deep reinforcement learning
techniques that have already been traditionally applied before
in fully observable 2D environments. The CLYDE
architecture is shown in Fig. 2 for further observations.

Similar to CLYDE, another agent called Arnold: a
comprehensive and an independent agent for playing FPS
games by means of screen raw pixels that exhibited the
usefulness of Doom is presented in [11]. Arnold was trained
using deep reinforcement learning by means of an „Action-
Navigation‟ structure that practices a distinct deep neural
network for discovering the map and confronting the
adversaries. The agent also utilized systems such as
amplifying high level game characteristics, reward shaping
and progressive updates for effective training and real
performance where later Arnold outperformed typical human
players and inbuilt game agents on different variation of

death-match by obtaining the premier kill-to-death ratio in
both tracks of the visual Doom AI Competition and was
declared 2nd according to the number of frags. Table II shows
the Arnold performance and results of the Visual Doom AI
Competition 2016.

TABLE I. CLYDE PERFORMANCE IN TERMS OF A TOTAL NUMBER OF

FRAGS IN COMPARISON WITH OTHER BOTS IN THE VISUAL DOOM AI
COMPETITION 2016

Place Bot Total Frags

1 F1 559

2 Arnold 413

3 CLYDE 393

4 TUHO 312

5 5Vision 142

6 ColbyMules 131

7 Abyssll 118

8 WallDestroyerXxx -130

9 Ivomi -578

 PERFORMANCE OF ARNOLD ON BOTH TRACKS IN TABLE II.
COMPARISON WITH OTHER BOTS IN THE VISUAL DOOM-AI COMPETITION [11]

Limited

DeathMatch
Full Deathmatch

Agent Name
No. of

Frags

K/D

Ratio

No. of

Frags

K/D

Ratio

5Vision 142 0.41 12 0.20

AbyssII 118 0.40 - -

Arnold 413 2.45 164 33.40

CLYDE 393 0.94 - -

ColbyMules 131 0.43 18 0.20

F1 559 1.45 - -

IntelAct - - 256 3.58

Ivomi -578 0.18 -2 0.09

TUHO 312 0.91 51 0.95

WallDestroyerXxx -130 0.04 -9 0.01

Fig. 2. An architecture of the agent CLYDE

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

34 | P a g e

www.ijacsa.thesai.org

Fig. 3. The basic framework of Actor-critic model [13].

Similarly, a more related work to the proposed approach is
performed in [12] where agents are trained for two different
scenarios: a simple basic and a complex navigation maze
problem using convolutional deep neural networks with Q-
learning and experience replay. Where the trained agents were
able to exhibit human-like behaviors.

A framework is proposed in [13] for training vision-based
agents using deep learning and curriculum learning for FPS
games that won the Track 1 by 35% higher score than the
second place holding agent in „VizDoom‟ AI competition
2016 on a known map. The framework combines the state-of-
the-art reinforcement learning approach A3C model with
curriculum learning. The model is simpler in design and uses
game stats from AI only rather than using opponents‟
information [14]. The basic framework of the Actor-critic
model is shown in Fig. 3 for understanding and further
observations.

A. Deep Reinforcement Learning

The commonly applied techniques for learning agents or
bots are deep reinforcement learning techniques that are

logical and efficient in decision making. A similar deep
reinforcement learning technique is employed in [15] for
learning agents that can make generic and interactive decision
making and whose mathematical framework is based on
Markov Decision Processes (MDPs). An MDP is a tuple of
different fields like (S, A, P, R, γ) where „S‟ is the set of
different states, „A‟ is the set of different actions the agent can
make at each time step t, „P‟ is the transitional probability of
moving from one state (s) to another state (́) making an
action (a), „R‟ is the reward function representing that signal
which the agent receives after doing different actions and
changing states, and „γ‟ is the discount factor. As usual, the
goal of the reinforcement learning is to learn a policy π: s→a
that maximizes the overall expected discounted average
reward over the agent run. A commonly used technique to
learn such a policy is to learn the „action value function‟ (s,
a) iteratively. So as to gradually approximate the expected
reward in a model-free fashion. The employed augmented
framework is shown below in Fig. 4 that consistently learns
better.

Fig. 4. Framework overview (a) Observing image and depth from VizDoom, Running Faster-RCNN (b) for object detection and SLAM (c) for pose estimation.

Doing the 3D reconstruction (d) using the pose and bounding boxes. Semantic maps are built (e) from projection and the DQN is trained (f) using these new inputs

[15].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

35 | P a g e

www.ijacsa.thesai.org

Fig. 5. The proposed model architecture [16] to estimate the policy given the natural language instruction and the image showing the first-person view of the

environment.

A similar work (training an agent using VizDoom) of an
end-to-end trainable neural structure for task-oriented
language grounding in a 3D environment is proposed in [16]
that supposes no prior linguistic or perceptual data and needs
only raw pixels from the environment and the natural
language instruction as input. The model combines the image
and text representations using a Gated-Attention mechanism
and learns a policy to implement the natural language
instruction using standard reinforcement and imitation
learning methods. The authors showed the usefulness of the
suggested model on unseen instructions as well as unseen
maps, both quantitatively and qualitatively. They also
introduced a unique environment based on a 3D game engine
to simulate the challenges of task-oriented language grounding

over a rich set of instructions and environment states. The
proposed model is shown in Fig. 5 for further details.

B. Deep Q-Networks

A model is trained in [14] to simultaneously learn game
features statistics such as the existence of enemies or items
along with minimizing Q-learning objective that showed a
dramatic improvement in training speed and performance of
the model. The authors proposed architecture is modularized
to permit several models to be independently trained for
different phases of the game. The architecture substantially
outperformed built-in AI agents of the game and human
players as well in death-match scenarios which is shown
below in Fig. 6.

Fig. 6. The proposed architecture of the model in [14]. The Convolutional layers are given an input image. The output is split into two streams produced by the

convolutional layers. The first one (bottom) flattens the output (layers 3) and inputs it to LSTM, as in the DQRN model. The second one at the top directs it to an

extra hidden layer “layer 4”, after then to a final layer representing each game features. While training, the game features and the Q-learning objectives are trained

mutually.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

36 | P a g e

www.ijacsa.thesai.org

A short summary of the DQN model followed in [14] is
briefly presented here for supporting the proposed concept,
where, learning a policy for an agent that maximizes the
expected sum of discounted rewards is dealt with
Reinforcement learning which is represented mathematically
as,

Rt = ∑ ́
 ́ (1)

Where „T‟ is the game termination time and γ [0,1] is a
discount factor that calculates the importance of future
rewards. The Q-function for the expected return from
performing an action „a‟ in a state „s‟ for a given policy is
defined as:

 () =s, (2)

The highest return can be expected to achieve by using an
approximation function to estimate the activation-value
function Q. Particularly neural network parametrized by is
used by DQN and the idea to obtain an estimate of the Q-
function of the current policy that is close to the optimal Q-
function by following a strategy [14],

 ()

(s, a) (3)

It can also be described as the goal to find such that
 (s, a) () The optimal Q-function verifies the
Bellman optimality equation

 (s, a)= [r+
 ́́

 (´ ́) | s, a] (4)

If , it is obvious to consider that needs to be
close in verifying it for Bellman equation that leads to the
below loss function:

 ()= ́[(-
())] (5)

Here „t‟ is the current time step, and yt = r +
 ́

(́ ́). The value of yt is fixed that leads to the

following gradient.

 () = ́ - ()

(s , a)] (6)

The above gradient can also be computed using this below
approximation.

 () (())

() (7)

Using Experience replay is a well-known concept for
breaking the correlation between successive samples. An
agent experiences (,) at each time step, are saved
in the replay memory, where then the Q-learning updates are
performed on batches of experiences arbitrarily sampled from
the memory.

The is used to generate the next
action at each training step with a probability for selecting
the next action randomly and with a probability 1 –
according to the best action of the network. Practically it is
common to start with which is decayed gradually [17].

C. Supervised Learning Techniques

A similar approach to training an agent via VizDoom
platform is presented in [18] but using supervised learning
techniques for sensorimotor control in immersive settings. The
approach uses a high dimensional sensory stream and a lower-
dimensional measurement stream. The cotemporal structure of
the streams offers a rich supervisory signal that allows training
a sensorimotor control model by communicating with the
environment. The model learns to perform based on raw
sensory input from a composite three-dimensional
environment. The authors offered a formulation that permits
learning without a fixed objective at training time and follows
dynamic varying goals at a testing time. They also conducted
a number of experiments in three-dimensional simulations
based on classical FPS game Doom, the consequences
demonstrated that the applied approach outperformed
sophisticated earlier formulations specifically on exciting g
and challenging tasks. The results also showed that trained
models effectively generalize across environments and goals.
The model trained with this approach won the full Death-
match track of the Visual Doom AI Competition that was held
in earlier unseen environments. The network structure the
authors used in their experiments is shown below in Fig. 7.

Fig. 7. Network Structure: the initial three input modules first process image „s‟, measurements m, and goal „g‟ separately, then a joint representation j contains

the concatenated output of these modules. Two parallel streams process the joint representation which predicts the normalized action-conditional differences {

 ̅̅̅ () and the expected measurements E(j) which are then joined to produce the concluding expectation for each action [18].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

37 | P a g e

www.ijacsa.thesai.org

III. PROPOSED METHOD AND EXPERIMENTAL WORK

A. Basic Objective

The primary purpose of the experiments is to train a
competent agent using visual reinforcement learning and
„VizDoom‟ for first-person shooter games, particularly
„Doom‟ to exhibit human-like behaviors and to outperform
average human players and existing in-built game agents.

B. Scenario(s)

A rectangular chamber is used as a basic scenario (see
Fig. 8) wherein the center of the room‟s long wall an agent
spawns. Along the opposite wall, an immobile monster
spawns at arbitrary positions. The agent moves towards the
left side, right side and shoots as well. A single shot is
sufficient to eradicate the monster. The episode finishes once
the 300 frames are completed or the monster is either killed,
whichever approach first. For killing the monster, the agent
achieves 101 points, -5 for missing the shot and -1 for each
individual action. But the best practice for the agent to learn
killing the monster is to kill as rapidly as possible preferably
with a solitary shot.

Fig. 8. The basic scenario used.

C. Deep Q-Learning

„Markov Decision Process‟ is used to model the problem
and Q-learning to learn the policy. An -greedy policy with
linear decay is used for selecting an action. The Q-function
is approximated with the convolutional neural network by
training it with „Stochastic Gradient Decent‟ using experience
replay.

D. Experimental Setup

 Neural Network Architecture

The network used in the experiments includes two
convolutional layers with 32 square filters, 7 and 4 pixels
wide, respectively, as shown in Fig 9. A max-pooling layer
follows each convolutional layer with a max pooling of size 2
and Relu (Rectified Linear Unit) function for activation.
Moreover, the network contains a fully connected layer with
800 leaky rectified linear units and an output layer with 8
linear units conforming to the 8 combinations of the 3 offered
actions i.e. right, left and shoot.

 Learning Settings

In the experiments the discount factor is set to γ=0.99,
learning rate α=0.00025, replay memory capacity of 10 000
elements, the resolution (30, 45), and mini-batch size to 64.
The agent learned from 23, 239 steps consisting of performing
an action, observing a transition, and updating the network.
For monitoring the learning process, after each epoch
(Approx. 2000 learning steps) 100 testing episodes are played.

 Environment used for Experiment

The experiments are performed in „Pycharm professional
2016.3 version using ViZDoom 1.1.1, OpenCV 3.3, CMake
2.8+, Make, GCC 4.6+, Boost libraries 1.54+, and Python 3.5
(64-bit) with Numpy on an Ubuntu 16.04.3 installed computer
with Intel

®
 Core

™
 i7-7700 CPU @3.60 GHz x 8 and NVIDIA

GeForce GTX 1080/PCIe/SSE2 GPU for processing CNN‟s,
the whole learning process along with the 100 testing episodes
lasted for almost 30.70 Minutes.

Fig. 9. CNN architecture used in the experiments.

https://github.com/mwydmuch/ViZDoom/releases/download/1.1.0/ViZDoom-1.1.0-Win-Python35-x86_64.zip
https://github.com/mwydmuch/ViZDoom/releases/download/1.1.0/ViZDoom-1.1.0-Win-Python35-x86_64.zip

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

38 | P a g e

www.ijacsa.thesai.org

IV. RESULTS

In the experiments, a total of 10,188 training episodes
(Basic scenarios) are played. The agent learning details are
presented in Table III and explained as follows.

A. Learning

The total number of epochs performed are 20 shown in
Column “Ep #”. The number of steps learned by the agent is
obvious in column “SL/2,000” wherein the initial epochs the
learning remains low, but improved in the following epochs,
although in some epochs the learning remains unsuccessful.
Similarly, the learning percentage also improved progressively
and reached almost 100 %, which could be well understood

and observed in Fig. 10. Further, column “IPS” represents the
iterations per second performed in each learning Epoch. A
different number of episodes (basic scenarios) are played
during each epoch. The minimum, maximum and mean values
are the actual learning and testing output achieved during each
epoch by the agent and are displayed in their corresponding
columns under learning and testing results in the table. The
„ETT‟ represents the agent elapsed testing time in minutes.
The learning steps are kept limited to 2,000 for each epoch in
the current experiments which will be kept large and dynamic
for different scenarios like rocket basic, deadly corridor,
defend the center, defend the line, and health gathering in the
future work in order to train and develop competitive agents.

TABLE III. AGENT LEARNING RESULTS EP#: EPOCH NUMBER, SL/2,000: STEPS LEARNED OUT OF 2,000, LP%: LEARNING IN PERCENTAGE, IPS: ITERATIONS

PER SECOND, EET: ELAPSED TESTING TIME (MINUTES) UL: UNSUCCESSFUL LEARNING

Ep

 SL/

2,000

LP

(%)
IPS EP

Learning Results (performance) Testing Results (performance)

ETT

Mean Min Max Mean Min Max

1 140 -132.6±187.3 -380.0 95.0 -161.1±232.4 -410.0 95.0 1.04

2 1285 64 45.28 133 -149.9±186.3 -375.0 95.0 -36.8±183.8 -410.0 95.0 2.56

3 1995 100 42.30 149 -111.9±177.1 -385.0 95 17.6±134.5 -360.0 95.0 3.47

4 1989 99 41.69 153 -106.3±170.6 -385.0 95.0 72.1±21.6 -18.0 95.0 4.35

5 1999 100 40.17 195 -48.8±141.6 -380.0 95.0 78.5±13.4 18.0 95.0 5.25

6 UL - UL 283 7.1±97.6 -390.0 95.0 72.6±17.5 -12.0 95.0 6.21

7 1996 100 41.58 352 29.4±77.1 -365.0 95.0 75.7±15.7 -18.0 95.0 7.21

8 1993 100 38.83 397 38.7±62.6 -355.0 95.0 73.3±17.7 -9.0 95.0 8.24

9 1998 100 36.33 433 45.1±47.6 -216.0 95.0 75.4±15.0 42.0 95.0 9.28

10 1997 100 38.00 544 58.7±32.7 -151.0 95.0 77.2±14.8 42.0 95.0 10.39

11 1997 100 31.93 600 63.7±27.9 -115 95.0 77.3±12.6 45.0 95.0 11.53

12 UL - UL 678 69.5±23.1 -129.0 95.0 77.1±12.1 45.0 95.0 12.72

13 UL - UL 757 73.9±16.4 -6.0 95.0 77.3±12.4 45.0 95.0 13.97

14 1999 100 30.87 754 73.8±17.4 -16.0 95.0 76.2±12.8 25.0 95.0 15.21

15 1993 100 32.90 749 73.4±17.3 -40.0 95.0 76.9±13.1 25.0 95.0 16.47

16 UL - UL 770 74.7±16.6 -61.0 95.0 77.7±11.1 45.0 95.0 17.71

17 UL - UL 773 75.0±15.1 -4.0 95.0 79.4±12.0 20.0 95.0 18.97

18 UL - UL 757 74.3±16.4 -25.0 95.0 78.5±10.7 59.0 95.0 20.22

19 UL - UL 774 75.2±14.2 -1.0 95.0 79.5±10.7 52.0 95.0 21.48

20 1998 100 28.35 797 76.2±14.9 -21.0 95.0 79.1±10.3 52.0 95.0 22.76

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

39 | P a g e

www.ijacsa.thesai.org

Fig. 10. Agent‟s learning performance and dynamics on basic scenario(s).

B. Final Testing

Similarly, in final testing phase, the agent is tested on 100
basic scenario(s) once the whole training finished (after 20

th

epoch), the agent‟s total score after each testing episode is
shown in Table IV and its performance can be well understood
and observe from the graph shown in Fig. 11.

As it is obvious in the graph that the agent behavior in
shooting the spawning monster is balanced and its minimum,

maximum and average shooting scores are 17, 94 and 74
which shows that the performance of the agent in basic „move
and shoot‟ scenario(s) is more decent and optimum because
the agent is always tested even after each epoch while training
in order for monitoring and observing its performance that is
always found improved gradually with the passage of time.
But as far as the agent overall testing output is concerned with
basic scenario(s) so it performed well by moving to the proper
position and shooting accurately.

Fig. 11. Agent Testing Performance on 100 Basic Scenario(s).

-1000

0

1000

2000

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

St
ep

s

Learning Behaviour

Agent's Learning Performance and Dynamics

Steps Learned Episodes Played

Training Mean Training Min

Training Max Testing Mean

Testing Min Testing Max

Elapsed Testing Time in minutes

0

10

20

30

40

50

60

70

80

90

100

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

S
co

re

Episodes

Agent Testing Performance

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

40 | P a g e

www.ijacsa.thesai.org

TABLE IV. AGENT‟S TESTING SCORES IN 100 EPISODES (SCENARIOS)

Episode No. Total Score Episode No. Total Score Episode No. Total Score

1 70.0 35 94.0 69 70.0

2 82.0 36 82.0 70 94.0

3 44.0 37 82.0 71 70.0

4 94.0 38 82.0 72 58.0

5 46.0 39 70.0 73 82.0

6 82.0 40 82.0 74 82.0

7 94.0 41 82.0 75 70.0

8 82.0 42 94.0 76 70.0

9 82.0 43 70.0 77 70.0

10 94.0 44 75.0 78 17.0

11 94.0 45 58.0 79 70.0

12 94.0 46 70.0 80 44.0

13 94.0 47 70.0 81 82.0

14 58.0 48 70.0 82 82.0

15 82.0 49 46.0 83 70.0

16 70.0 50 70.0 84 94.0

17 82.0 51 70.0 85 70.0

18 82.0 52 70.0 86 70.0

19 82.0 53 94.0 87 70.0

20 70.0 54 70.0 88 70.0

21 70.0 55 82.0 89 70.0

22 94.0 56 70.0 90 82.0

23 44.0 57 37.0 91 70.0

24 58.0 58 58.0 92 94.0

25 94.0 59 94.0 93 58.0

26 70.0 60 70.0 94 82.0

27 70.0 61 70.0 95 70.0

28 94.0 62 94.0 96 82.0

29 94.0 63 94.0 97 70.0

30 82.0 64 58.0 98 70.0

31 70.0 65 70.0 99 82.0

32 70.0 66 82.0 100 82.0

33 82.0 67 82.0

34 70.0 68 70.0

V. CONCLUSION AND FUTURE WORK

In this paper, an agent is trained using Deep Q-Learning
and „VizDoom‟. The agent is tested for almost 2000 (finally
on 100 Ep) Doom scenarios where it demonstrated an
intelligent behavior and the results achieved are better and
positive in numbers than the results proposed by Hyunsoo and
Kyung-J. K. 2016. After the scientific analysis, monitoring
and observations of the simple „move and shoot‟ basic
scenario(s) results, it is also observed that the speed of the
learning system largely rely on the quantity of frames the
agent is permitted to skip while learning, in particular skipping
frames from 4 to 10 are profitable, which is the future

considered work, but this time with larger number of learning
steps and Doom scenarios (episodes) by allowing the agent to
access the sound buffer as presently agents are deaf.

ACKNOWLEDGMENT

The authors would like to thank NVIDIA for GPU
donation. Also, this work is partially funded by the MOE–
Microsoft Key Laboratory of Natural Language Processing
and Speech, Harbin Institute of Technology, the Major State
Basic Research Development Program of China (973 Program
2015CB351804) and the National Natural Science Foundation
of China under Grant No. 61572155, 61672188 and
61272386.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

41 | P a g e

www.ijacsa.thesai.org

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] Mahendran, Aravindh, Hakan Bilen, João F. Henriques, and Andrea
Vedaldi, ResearchDoom and CocoDoom: Learning Computer Vision
with Games. arXiv preprint arXiv:1610.02431, 2016.

[2] Kulkarni, Tejas D., Ardavan Saeedi, Simanta Gautam, and Samuel J.
Gershman, Deep successor reinforcement learning. arXiv preprint
arXiv:1606.02396, 2016.

[3] Georgios N. Yannakakis, M., IEEE, and Julian Togelius, Member,
IEEE, A Panorama of Artificial and Computational Intelligence in
Games.pdf. IEEE TRANSACTIONS ON COMPUTATIONAL
INTELLIGENCE AND AI IN GAMES, VOL. 7, NO. 4, 2015. 7 (4): p.
19.

[4] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J.,
Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K.,
Ostrovski, G. and Petersen, S, Human-level control through deep
reinforcement learning. Nature, 2015. 518 (7540): p. 529-533.

[5] Schaeffer, Jonathan, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto,
Martin Müller, Robert Lake, Paul Lu, and Steve Sutphen, Checkers is
solved. science, 2007. 317 (5844): p. 1518-1522.

[6] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V.,
Lanctot, M. and Dieleman, S, Mastering the game of Go with deep
neural networks and tree search. Nature, 2016. 529 (7587): p. 484-489.

[7] Hyunsoo Park, a.K.-J.K., Deep Q-Learning using Redundant
Outputs.pdf. IEEE Conference on Computational Intelligence and
Games (CIG'16), 2016.

[8] Asada, Minoru, Eiji Uchibe, Shoichi Noda, Sukoya Tawaratsumida, and
Koh Hosoda. A vision-based reinforcement learning for coordination of
soccer playing behaviors. in Proceedings of AAAI-94 Workshop on AI
and A-life and Entertainment. 1994. Seattle, USA.

[9] Asada, Minoru, Shoichi Noda, Sukoya Tawaratsumida, and Koh
Hosoda., Purposive behavior acquisition for a real robot by vision-based
reinforcement learning. Machine learning, 1996. 23 (2): p. 279-303.

[10] Ratcliffe, Dino, Sam Devlin, Udo Kruschwitz, and Luca Citi, Clyde: A
deep reinforcement learning DOOM playing agent. What's Next For AI
In Games: AAAI 2017 Workshop. 2017.San Francisco, USA., 2017.

[11] Chaplot, D.S. and G. Lample. Arnold: An Autonomous Agent to Play
FPS Games. in AAAI. 2017.

[12] Kempka, M., Wydmuch, M., Runc, G., Toczek, J. and Jaśkowski, W,
ViZDoom: A Doom-based AI Research Platform for Visual
Reinforcement Learning. arXiv preprint arXiv:1605.02097, 2016.

[13] Wu, Y. and Y. Tian, Training agent for first-person shooter game with
actor-critic curriculum learning. conference paper at ICLR 2017, 2017.

[14] Lample, G. and D.S. Chaplot, Playing FPS games with deep
reinforcement learning. arXiv preprint arXiv:1609.05521, 2016.

[15] Bhatti, S., Desmaison, A., Miksik, O., Nardelli, N., Siddharth, N. and
Torr, P.H, Playing Doom with SLAM-Augmented Deep Reinforcement
Learning. arXiv preprint arXiv:1612.00380, 2016.

[16] Chaplot, D.S., Sathyendra, K.M., Pasumarthi, R.K., Rajagopal, D. and
Salakhutdinov, R, Gated-Attention Architectures for Task-Oriented
Language Grounding. arXiv preprint arXiv:1706.07230, 2017.

[17] Hafner, D., Deep Reinforcement Learning From Raw Pixels in Doom.
arXiv preprint arXiv:1610.02164, 2016.

[18] Dosovitskiy, A. and V. Koltun, Learning to act by predicting the future.
arXiv preprint arXiv:1611.01779, 2016.

AUTHORS‟ PROFILE

Adil Khan received B.Ed from the
University of Peshawar, BS Honors in computer
science from Edwards college Peshawar, M.S
Degree in Computer Science from City university
of science and information technology Peshawar,
C.T. from AIOU Islamabad, MCSE from
Microsoft and CCNA from Cisco. In 2014-2016,
he was a Senior Lecturer in Higher Education
Department KPK, Pakistan. Currently, he is a
Ph.D. Research Scholar at the school of computer
science and technology, Harbin Institute of

Technology, Harbin 150001 PR China. He is interested in Artificial
Intelligence, Neural networks, Real Time Strategy Games, First-Person-
Shooter Games, machine learning, computer vision and image processing.

Feng Jiang received B.S., M.S., and Ph.D.
Degrees in Computer Science from Harbin
Institute of Technology (HIT), Harbin 150001
PR China, in 2001, 2003, and 2008, respectively.
He is now an Associate Professor in the
Department of computer science, HIT and a
visiting scholar in the school of electrical
engineering, Princeton University. He is
interested in computer vision, pattern
recognition, Game-AI, image and video
processing.

Shaohui Liu received B.S., M.S., and Ph.D.
Degrees in Computer Science from Harbin Institute
of Technology (HIT), Harbin 150001 PR China, in
2000, 2002, and 2007, respectively. He is now an
Associate Professor in the Department of computer
science, HIT. He is interested in Game AI, data
compression, pattern recognition, image and video
processing.

Aleksei Grigorev received the Master
Degree from Department of Mathematics and
School of Computer Science and Technology,
Harbin Institute of Technology (HIT), Harbin,
China, in 2016. Currently, he is a Ph.D. Scholar at
the school of computer science and technology,
Harbin Institute of Technology, Harbin 150001 PR
China. His research interests include Game AI,
computer vision, pattern recognition, image and
video processing.

Seungmin Rho received MS and Ph.D.
Degrees in Computer Science from Ajou
University, Korea, in 2003 and 2008, respectively.
In 2008-2009, he was a Postdoctoral Research
Fellow at the Computer Music Lab of the School
of Computer Science at Carnegie Mellon
University. In 2009-2011, he had been working as
a Research Professor at the School of Electrical
Engineering, Korea University. In 2012, he was an
assistant professor of Division Information and
Communication at Baekseok University.
Currently, Dr. Rho is a faculty member of the

Department of Multimedia at Sungkyul University. His research interests
include Game AI, multimedia systems, machine learning, knowledge
management as well as computational intelligence.

