
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 12, 2017

SAFFRON: A Semi-Automated Framework for
Software Requirements Prioritization

Syed Ali Asif∗, Zarif Masud∗, Rubaida Easmin†, Alim Ul Gias∗
∗Institute of Information Technology, University of Dhaka

†Department of Software Engineering, Daffodil International University
Dhaka, Bangladesh

Abstract—Due to dynamic nature of current software develop-
ment methods, changes in requirements are embraced and given
proper consideration. However, this triggers the rank reversal
problem which involves re-prioritizing requirements based on
stakeholders’ feedback. It incurs significant cost because of time
elapsed in large number of human interactions. To solve this
issue, a Semi-Automated Framework for soFtware Requirements
priOritizatioN (SAFFRON) is presented in this paper. For a
particular requirement, SAFFRON predicts appropriate stake-
holders’ ratings to reduce human interactions. Initially, item-item
collaborative filtering is utilized to estimate similarity between
new and previously elicited requirements. Using this similarity,
stakeholders who are most likely to rate requirements are
determined. Afterwards, collaborative filtering based on latent
factor model is used to predict ratings of those stakeholders.
The proposed approach is implemented and tested on RALIC
dataset. The results illustrate consistent correlation, similar to
state of the art approaches, with the ground truth. In addition,
SAFFRON requires 13.5-27% less human interaction for re-
prioritizing requirements.

Keywords—Requirement prioritization; rank reversal problem;
model-based collaborative filtering

I. INTRODUCTION

In software development, projects have more candidate
requirements than can be implemented within budget and time
constraints. Requirements Prioritization (RP) [1] is essential to
select which requirements need to be implemented before the
others. RP forms the basis for product and market planning and
thus plays a critical role in determining budget and expenses
of the project [2]. RP can be incorporated later in these
decision processes but it will exceedingly increase the project
cost [3]. It is thus cost-effective to have a prioritized list of
requirements early on that is accurate and best serves different
stakeholders’ needs [4]. This can save cost, decrease time for
product development by ensuring proper plan and also help in
finding requirement defects.

Requirements Prioritization has, however, been proven to
be extremely challenging and one of the biggest issues is
scalability. In large scale projects, the number of stakeholders
is vast. These stakeholders are split in divisions and organi-
zations. Each of them can have different needs which may
create conflict in deciding which requirements need to be
prioritized [4], [5]. Besides, there are various complexities such
as inadequate budget, unskilled programmers, lack of resources
and time. These complexities increase the need for human
interaction that becomes infeasible when stakeholder size is

too large. One major challenge that arises from the scalability
issues is the rank reversal problem [6].

Rank reversal means updating the ranking of the prioritized
requirements when a new requirement is added or deleted or
an old requirement is changed. As software development is an
iterative process, requirements are identified during different
phases such as designing, analysis or problem solving. Re-
quirements can also change through client feedback. Thus the
rank reversal problem is inevitable. It is particularly challeng-
ing for large scale projects with large number of stakeholders
since such projects would have more volatile requirements that
are subject to change. It is essential to take such changes into
consideration when prioritizing requirements [6]–[8].

Due to the necessity and benefits of RP, it has long been
an active area of research. Researchers discussed about several
stakeholder prioritization concepts for requirements priori-
tization: exploring collaboration [9], risks of stakeholders’
being negatively effected by project outcome [10], pairwise
comparison [11], etc. The authors in [12] used House of
Quality (HoQ) framework [13] for comparative analysis of
17 requirements prioritization frameworks but none of these
frameworks addressed the rank reversal problem. The authors
in [7] used k-means algorithm to solve rank reversal in require-
ments prioritization but failed to account for the stakeholder
prioritization. Authors in [5], [14], [15] one-by-one addressed
problems like prioritizing stakeholders, identifying appropriate
requirements and methods of prioritization however, they did
not considered rank reversal problem.

In this paper we propose a Semi-Automated Framework for
soFtware Requirements priOritizatioN (SAFFRON) that ad-
dresses the rank reversal problem in requirement prioritization.
Our proposed approach uses collaborative filtering techniques
to resolve the rank reversal issues and decrease number of
interactions with stakeholders. To the best of our knowledge,
there exists no approach that has considered predictive models
such as collaborative filtering to address the rank reversal issue.
SAFFRON applies item based collaborative filtering (based
on Pearson Correlation Coefficient) to determine similarities
among new and already existing requirements. These similar-
ities are later used to determine users who are highly likely to
rate the new requirements. Model based collaborative filtering,
which uses latent factor models [16] and gradient descent
[17], is then used for predicting ratings of the suggested
stakeholders.

We implemented our proposed framework and compared

www.ijacsa.thesai.org 491 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 12, 2017

the results against Ground truth and StakeRare [15] approach.
It has been shown that proposed approach reduces human inter-
action by 13.5-27% by maintaining strong ranking correlation
with Ground Truth. The approach thus solves the rank reversal
problem of requirements prioritization. Moreover, by reducing
the human interactions, the approach is proven to be more
scalable than StakeRare while yielding similar correlation with
the ground truth.

Rest of the paper is organized as follows. Section II
covers related work on RP domain. Section III contains the
proposed methodology. Section IV explained the experimental
settings and Section V discusses the results obtained from the
experiment. The paper is concluded in Section VI with future
research directions.

II. RELATED WORK

Requirements prioritization is given importance by re-
searchers since it helps in planning software releases in the
scenario where all the requirements cannot be implemented in
first release due to insufficient time and budget [8]. Prioritiza-
tion also enhances software testing by reducing the probability
of generating ineffective test cases based on imprecise re-
quirements. Researchers have focused on some necessary tasks
for requirement prioritization - determining and classifying
requirements, prioritizing stakeholders and selecting proper
frameworks [15], [18]–[20].

Authors in [9] studied the impact of distance in collabo-
ration within social networks of stakeholders. The authors in
[10] recommended to consider risks of negatively effecting
the stakeholders’ during the prioritization process. Pairwise
comparison and numeral assignment based strategies were
used in [11] to prioritize requirements of the project. Mitchell
et al. [21] proposed a searching method for identification
of stakeholders and their links. Authors in [22] automated
stakeholder analysis by using crowd-sourcing approaches and
prioritized stakeholders using Betweenness Centrality, Close-
ness Centrality and Page Rank Algorithm.

In [23], the authors presented quantitative framework for
prioritizing nonfunctional requirements by using scenario-
based approach. However, this approach fail to incorporate new
requirements or change of existing ones and the evaluation
suffered from validation issues. The research stated at [19]
introduced a multi-criteria decision making system- ‘Require-
ments Prioritizer’ to prioritize requirements from any location.
The system, while scalable and addressed the rank reversal
issues persistent in techniques [24] such as AHP, bubble sort,
case base rank, etc. had one major shortcoming. The approach
did not prioritize or categorize stakeholders based on different
requirement knowledge.

The authors in [20] used Fuzzy multi-criteria decision-
making (FMCDM) method to effectively deal with the in-
herent imprecision, vagueness and ambiguity associated with
human decision making process in RP. Questionnaires to
collect relative ranks from stakeholders were used to prioritize
requirements. This approach did not prioritize stakeholders and
also failed to take dependencies in requirements into account.
Moreover, there could be assessment bias in the results of this
approach.

In [7], the authors supported stakeholder prioritization by
ranking requirements based on the weight of their attributes
provided by the relevant stakeholders. All the requirements
must be mutually independent. This proposed approach deals
with rank reversal and dependency issues. But the method of
collecting requirement weight did not consider budget and time
constraints.

K-means algorithm is used in [8] to resolve rank reversal
problem of large scale software prioritization. Multiple cri-
teria are used to form clusters. The clusters were prioritized
based on weights. However, the approach did not prioritizes
stakeholders, used ambiguous methods to gain weights of
requirements and did not handle dependencies in requirement
prioritization.

Lim et al. [5] prioritized stakeholders using ‘StakeNet’-
a social networking tool. This tool obtained recommendation
of stakeholders from each stakeholder in the system through
interviews. They extended this work to ‘StakeSource2.0’ [14],
which prioritizes requirements and stakeholders by means of
social networking and collaborative filtering. Their work also
highlighted stakeholders conflict and proposed recommending
requirements to applicable stakeholders. However, rank rever-
sal was not considered in either of these approaches.

The authors of [14] also proposed ‘StakeRare’ [15] which
used social networks and collaborative filtering for large scale
requirements. The paper addressed three problems for large
scale projects: information overload, inadequate stakeholder
input, and biased prioritization of requirements. The authors
collected stakeholder list by eliciting requirements and deriving
influence of stakeholders using interviews and the importance
of each requirement was determined. From that, requirements
were analyzed and a list of prioritized requirements were
generated. Although the method performed well compared to
other existing methods, it did not cover rank reversal problem.

Review of state of the art framework for requirements
prioritization illustrates that issues regarding rank reversal are
not fully addressed in most of the approaches. Moreover,
the approaches considering rank reversal suffers from several
problems such as lack of stakeholder prioritization and com-
putational complexity. In our knowledge, current approaches
did not emphasize on reducing human interactions necessary
for prioritizing new requirements. Depending solely on the
feedback from stakeholders for prioritization, will increase
time and cost needed for the process and introduce scalability
issues.

III. SAFFRON FRAMEWORK

This paper proposes a framework named SAFFRON which
reduces human interaction while updating the ranks of the
prioritized list after incorporating new requirements to already
elicited and ranked requirements. By reducing the human in-
teractions, it makes itself more suitable for large scale projects.
SAFFRON consists of eight steps: initial collection of stake-
holder’s ratings, calculating project influence of stakeholders
based on their roles and individual influences, computing
importance of each stakeholders for every requirements from
ratings and project influence, prioritizing requirements based
on the total importance, for new requirements collecting ratings
from a subset of stakeholders, merging both rating matrices

www.ijacsa.thesai.org 492 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 12, 2017

Fig. 1. Overview of SAFFRON framework.

of previous requirements and new requirements and deriving
user-requirement relation matrix from merged rating matrix,
determining users for whom to predict ratings, predict ratings
using collaborative filtering. Lastly, new rating matrix with
predicted ratings will be used as an input for step 3 and updated
prioritized requirements list will be obtained. The first four
steps of the framework are proposed by the authors in [15].
An overview of the whole framework is sketched in Fig. 1.

The architecture can be divided into two separate parts.
One part is concerned with prioritizing elicited requirements
and the other part intends to solve rank reversal problem caused
by new requirements. Prioritizing elicited requirements follows
these steps:

• At first the requirements relevant to the project and
its ratings will be elicited from the stakeholders using
human interaction.

• Then the approach described in StakeRare [15] will
be applied. The stakeholders will be prioritized using
the ratings provided by other stakeholders.

• After that each stakeholders’ influence on the project
will be calculated.

• After all these computations, the requirements will be
prioritized using the ratings provided by the stakehold-
ers and project influences calculated from role and
stakeholder influence.

To solve the classic rank reversal problem, the following steps
using prediction techniques are used. These steps are stated as

follows:

• When new requirements arrive, ratings given by a por-
tion of stakeholders are elicited for each requirement.

• Item-to-Item collaborative filtering is then used to find
similarity among already elicited requirements and
the new requirements. Although collaborative filtering
technique was used in [15], they used it to find similar
stakeholders instead of requirements. However, in this
scenario it is more reasonable to find similar require-
ments first and then determine which stakeholders are
more likely to rate those. Thus item-to-item technique
was used.

• Model Based Collaborative Filtering using latent fac-
tors - learning parameter of users and feature vector of
requirements are finally used for actual prediction of
the values for the determined users from the previous
step. This step also uses merged rating matrix and
corresponding user-requirement relation matrix.

• Finally, StakeRare [15] is applied to the updated
requirements list and new prioritized requirements list
is attained from the approach.

A portion of the ratings are predicted rather than collecting
all the ratings from stakeholders. Collecting all ratings from
stakeholders for new requirements is time consuming and has
scalability issues. Also large scale project developing process
continues for several years. So it is natural for the stakeholders
to provide appropriate rating after few years have passed on

www.ijacsa.thesai.org 493 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 12, 2017

Fig. 2. Merging rating matrices when a new requirement is added in the
project.

that project. Applying predicted ratings of new requirements
eliminates these two problems. Lastly, the predicted ratings are
used for prioritizing those newly arrived requirements.

A. StakeRare

The first four steps of the framework follows the StakeRare
approach proposed in [15]. StakeRare at first prioritizes the
stakeholders using social networks. Then it uses collaborative
filtering to recommend requirements to relevant users. Then
the requirements are prioritized based on importance of the
role of the stakeholders on the project, importance of that
stakeholder in that particular role and his/her actual rating
given on the requirement [5]. Finally the importance derived
from project influence and rating which substitutes the actual
rating of any user to any given requirement will be calculated
and prioritization of the requirements will be made based on
that. These steps can be completed by using (1) to (4).

Influencerole(i) =
RRmax+ 1− rank(role(i))∑n

j=1
(RRmax+ 1− rank(role(j)))

(1)

Influencei =
RSmax+ 1− rank(i)∑n

k=1
(RSmax+ 1− rank(k))

(2)

ProjectInfluencei = Influencerole(i) ∗ Influencei (3)

Importancei =

n∑
i=1

(ProjectInfluencei ∗ ri) (4)

Equation (1) is used for prioritizing role. Here, RRmax is the
maximum rank of the roles, rank(role(i)) is the rank of that
role. Then Equation (2) is used for calculating the influence
of stakeholder in that role. Here, RSmax is the maximum rank
of stakeholders in that role and rank(i) is the rank of that
stakeholder. The influence of that stakeholder in that project
is calculated using (3) which multiplies the stakeholder’s
influence in that role and influence of that role in the project.
Then the importance of that requirement is calculated using
summing all the ratings provided by the stakeholders in (4).

B. Stakeholder Rating Collection for New Requirements

As the framework adopts a semi-automated approach,
manual collection of ratings from a portion of stakeholders
needs to be done. Since ratings are collected from a subset of
stakeholders for a newly arrived requirement, this framework

decreases the number of human interactions necessary for
updating prioritized requirements list. This approach will make
the whole process more scalable for large scale requirements.
After collecting the ratings derivation of user requirement
relation matrix is generated for the new requirements. Ratings
are collected from stakeholders of different roles. Initially
ratings are collected from on an average M no. of stake-
holders and this is decided based on extensive analysis. For
new requirements on an average K ratings (K < M) are
collected from stakeholders. This ensures that no. of human
interactions required for new requirements are always less than
no. of human interactions necessary for previously elicited
requirements. This step can quantify the reduction of human
collaboration in requirements prioritization.

C. Merging Respective Matrices

Merging respective matrices is concerned with: merging
of previous rating matrix and new rating matrix, merging of
previous user-requirement relation matrix and user-requirement
relation matrix for new requirements. User-requirement rela-
tion matrix is used in the next step to determine the probability
of stakeholders to provide rating to lately considered require-
ments. Merged matrix is used to conduct actual prediction of
the ratings. Fig. 2 illustrates the merging process.

User-requirement relation matrix consists of binary values:
1 and 0. If user-requirement relation matrix(i,j) = 1, it denotes
that for i-th requirement specified j-th stakeholder has provided
a rating and If user-requirement relation matrix(i,j) = 0, it
denotes that for i-th requirement specified j-th stakeholder has
not provided any rating. This matrix aids to find the pattern
of stakeholders giving ratings to particular requirements. A
sample of an user-requirement relation matrix is presented in
Table I.

TABLE I. A SAMPLE USER-REQUIREMENT RELATION MATRIX

Users
a.3.1. combine ID

card and
session card

a.3.2. combine
library card

d.5.1. view and modify
access rights, time

of access, online, without
card being present

Aaron Toms 1 1 1
Adrian Bank 1 0 1
Alison Crane 1 0 ?
Andy Hicks 1 1 ?

Andrew Dawn 0 0 1

D. Determining Users for Prediction

Ratings of which users are to be predicted has to be
determined first to implement actual prediction. To determine,
similarity among new and previously elicited requirements can
be used. Item to item collaborative filtering can be used for
finding similarities among requirements. This approach pre-
dicts probability of users to give ratings to new requirements
based on this similarities. It learns if any specified user tends
to rate the new requirement based on his/her rating on similar
previous requirements. This approach can be divided into two
steps. The steps are stated as following:

1) Correlation computation: For item based collaborative
filtering to work, similarity among items has to be figured.
In this case, requirements are the items and similarity among
these requirements are estimated using correlation analysis.
There are three correlation techniques which were considered

www.ijacsa.thesai.org 494 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 12, 2017

for finding correlation among requirements. The techniques -
Pearson Coefficient Correlation, Cosine Similarity and Jaccard
Distance.

All of these techniques are implemented on the user-
requirement relation matrix(p,q) to detect similarities among re-
quirements. Best results are produced by cosine similarity and
Pearson coefficient correlation as both of these approaches are
invariant to scaling. This means similarities among elements
are invariant even if all elements are multiplied by a nonzero
constant. However, cosine similarity is not invariant when any
constant is added to all elements. But Pearson correlation
is also invariant to adding any constant to all elements. For
example, if there are two vectors X1 and X2, and Pearson
correlation function is called pearson(), pearson(X1, X2) ==
pearson(X1, 2 * X2 + 3). This property is really important
as we are looking for similarity patterns among items. The
items do not need to be exactly identical to be affirmed similar
by our approach. Hence, Pearson Coefficient Correlation is
used to determine similarity among items and used to predict
ratings of the stakeholders. The equation of Pearson Coefficient
Correlation is stated in (5).

sim(i, j) =

∑
u∈U

(R(u,i) − R̄i)(R(u,j) − R̄j)√∑
u∈U

(R(u,i) − R̄i)2)
√∑

u∈U
(R(u,j) − R̄j)2)

(5)

To ensure accuracy of the correlation computation, we must
first isolate the co-rated cases (i.e., cases where the users rated
both i and j items). Let the set of users who both rated i and
j are denoted by U then the correlation similarity is given by
Here Ru,i denotes the rating of user u on item i, Ri is the
average rating of the i-th item. Hereafter, using this similarity
function an Requirement-to-Requirement similarity matrix, as
presented in Table II, will be generated.

TABLE II. A SAMPLE REQUIREMENT-TO-REQUIREMENT SIMILARITY
MATRIX

Requirement 1 Requirement 2 Requirement 3
Requirement 1 1 0.76 0.78
Requirement 2 0.76 1 0.86
Requirement 3 0.78 0.86 1

2) Stakeholder selection: Using the similarity matrix ob-
tained from the previous step, stakeholders likely to rate a
requirement can be predicted based on the commonly used
(6).

P(u,i) =

∑
allsimilaritems,N

(Si,N ∗Ru,N)∑
allsimilaritems,N

|Si,N |
(6)

By using weighted sum we can predict the value for any
user-item pair. First we take all the items similar to our target
item, and from those similar items, we pick items which the
active user has rated which is denoted by Si,N . The actual
rating given by the user U is denoted as Ru,N in the equation.
We weight the user’s rating for each of these items by the
similarity between that and the target item. Finally, we scale
the prediction by the sum of similarities to get a reasonable
value for the predicted rating. For user u and item i Predicted
rating is denoted as Pu,i. These predicted values are used for
calculating actual predicted rating by the users. These values
can be used to suggest requirements to a user.

E. Prediction of Ratings

For predicting the value of a rating from a particular user,
Model based collaborative filtering is used. The benefit of
such technique is that it considers latent factors [16]. These
factors are not explicitly stated rather than inferred based on
the statistical analysis of any specified scenario. There are two
latent factors are related to prediction in the scenario illustrated
in the paper. For each user, we have to calculate the learning
parameter (θ) and each requirement is associated with a feature
vector (x). For each of the stakeholders learning parameters
and for each of the requirements feature vector is initialized
to small random values primarily. A cost function [25] J using
those two factors is minimized to obtain actual learning param-
eters and feature vectors. Minimization of those parameters
are completed using gradient descent [17] technique. Finally,
the predictions of ratings are made by using multiplication of
transpose matrix of learning parameter and the matrix derived
from feature vector. The methodology is presented below:

• For each user j we have to learn the parameter θ(j) ∈
R(n+1) where n= number of features for predicting
the ratings of new requirements. It denotes that θ(j) is
a vector which has n+1 dimensions. Given the feature
vector x(i) for ith requirement using linear regression
modeling we can formulize the problem of deducing
parameter vector.

• For every requirement i we have to learn the feature
vector x(i) ∈ R(n+1) where n = number of features for
predicting the ratings of new requirements. It denotes
that x(i) is a vector which has n+1 dimensions. Given
the parameter vector θ(j) and actual rating y(i,j) for
jth stakeholder we can formulize the problem of infer-
ring feature vector using linear regression modeling.

• It should be noted that, parameter vector θ and feature
vector x both should be initialized to small random
values for initial computation. Then the cost function
J is used to estimate and adjust the values of θ and x
simultaneously to fulfill the objective of minimization.
Henceforth, parameter vector θ and feature vector x is
derived for each of the requirements and stakeholders.
Based on these, the prediction value can be calculated
by (7). It means that for ith requirement and jth user
the predicted value is θ(j) transposes x(i).

(θ(j))T x(i) (7)

IV. EXPERIMENTAL SETUP

SAFFRON uses StakeRare [15] for prioritizing require-
ments and stakeholders. Thus, a prototype of StakeRare was
implemented using JAVA. To implement the framework real
life datasets was required. In addition, for evaluating the
efficiency and effectiveness of the framework, right research
questions need to be set. A brief discussion about these
procedures are presented in the following sub-sections.

A. RALIC Dataset

The RALIC [15] project was used for implementation and
experimentation of the proposed approach. The full form of
RALIC is Replacement Access, Library and ID Card project.

www.ijacsa.thesai.org 495 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 12, 2017

Fig. 3. Ranking correlation with ground truth for Top 25%, 50%, 75% and 100% predicted rating for varying no. of requirements.

Fig. 4. Ranking correlation with ground truth for Top 25%, 50%, 75% and 100% predictions for varying no. of users.

It was a software project which was developed to main-
tain the access control system at University College London
(UCL). The main reason for selecting this project was that
it is complete and reliable. Besides another criterion was its
scale. RALIC project had a complex stakeholder base, where

there are more than 60 groups and 30,000 system users.
These stakeholders have different and sometimes conflicting
requirements.The dataset has more than 3,000 ratings from the
stakeholders. For our experimentation, 82 requirements and 62
stakeholders are selected from RALIC dataset. As only one

www.ijacsa.thesai.org 496 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 12, 2017

(a) Ranking correlation when no. of training requirements are changing. (b) Ranking correlation when no. of users are changing.

Fig. 5. Boxplots of ranking correlation of SAFFRON with ground truth.

TABLE III. PERFORMANCE EVALUATION OF SAFFRON IN TERMS OF RANKING CORRELATION AND REDUCED HUMAN INTERACTION

Experimental Setting No. of New
Requirement

StakeRare SAFFRON

Correlation No. of Users
Communicated Correlation No. of Users

Communicated
% of reduced human

interaction
Req.=40, User=35 10 0.923699314 48 0.923140505 35 27%
Req.=50, User=40 15 0.815667899 51 0.815205913 40 21.6%
Req.=50, User=45 20 0.76699411 54 0.767627872 45 16.7%
Req.=55, User=45 25 0.675217954 52 0.675609783 45 13.5%
Req.=50, User=45 30 0.675217954 54 0.67317174 45 16.7%

complete and reliable dataset is used, repeated random sub-
sampling is implemented in order to eliminate skewed behavior
of the dataset. Repeated iterations are applied 30 times for each
experimentation setting.

B. Research Questions

The main goal of SAFFRON is to predict ratings of stake-
holders for requirements. To fulfill this, goal experimentation
has been performed on various experimental setting. Finding
best experimentation setting depends on following research
questions:

• RQ1: How many previously elicited and rated require-
ments are sufficient to predict missing values?

• RQ2: Ratings of how many stakeholders on an aver-
age for requirements are enough to predict the rating
for missing values of new requirements?

• RQ3: What percentage of missing values should be
predicted to ensure consistency of prioritization pro-
cess?

Besides, to measure the performance of the framework and
ensure its effectiveness following research questions must be
addressed:

• RQ4: What is the correlation of SAFFRON to ground
truth comparing to state of the art approach - StakeR-
are?

• RQ5: What percentage of human interactions could
be reduced by SAFFRON?

Addressing these research questions will assist to accom-
plish the effectiveness of this software requirements prioritiza-
tion framework in solving rank reversal problem and limiting
human interaction.

V. RESULT ANALYSIS

The proposed framework was implemented by differing
no. of previously elicited requirements, no. of stakeholders
provided ratings on new requirements and percentage of top-N
predicted values. Experimental settings of various combination
of above mentioned parameters were tested. Spearman’s rank-
ing correlation was used to measure the ranking correlation
among Ground Truth, StakeRare and SAFFRON.

To address RQ1, no. of previously elicited requirements
were changed whereas no. of users collaborated manually
for new requirements remained fixed (user = 40). Then the
correlation is calculated. From Fig. 3 it could be seen that
if 46-58 requirements were elicited in initial stage from 82
requirements, better ranking correlation to the ground truth is
exhibited for new requirements. The ranking correlation then
usually goes down with the increase of training requirements.
This is understandable as overfitting may occur due to using
too many requirements.

RQ2 is concerned with no. of users giving rating to new
requirements to accurately predict ratings for other users. So
in our experiment, we kept the training requirements fixed (50)
and varied the no. of users. From Fig. 4 it is seen that if ratings
from 38-45 stakeholders are collected for new requirements
among 62 stakeholders then enhanced ranking correlation is
achieved after prediction. The correlation gradually decreases,

www.ijacsa.thesai.org 497 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 12, 2017

TABLE IV. RMSE FOR CHANGING NO. OF REQUIREMENTS (USERS FIXED = 40)

Experimental
Setting

RMSE for
25% Prediction

RMSE for
50% Prediction

RMSE for
75% Prediction

RMSE for
100% Prediction

Requirement (Train) = 50
User (Manual Rating) = 40 0.000939000 0.001882290 0.002364495 0.003137046

Requirement (Train) = 55
User (Manual Rating) = 40 0.000863000 0.001661692 0.002521551 0.002894824

Requirement (Train) = 60
User (Manual Rating) = 40 0.000809000 0.001336428 0.001833125 0.002372170

TABLE V. RMSE FOR CHANGING NO. OF USERS (REQUIREMENTS FIXED = 50)

Experimental
Setting

RMSE for
25% Prediction

RMSE for
50% Prediction

RMSE for
75% Prediction

RMSE for
100% Prediction

Requirement (Train) = 50
User (Manual Rating) = 40 0.000939000 0.001882290 0.002364495 0.003137046

Requirement (Train) = 50
User (Manual Rating) = 45 0.000893000 0.001382774 0.002100870 0.002904053

Requirement (Train) = 50
User (Manual Rating) = 50 0.000687000 0.000999000 0.001428481 0.002181204

if the no. of stakeholders giving rating to new requirements
goes above 45.

Too much prediction can make a system perform incon-
sistently. So it is important to know what percentage of
values should be predicted, which is the concern of RQ3.
Fig. 5 illustrates that higher predictions can sometime result
in high ranking correlation. However, the variance of ranking
correlation is also high in that case. So, a better performance
is always not guaranteed. On the other hand, lower predictions
have low ranking correlation on average. However, its variance
is much lower, making it more consistent.

Based on the observations from RQ1-RQ3, we evaluated
SAFFRON in different experimental settings. Here, we also
varied the number of new requirements that are added later in
the projects. This actually creates the rank reversal scenario.
For those requirements, we considered that certain no. of
ratings are given by the stakeholders. Rest of the ratings were
predicted by SAFFRON and then the ranking correlation was
computed. Results obtained from the experiment is presented
in Table III.

From Table III it is seen that SAFFRON and StakeRare
have almost similar ranking correlation with the Ground Truth.
This answers our RQ4 that SAFFRON is as effective as Stak-
eRare. It can be said that SAFFRON can also solve the rank
reversal problem. Another significant finding is that SAFFRON
reduces human interaction in all cases. Human interaction were
lessened from StakeRare approach by 27%, 21.6%, 16.7%,
13.5% and 16.7% respectively in the 5 experimental settings
presented in Table III. So in a nutshell 13.5-27% human
interaction is reduced, which also answers RQ5.

After prediction of ratings by SAFFRON, the missing
values of the selected part in the requirement-stakeholder
matrix is filled with calculated predicted ratings. We compared
the selected part of the updated matrix with the original ratings
of that fragment derived from Ground Truth. Deviation of
predicted ratings and original ratings was measured using
Root Mean Squared Error (RMSE). This actually provided the
rationale behind the performance of our approach.

A smaller RMSE indicates that predicted ratings are more
closer to the original ratings. Tables IV and V present RMSE
for various experimental settings. It can be seen that the RMSE
values are not significant which resulted in SAFFRON’s better

performance. It is also observed that for 25% prediction value,
the value of RMSE is lowest. This is another reason for which
lower number of predictions can be used.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a framework that addresses rank
reversal problem in software requirements prioritization and
reduces the no. of human interaction in the process. It used
item based collaborative filtering to find similarity among
previously rated requirements and newly arrived requirements.
By using those similarities among requirements, probability
of users to rate new requirements are computed. Ratings are
then predicted, for users having high probabilities, adopting
model based collaborative filtering. More precisely, regression
techniques utilizing gradient descent to minimize cost function
of latent factors is used for predicting ratings. Results suggests
that the framework reduces human interaction while updating
prioritized requirements list and also maintains consistent
ranking correlation with ground truth compared to state of the
art approaches.

One of the future challenges of the work is to cluster
requirements and stakeholders based on prior information.
Clustering can aid to find patterns from already elicited
stakeholder ratings. Prediction will be more accurate and
effective if the collaborative algorithm is applied on clustered
requirements and stakeholders. Therefore, there is a scope of
improvement by extending the framework by using clustering
techniques.

ACKNOWLEDGMENT

This research is funded by the fellowship program from
Information and Communications Technology (ICT) division
of Government of People’s Republic of Bangladesh. The award
no. is 56.00.0000.028.33.073.16-50.

REFERENCES

[1] F. Sher, D. N. Jawawi, R. Mohamad, and M. I. Babar, “Requirements
prioritization techniques and different aspects for prioritization a sys-
tematic literature review protocol,” in Proceedings of 8th Malaysian
Software Engineering Conference (MySEC). IEEE, 2014, pp. 31–36.

[2] A. Aurum and C. Wohlin, “The fundamental nature of requirements
engineering activities as a decision-making process,” Information and
Software Technology, vol. 45, no. 14, pp. 945–954, 2003.

www.ijacsa.thesai.org 498 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 12, 2017

[3] B. W. Boehm, “Software engineering economics,” IEEE Transactions
on Software Engineering, vol. SE-10, no. 1, pp. 4–21, 1984.

[4] B. Nuseibeh and S. Easterbrook, “Requirements engineering: a
roadmap,” in Proceedings of the Conference on the Future of Software
Engineering. ACM, 2000, pp. 35–46.

[5] S. L. Lim, “Social networks and collaborative filtering for large-scale
requirements elicitation,” Ph.D. dissertation, University of New South
Wales, 2011.

[6] N. Kukreja, S. S. Payyavula, B. Boehm, and S. Padmanabhuni, “Value-
based requirements prioritization: usage experiences,” Procedia Com-
puter Science, vol. 16, pp. 806–813, 2013.

[7] P. Achimugu, A. Selamat, and R. Ibrahim, “A preference weights model
for prioritizing software requirements,” in Proceedings of International
Conference on Computational Collective Intelligence. Springer, 2014,
pp. 30–39.

[8] P. Achimugu, A. Selamat, and R. Ibrahim, “A clustering based technique
for large scale prioritization during requirements elicitation,” in Recent
Advances on Soft Computing and Data Mining. Springer, 2014, pp.
623–632.

[9] D. Damian, S. Marczak, and I. Kwan, “Collaboration patterns and the
impact of distance on awareness in requirements-centred social net-
works,” in Proceedings of 15th International Requirements Engineering
Conference. IEEE, 2007, pp. 59–68.

[10] R. W. Woolridge, D. J. McManus, and J. E. Hale, “Stakeholder risk
assessment: An outcome-based approach,” IEEE software, vol. 24, no. 2,
2007.

[11] J. Karlsson, “Software requirements prioritizing,” in Proceedings of the
Second International Conference on Requirements Engineering. IEEE,
1996, pp. 110–116.

[12] N. Kukreja, B. Boehm, S. S. Payyavula, and S. Padmanabhuni, “Select-
ing an appropriate framework for value-based requirements prioritiza-
tion,” in Proceedings of 20th International Requirements Engineering
Conference (RE). IEEE, 2012, pp. 303–308.

[13] J. R. Hauser, D. Clausing et al., “The house of quality,” Harvard
Business Review, vol. 66, no. 3, pp. 63–73, 1988.

[14] S. L. Lim, D. Damian, and A. Finkelstein, “Stakesource2. 0: using social
networks of stakeholders to identify and prioritise requirements,” in
Proceedings of 33rd International Conference on Software Engineering
(ICSE). IEEE, 2011, pp. 1022–1024.

[15] S. L. Lim and A. Finkelstein, “Stakerare: using social networks and

collaborative filtering for large-scale requirements elicitation,” IEEE
Transactions on Software Engineering, vol. 38, no. 3, pp. 707–735,
2012.

[16] D. Agarwal and B.-C. Chen, “Regression-based latent factor models,”
in Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2009, pp. 19–28.

[17] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton,
and G. Hullender, “Learning to rank using gradient descent,” in Pro-
ceedings of the 22nd international conference on Machine learning.
ACM, 2005, pp. 89–96.

[18] S. L. Lim, D. Damian, F. Ishikawa, and A. Finkelstein, “Using web 2.0
for stakeholder analysis: Stakesource and its application in ten industrial
projects,” in Managing requirements knowledge. Springer, 2013, pp.
221–242.

[19] P. Achimugu, A. Selamat, and R. Ibrahim, “A web-based multi-criteria
decision making tool for software requirements prioritization,” in
Proceedings of International Conference on Computational Collective
Intelligence. Springer, 2014, pp. 444–453.

[20] P. Achimugu, A. Selamat, R. Ibrahim, and M. N. Mahrin, “An adaptive
fuzzy decision matrix model for software requirements prioritization,”
in Proceedings of Advanced Approaches to Intelligent Information and
Database Systems. Springer, 2014, pp. 129–138.

[21] R. K. Mitchell, B. R. Agle, and D. J. Wood, “Toward a theory of
stakeholder identification and salience: Defining the principle of who
and what really counts,” Academy of management review, vol. 22, no. 4,
pp. 853–886, 1997.

[22] S. L. Lim, D. Quercia, and A. Finkelstein, “Stakesource: harnessing the
power of crowdsourcing and social networks in stakeholder analysis,”
in Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 2. ACM, 2010, pp. 239–242.

[23] R. Thakurta, “A framework for prioritization of quality requirements
for inclusion in a software project,” Software Quality Journal, vol. 21,
no. 4, pp. 573–597, 2013.

[24] P. Berander and A. Andrews, “Requirements prioritization,” Engineer-
ing and managing software requirements, vol. 11, no. 1, pp. 79–101,
2005.

[25] L. Rosasco, E. De Vito, A. Caponnetto, M. Piana, and A. Verri, “Are
loss functions all the same?” Neural Computation, vol. 16, no. 5, pp.
1063–1076, 2004.

www.ijacsa.thesai.org 499 | P a g e

