
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

411 | P a g e

www.ijacsa.thesai.org

Web Unique Method (WUM): An Open Source

Blackbox Scanner for Detecting Web Vulnerabilities

Muhammad Noman khalid
1
, Muhammad Iqbal

1
, Muhammad Talha Alam

1
, Vishal Jain

2
, Hira Mirza

3
 and Kamran

Rasheed
1

1
Department of Computer Science, Bahria University, Karachi, Pakistan

2
BVICAM, New Delhi, India

3
Department of Computer Science, PAF KIET, Karachi, Pakistan

Abstract—The internet has provided a vast range of benefits

to society, and empowering people in a variety of ways. Due to

incredible growth of Internet usage in past 2 decades, everyday a

number of new Web applications are also becoming a part of

World Wide Web. The distributed and open nature of internet

attracts hackers to interrupt the smooth services of web

applications. Some of the famous web application vulnerabilities

are SQL Injection, Cross Site Scripting (XSS) and Cross Site

request Forgery (CSRF). We believe that in order to encounter

these vulnerabilities; the web application vulnerabilities scanner

should have strong detection and prevention rules to ease the

problem. At present, a number of web application vulnerabilities

scanners have been proposed by research community, such as

ZED Attack Proxy (ZAP) by AWASP, Wapiti by sourceforge.net

and w3af by w3af.org. However, these scanners cannot challenge

all web vulnerabilities. This research proposed and develop a

vulnerability scanning tool WUM (web unique method) to

detection and prevention of all the major instance vulnerabilities

and demonstrates how to detect unauthorized access by finding

vulnerabilities. With the efficient use of this tool, the developers

are able to find potentially vulnerable web application. WUM

generated a high level of accuracy and compatibility, which is

elaborated underneath. The result of the experiment shows

proposed vulnerability scanner tool WUM which gives less false

positive and detect more vulnerabilities in comparison of well-

known black box scanners.

Keywords—Automated vulnerability detection; black-box

scanners; web vulnerabilities crawling; security scanner

I. INTRODUCTION

Web applications are the best way of providing standard
facilities through Internet. The collaboration of diverse
technologies that are used in many generalization layers, are
the foundation cause of vulnerabilities in web applications [1].
In fact, the number of reported website vulnerabilities is
increasing abruptly. This could be minimized by providing a
firm knowledge of web developers, or through security-aware
web application development frames. This can be imposed by
splitting the structure and input/output data of content [2].

Fig. 1 provides the unique and extensively used web
application architecture of three-tier with help of each tier
methodologies and modules of software. Advance features that
intensify the intricacy of web application are given by
technologies and architecture of web application [1]. With the
popularity of forums, web services and blogging, attackers
started taking interest in web applications [3]. A user getting a

bug, loophole and weakness existing in the web application
that can be exploited by an illegal user is known as
vulnerability. Usually these vulnerabilities do several
incursions for getting full command over web application.
Globally renowned organizations have a serious issue
regarding vulnerability system [4].

According to OWASP [5], the most Dangers web vulner-
abilities are include XSS, CSRF and SQLi, among others. The
information of these vulnerabilities exploits represent a
significant threat for website and demand to secure these
vulnerabilities with security counter measures. In order to
overcome security breaches with successful attacks against
web applications different penetration tester used variety of
techniques around the globe. Many techniques assist to identify
the vulnerabilities existing in the web application in order to
prevent and minimize potential of web damages. However,
testing the web application requires sufficient and experienced
tester. An Additional burden is the fact that the testing process
itself is a manual and prolonged process with essential
requirement for precision [6].

Fig. 1. Overview of Web architecture.

In order to support testers there is another methodology for
analyzing the web vulnerabilities in web applications. This
technique is to check the output of the application by providing
some input to that specific output. This analysis method is said
to be a black-box testing. There are a lot of automated and
manual testing tools for XSS detection, SQLi also detecting
other vulnerabilities scanners [6], [9]-[15] in order to make
web security easier for web developers/admin. This research

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

412 | P a g e

www.ijacsa.thesai.org

presents an open source web vulnerability scanner that use
black box technique to carry out crawling and scanning for
websites, to effectively detect the presence of exploitable web
vulnerabilities. This tool is independent of a database of known
vulnerabilities; instead distinctive, underlying properties of
application level vulnerabilities are exploited to effectively
detect affected programs. It additively attempts to
automatically generate proof of concept exploit in certain cases
which serves to bring increment in confidence of the
correctness of our scan results.

WUM architecture which is flexible incorporates
multithreaded crawling, attack and analysis components.
Employing the assistance of a graphical user interface the user
can effectively configure single or combined crawling attack
runs. Proposed prototype implementation, we currently provide
various attack components, reflected and Stored XSS, SQLI,
CSRF, LFI/ RFI, CJ, SSL and UR. In addition, an application
programming interface is provided to enable the developers to
implement their own modules in order to effectively launch
their desired attacks. The main objective of this paper to gauge
performance of black box scanner to detect web vulnerabilities
and to detect rate can be improved. This research paper
proposed a tool to increase the efficiency of black-box web
vulnerability scanners by growing their ability to recognize the
internal state of web application. The usability of that model is
to down the application in a state aware mode, negotiating
more of the web application. As a result, it finds out more
vulnerabilities and provide flexibility for improvements, which
helps to carryout penetration testing in more effective and
efficient way.

The Remainder of this research paper is organized as
follows. Section 2 describes types of web vulnerabilities and
related work. Section 3 describes the methodology of WUM.
Section 4, this section concludes the paper and present
comparison between WUM and existing commercial open
source vulnerability scanner.

II. BACKGROUND AND LITRATURE REVIEW

A lot of work is being carried out by renowned
organization, computer security enterprises, threat intelligence
software companies, and independent security researchers for
cyber vulnerabilities. Methods of Detection and prevention of
web vulnerabilities have been studied widely. Machine
learning, dynamic, static and combined are most preferable
techniques All web based penetration testing scanners can
easily be separated in three categories; i.e. academic, open
source Scanner and commercial [7], [8]. Individuals having
same interest of research take assistance from academic
scanner to introduce their own scanner like SQIVS [9],
Increase the MySQLinj factor [10], secubat [11] State aware
scanner [12], Amnisia [13] and wave [14], etc. Many academic
scanners are not in the reach of a public, language dependent
and are under development. Thus, those techniques that are
used in development cycle of defined scanners are publically
present to ponder the light to every individual or academic
researcher; those researchers who really need to upgrade the
previous Scanners or launched new methodologies with
advanced key factors.

Academic scanner public has access open source scanner
like nikito, zap, wapit, vega and wa3p [15] for free over the
copyright tags and policy. Thus, the framework, algorithm or
development cycles are not accessible for public Use. Just like
individuals or researchers that are authorized to work and
enhance the open source scanners with acceptance of the
owner. Next to this process, the open source and academic
Web penetration testing scanners are also known as
commercial Scanners, like AppScan, Acunetix, Bugblast,
Netsparker, etc. These commercial Scanners are basically dis-
similar from academic and open source Scanners in such ways
that the person can only use these functionalities of the defined
scanners by means of purchase, and also the architecture,
algorithms or methodologies recycled by development of these
scanners. These are not obtainable to public and no other
vendor allows enhancement of their scanner [15]. Scanner
provide to user with great and vast aid and functionalities
factor that are not present in academic and commercial
Scanners. Primarily, there are two most standard methods that
use in evolution of web penetration testing scanner, whether it
is academic scanners, open source or commercial or
combination of both. These techniques and methodologies that
can be categories into two: static and dynamic techniques.
Scanners that perform dynamic approach are basically known
as attacks scanners because they explore server response to
find vulnerabilities with the help of target attacking
application. Moreover, they do not require target source code
to execute the security outcomes. Furthermore, these scanners
are helpful in static approach that demand to discover the
source code of target application and recognize errors or
vulnerabilities through flow control of data and information,
taint exploration, modelling checking and applying more with
the help of above composition [16]-[18]. Jovanovic et al.
suggested Pixy, a fixed code investigates the scanner kit that is
useful to discover the taint-style of vulnerabilities
automatically. In that technique, there are inter procedural,
flow and it shows sensitivity in content of low and false
attributes and higher accuracy. Mathematical results explain
that Pixy was easily find out the both Structured Query
Language (SQL) injection and Cross Site Scripting (XSS)
vulnerabilities in PHP scripts, these vulnerabilities have an
observation about 50% false positive rate [19]. However,
WUM puts a greater focus on the technique proposed in
[6], [13].

Fig. 2. A simple attack.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

413 | P a g e

www.ijacsa.thesai.org

Take an explanation that shows the issue with the help of
little description of simple example. Fig. 2 expresses the
Mentioned scenario. Those web browsers, where a HTML
page is accomplished calls a server that uses ARGA as
argument. This argument might be explained at the HTML
page with the help of defined source code:

<form a c t i o n =” t e s t. c g i” method=GET>

<i n p u t maxlength =11 t y p e =” i n p u t” name=

”ARGA”> Username </ i n p u t ></form >

Following above source code showed a maximum length
and a type that assigned to ARGA. It is defined in such a way
that when the server acquires the request that are coming from
the web page as a test.cgi file with the content represented in
Fig. 2 is achieved. There are different types of vulnerabilities
and these are explained further in following sub-section.

A. SQL Injection Vulnerability

Structured Query Language SQL is a database text
language that allows user to manipulating the data saved in the
database through the commands such as UPDATE, DELETE
and INSERT [20]. The major consequences of SQL injection
one type of security Exploit are SQL Injection that contains all
the SQL queries that can be executed without any appropriate
validation format. The common alternative way is that when a
mischievous end user inputs certain type of data by which an
application uses as shown in Fig. 3 [12].

Fig. 3. A SQL injection attack.

B. Cross Site Scripting Vulnerability

Cross site scripting vulnerabilities are namely document
object model (DOM), reflected or non-persistent and persistent
[21] Cross-site scripting (XSS) vulnerability [22] that allows
mischievous developers that they can forward some harmful
JavaScript to the site. It can occur, when an application takes
the information which is send by user in response pages
without doing any validation inspection, while the end user is
trying to enter in an injected area of website. Thus, the browser
easily achieves his target and mischievous user easily adds
malicious JavaScript. Cross site scripting vulnerability arouse
when given input is not appropriate. Input sanitization and
validation help removing XSS ensuring that given data is in
appropriate format of web application as shown in Fig. 4 [22].

Stored or persistent vulnerability is that when hacker inputs
pay-loads are stored in web database in a server and that stored

data is hacked by post response page. Previous researches
observed this kind of bugs on blogs, social media and forums
[22]-[24]. DOM-based XSS exposure is occurred when hacker
entered in client site and used his JavaScript. Payload inserts in
the website and drastically they achieved response from the
DOM, these types of attacks are basically done in client
site [24].

Fig. 4. A XSS attack.

C. Cross Site Request Forgery (CSRF) Vulnerability

CSRF attacks that allows the hacker to do unwanted action
in website, blog and emails by launching HTTP Request from
browsers. CSRF attacks and severity of the damage in a term
money and confidential data and performed through different
request as presented in Fig. 5. They can easily change user
accounts details, email and password and even performing
illegal financial transactions and so on [25].

Fig. 5. A CSRF attack.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

414 | P a g e

www.ijacsa.thesai.org

There are two best important approaches to find
vulnerabilities in web applications:

D. Penetration Testing Techniques

1) White box testing: White box testing is an investigation

of web application source code. Pixy and FORTIFY scanner

easily achieve this task automatically or can be achieved

manually. The complexity of a source code can cause problem

in accomplishing the task [26].

2) Black box testing: Another methodology for analyzing

the security issues in applications is to check the output of the

application by providing some input to that specific output.

This approach can be easily performed on extensive path

through a variety of applications. This tool does not identify

the internals of the web application and BBT uses fuzzing

technique over the web HTTP requests [26]. the black box

methodologies commonly have less incorrect positives than

white-box methodologies.

The essential requirement is to go on a page that is able to
catch the susceptibilities. Traditional black box web scanners
drag a website to count all accessible web pages and formerly
down the input records like form values, URL constants, and
cookies to generate web vulnerabilities. Though, this method
does not pay any attention towards the key points of modern
web applications. The state of web application is easily change
by providing any application or request. One of the most
common situations is that the information of any web
application such as: database, file system and time etc. is able
to check its output details.

E. Classification of Web Application Security Approaches

Web Application security is a process of engineering the
web application by attacking. The malicious attack in web
application security works itself to protect the site. The main
objective of security is to evade vulnerabilities in the starting
phases of development of web life cycle. This life cycle
methodology should be followed to make sure completeness
and consistency of project. It includes planning, analysis,
design and development, testing, and implementation and
maintenance as shown in Fig. 6. Following methodologies can
be considered in protective programming (i.e. protected coding
strategies), detection of vulnerabilities methods and prevention
of attack methods.

1) Secure Coding Guidelines: This methodology should

be adopted by the developers to make a secure web

application. In order to perform this methodology the

developers should be trained to learn standards of coding in

detail because most of the web vulnerabilities like SQLi and

XSS arise due to the incorrect use of inputs. In order to

eliminate this type of attack secure coding guide line is the

best approach to use But still few developers exist who do not

use secure coding standard and make mistakes in their codes

through which secure coding guidelines does not promised the

security of application [1].

Fig. 6. Process of SDLC.

2) Vulnerability Detection Approaches: VDA is used to

detect any type of web vulnerability in the website through

performed testing in web application. There are some different

approaches to detect web vulnerabilities which are categorized

into static, dynamic and hybrid analysis. Static approach is

examining web source code without executing website. On the

other hand, dynamic is used to detect web vulnerabilities after

executing the code. Static and dynamic is used in coding or in

testing stage of development life cycle of application. Code-

based approach is applied on static method to abstract the valid

and invalid situations in code of application. Overall, the value

of code based build upon the test cases which was used for

identifying vulnerabilities in code. The positive side of static is

that they evaluate the code automatically during the early

development of life cycle. By doing this, it will be helpful for

finding and eliminate errors in early stage and decrease cost,

because cost rises along with the development of life cycle. On

the other hand, they sometimes generate wrong results i.e.

producing a wide range of false positives and false negatives.

Somehow, dynamic approach is generating true result. They

need a massive amount of test cases to detect errors in code [1].

Fig. 7. The Architecture of WUM Tool.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

415 | P a g e

www.ijacsa.thesai.org

III. METHODOLOGY

The proposed method is based on WEB security WUM
scanner in order to find web vulnerabilities. It’s also display
parameters from where SQLi, XSS and some well-known
vulnerabilities were founded. In order to keep the design open,
collective and compatible architecture has been used. This
scanner consists of four parts named crawling and parsing,
detection, and attacking and analysis phases. It’s also providing
detail on web vulnerability in last to show generated attack part
that can be trigged separately. As far as the efficiency and
performance is concerned, this scanner is able to dispatch 8 to
10 parallel attacks that is further elaborated in given Fig. 7.

IV. AUTOMATED VULNERABILITY DETECTION

An Automated web vulnerability scanner to find efficient
result approach depends upon imitation of SQLI, XSS, CSRF,
LFI/RFI vulnerabilities payload. Consequently, the possibility
of examining is restricted only to HTTP responses received
from the application server which runs verified web
application. Likewise, to the reported strategies commonly
found in other systems [6], [11], [14]. Our approach
encompasses the following Modules. Web crawling, AEP’s
(application entry Point’s) detection and extraction, attacking,
analysis, and report generation as shown in Fig. 8.

1) Crawling Module: Attacks can be propelled just against

formerly recognized AEP’s during the dynamic security

analysis. Therefore, identification of all pages inside target

web application is critical for testing [14]. This can be done

automated, manually or semi-automated. It will crawl page to

page of website and will automatically check the pages with

scripts and payloads for vulnerabilities. Comparatively slow

response time of remote website server. To initiate a crawling

session, the crawling phase of scanner needs to be linked with

a website URL. Crawler use URL as a starting point and steps

down to the web link tree and collecting all web pages

associated with it. Only as a specific web crawler, this scanner

has configurable options for the maximum web pages per

domain to crawl high web pages depth as shown in Fig. 9. The

basic idea for implementation of crawling component was

taken from existing systems [9], [11], [14], [27], [28].

Fig. 8. An overview of a WUM.

Fig. 9. WUM crawling phase.

2) Attack Module: Once crawling phase was completed;

next phase is to initialize processing on the list of target web

pages. Particularly, the attack module scans each page which

found in a crawling phase as presented in Fig. 10. For each

AEP, a set of valid parameter values is generated that are used

by different researchers [9], [11], 14] to generate HTTP

request. The outcome of this request is referenced in HTML

page. In addition, in every AEP, a set of malicious or incorrect

parameter values is created. Furthermore, parameter values

which violate predefined constraints of parameters are

generated.

3) Analysis Modules: The third module is analysis

module. When user click on more details it launches attack to

interpret web pages and parse web vulnerabilities There are

some possibilities of false positives web vulnerabilities. To

reduce this problem, a module is added on WUM to care about

confidence value in case of false positives are occurred. At the

end of this phase scanner is able to provide solution of web

vulnerabilities which was found by WUM scanner.

Fig. 10. WUM analysis phase.

V. EXPERIMENTAL RESULT

WUM scanner has been developed in ASP.net with the help
of the database named Microsoft SQL Server. For our studies,
we use sample size of 10 website which was selected from
malicious website obtained from XSSed (xssed.com) and
DMOZ (dvwa.co.uk).in order to test different scanners, for
presented study select Sample web URL used as AEP on
WUM scanners: scanner 1, scanner 2 and scanner 3. Some of
them are able to find all web vulnerabilities as wum scanner.
We also selected some well-known vulnerabilities, like XSS,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

416 | P a g e

www.ijacsa.thesai.org

SQL Injections, CSRF, LFI/RFI, SSL and URL redirection.
During testing we have used 1 commercial and 2 open source
web vulnerability scanners to compare results with WUM
scanner.

The result of different scanners presented in Table I. In
order to evaluate result for presented we performed testing on
different scanner to find web vulnerabilities. Many attempts
have been made in order to aim to find web vulnerabilities on
sample websites for the current study present interesting result
from our Dataset. From the Table scanner 1 have found all web
vulnerabilities expect SSL because this scanner is not able to
find SSL web Vulnerability. For this study we have marked
SSL as NA. It’s found total 27 vulnerabilities in case of XSS is
7, in case of SQL Injection is 6, in case of CSRF is 3, in case of
LFI/RFI is 1, in case of CJ is 6 and in case of directory

discloser is 4. In the same way Scanner 2 and 3 found different
result display with total 17 and 9 vulnerabilities. WUM scanner
found better result as compared to others scanner with total 38
vulnerabilities. Its founds result in case of XSS is 9,in case of
SQL Injection is 5, in case of CSRF is 4, in case of LFI/RFI is
2, in case of CJ is 7, in case of SSL is 8, and in case of
directory discloser is 3. This study presents interesting result to
detect web vulnerabilities with respect to exiting result.

Table II define Resampling of scanner vulnerabilities
comparison and contains the means values of vulnerabilities
and accuracy percentile over sample data. As compared to
others WUM scanner generated a mean value of 0.54 which is
more precise then other scanners. These results are driven from
mean values and it is clearly obvious that WUM scanner has a
competitive advantage over the rest of tools.

TABLE I. SCANNER VULNERABILITIES COMPARISON

Scanners XSS SQLi CSRF LFI/RFI CJ SSL DD Total

Scanner 1 7 6 3 1 6 NA 4 27

Scanner 2 5 4 6 2 NA NA NA 17

Scanner 3 6 3 NA NA NA NA NA 9

WUM 9 5 4 2 7 8 3 38

TABLE II. RESAMPLING OF SCANNER VULNERABILITIES COMPARISON AND ACCURACY PERCENTILE

TOOL XSS SQLi CSRF LFI/RFI CJ SSL DD Mean %

S1 0.70 0.60 0.30 0.10 0.60 NA 0.40 0.45 45%

S2 0.50 0.40 0.60 0.20 NA NA NA 0.425 42%

S3 0.60 0.30 NA NA NA NA NA 0.45 45%

WUM 0.90 0.50 0.40 0.20 0.70 0.80 0.30 0.5428 54%

The above result presented clearly shows that WUM
scanners have 54% accuracy ratio and Scanner 1, Scanner 2
Scanner 3 have 42%, 45% and 45% accuracy ratio
respectively. Our scanner is more precise and has increased
accuracy result by 9% with comparison to scanner 1, in case of
Scanner 2 increased accuracy result by 12%, in case of
Scanner 3 increased accuracy result by 9%. This comparison of
different scanner with WUM is also presented in Fig. 11.

Fig. 11. Scanner vulnerabilities comparison.

VI. CONCLUSION

In this study, we tried to enlighten the most common
vulnerabilities of websites, such as Cross-Site Scripting, SQL
Injection, Cross site request forgery CSRF, LFI/RFI, CI, SSL,
DD. Additionally, we have developed a new scanning tool i.e.
Website Unique Method (WUM) to detect these
vulnerabilities. To provide factual results, the experimental
work is carried out on proposed vulnerability scanning tool
along with other well-known scanners is tested on 10 malicious
websites to demonstrate the viability and the effectiveness of
the proposed solution. The experiments include the evaluation
of detection rate of vulnerability scanning system for XSS,
SQLi, CSRF, LFI/RFI, CI, SSL, DD and the assessment of the
effectiveness of our proposed methodology. The experimental
results show that the proposed approach effectively detects
most of the vulnerabilities. Moreover, the proposed approach
allows a website developer’s to recognize and assess
vulnerabilities prior to publish their websites on web.

Future research will be based on the development of an
upgraded version of WUM scanner to prevent and detect more
web attacks, parameters and payloads to test random attacks by
using all permutation and combinations. We are planning to
implement machine learning on these set to identify more
efficient result. We are also setting up a WUM website for
users to scan website and download scanner.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

417 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] Deepa, G., and P. Santhi Thilagam. ”Securing web applications from
injection and logic vulnerabilities: Approaches and challenges.” Infor-
mation and Software Technology 74 (2016): pp. 160-180.

[2] Kaur, Daljit, and Parminder Kaur. ”Empirical analysis of web attacks.”
Procedia Computer Science 78 (2016): pp. 298-306.

[3] Gupta, Mukesh Kumar, Mahesh Chandra Govil, and Girdhari Singh.
”Predicting Cross-Site Scripting (XSS) security vulnerabilities in web
applications.” In Computer Science and Software Engineering (JCSSE),
2015 12th International Joint Conference on, pp. 162-167. IEEE, 2015.

[4] Awoleye, Olusesan M., Blessing Ojuloge, and Mathew O. Ilori. ”Web
application vulnerability assessment and policy direction towards a
secure smart government.” Government Information Quarterly 31
(2014): pp.S118- S125.

[5] OWASP: Available at http://www.owasp.org/index.php/Category:
OWASP Top Ten Project, 2017. Retrieved 24/09/2017.

[6] Bozic, Josip, and Franz Wotawa. ”PURITY: a Planning-based
secURITY testing tool.” In Software Quality, Reliability and Security-
Companion (QRS-C), 2015 IEEE International Conference on, pp. 46-
55. IEEE, 2015.

[7] Antunes, Nuno, and Marco Vieira. ”Benchmarking vulnerability de-
tection tools for web services.” In Web Services (ICWS), 2010 IEEE
International Conference on, pp. 203-210. IEEE, 2010.

[8] Livshits, Benjamin V., and Monica S. Lam.”Finding security errors in
java programs with static analysis (tech report).” (2005).

[9] Djuric, Zoran. ”A black-box testing tool for detecting SQL injection
vulnerabilities.” In Informatics and Applications (ICIA), 2013 Second
International Conference on, pp. 216-221. IEEE, 2013.

[10] Liban, Abdilahi, and Shadi MS Hilles. ”Enhancing Mysql Injector
vulnerability checker tool (Mysql Injector) using inference binary search
algorithm for blind timing-based attack.” In Control and System
Graduate Research Colloquium (ICSGRC), 2014 IEEE 5th, pp. 47-52.
IEEE, 2014.

[11] Kals, Stefan, Engin Kirda, Christopher Kruegel, and Nenad Jovanovic.
”Secubat: a web vulnerability scanner.” In Proceedings of the 15th
international conference on World Wide Web, pp. 247-256. ACM, 2006.

[12] Doupe,´ Adam, Ludovico Cavedon, Christopher Kruegel, and Giovanni
Vigna. ”Enemy of the State: A State-Aware Black-Box Web
Vulnerability Scanner.” In USENIX Security Symposium, vol. 14. 2012.

[13] Halfond, William GJ, and Alessandro Orso. ”AMNESIA: analysis and
monitoring for NEutralizing SQL-injection attacks.” In Proceedings of
the 20th IEEE/ACM international Conference on Automated software
engineering, pp. 174-183. ACM, 2005.

[14] Huang, Yao-Wen, Shih-Kun Huang, Tsung-Po Lin, and Chung-Hung
Tsai. ”Web application security assessment by fault injection and behav-
ior monitoring.” In Proceedings of the 12th international conference on
World Wide Web, pp. 148-159. ACM, 2003.

[15] OWSAP Open Web Security Project Available at https:
//www.owasp.org/index.php/Category:VulnerabilitLScanning Tools,
Retrieved 24/09/2017.

[16] Zhang, Xin-hua, and Zhi-jian Wang. ”Notice of retraction a static
analysis tool for detecting web application injection vulnerabilities for
asp program.” In e-Business and Information System Security (EBISS),
2010 2nd International Conference on, pp. 1-5. IEEE, 2010.

[17] Zhang, Lijiu, Qing Gu, Shushen Peng, Xiang Chen, Haigang Zhao, and
Daoxu Chen. ”D-WAV: A web application vulnerabilities detection tool
using Characteristics of Web Forms.” In Software Engineering
Advances (ICSEA), 2010 Fifth International Conference on, pp. 501-
507. IEEE, 2010.

[18] Fonseca, Jose, Nuno Seixas, Marco Vieira, and Henrique Madeira.
”Analysis of field data on web security vulnerabilities.” IEEE
transactions on dependable and secure computing 11, no. 2 (2014): 89-
100.

[19] Jovanovic, Nenad, Christopher Kruegel, and Engin Kirda. ”Pixy: A
static analysis tool for detecting web application vulnerabilities.” In
Security and Privacy, 2006 IEEE Symposium on, pp. 6-pp. IEEE, 2006.

[20] Singh, Nanhay, Mohit Dayal, R. S. Raw, and Suresh Kumar. ”SQL
injection: Types, methodology, attack queries and prevention.” In Com-
puting for Sustainable Global Development (INDIACom), 2016 3rd
International Conference on, pp. 2872-2876. IEEE, 2016.

[21] Wang, Ran, Guangquan Xu, Xianjiao Zeng, Xiaohong Li, and Zhiyong
Feng. ”TT-XSS: A novel taint tracking based dynamic detection frame-
work for DOM Cross-Site Scripting.” Journal of Parallel and Distributed
Computing (2017).

[22] Shar, Lwin Khin, and Hee Beng Kuan Tan. ”Defending against cross-
site scripting attacks.” Computer 45, no. 3 (2012): 55-62.

[23] Hydara, Isatou, Abu Bakar Md Sultan, Hazura Zulzalil, and Novia
Admodisastro. ”Current state of research on cross-site scripting (XSS)–
A systematic literature review.” Information and Software Technology
58 (2015): 170-186.

[24] Gupta, Shashank, and B. B. Gupta. ”Enhanced XSS Defensive Frame-
work for Web Applications Deployed in the Virtual Machines of Cloud
Computing Environment.” Procedia Technology 24 (2016): 1595-1602.

[25] Shahriar, Hossain, and Mohammad Zulkernine. ”Client-side detection of
cross-site request forgery attacks.” In Software Reliability Engineering
(ISSRE), 2010 IEEE 21st International Symposium on, pp. 358-367.
IEEE, 2010.

[26] Vieira, Marco, Nuno Antunes, and Henrique Madeira. ”Using web
security scanners to detect vulnerabilities in web services.” In
Dependable Systems Networks, 2009. DSN’09. IEEE/IFIP International
Conference on, pp. 566-571. IEEE, 2009.

[27] David Cruwys. C Sharp/VB - Automated WebSpider/ WebRobot Avail-
able at: https://www.codeproject.com/Articles/6438/ C-VB-Automated-
WebSpider-WebRot, Retrieved 24/09/2017.

[28] Iqbal, Muhammad, Malik Muneeb Abid, Usman Waheed, and Syed
Hasnain Alam Kazmi. ”Classification of Malicious Web Pages through a
J48 Decision Tree, aNa¨ıve Bayes, a RBF Network and a Random
Forest Classifier for WebSpam Detection.” JUSTNESS vol. 10, No. 4,
pp. 51-72, April 2017

