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Abstract—Transcribing dysarthric speech into text is still a 

challenging problem for the state-of-the-art techniques or 

commercially available speech recognition systems. Improving 

the accuracy of dysarthric speech recognition, this paper adopts 

Deep Belief Neural Networks (DBNs) to model the distribution of 

dysarthric speech signal. A continuous dysarthric speech 

recognition system is produced, in which the DBNs are used to 

predict the posterior probabilities of the states in Hidden Markov 

Models (HMM) and the Weighted Finite State Transducers 

framework was utilized to build the speech decoder. 

Experimental results show that the proposed method provides 

better prediction of the probability distribution of the spectral 

representation of dysarthric speech that outperforms the existing 

methods, e.g., GMM-HMM based dysarthric speech recogniztion 

approaches. To the best of our knowledge, this work is the first 

time to build a continuous speech recognition system for 

dysarthric speech with deep neural network technique, which is a 

promising approach for improving the communication between 

those individuals with speech impediments and normal speakers. 
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I. INTRODUCTION 

The Automatic Speech Recognition (ASR) technique for 
normal speech has evolved significantly over the past few 
years whereas the dysarthric speech recognition has not gained 
enough attention [1]-[3]. Dysarthric speech is produced by 
individuals with speech impediments, which is usually caused 
by weakness, paralysis, or poor coordination of the muscles 
responsible for speech production. Due to the high variability 
in dysarthric speech signals, translating of dysarthric spoken 
words into readable text is still a challenging task [4]. 

Best results for dysarthric speech recognition were 
provided by isolated-word ASR models and traditional ASR 
algorithms, such as Gaussian Mixture Models (GMMs) [5], 
whereas an assistive system for the dysarthria normally 
requires the ability of recognition of continuous speech [6]-[9]. 
GMM-based approaches may have difficulties to model 
dysarthric speech because there is more than one 
pronounciation for a single phone, and some of the 
pronounciations are same for different phones [10]. Although 
some alternative method for revising the false pronounciation 
has been proposed [11], [12], the performance of dysarthric 
speech recognition still requires significant improvements so as 

to be used in the reality applications. Recently, some projects 
reported to be successful in the recognition of dysarthric 
speech with limited vocabularies. However, so far, a large 
vocabulary dysarthric speech recognition system is still 
unavailable. 

All the traditional dysarthric speech recognition systems are 
generally based on the structured approaches. For example, 
Hidden Markov models (HMMs) are used to model the 
sequential structure of speech signals and GMMs are used to 
model the distribution of the spectral representation of a 
waveform. Nevertheless, there are some drawbacks of such 
methods applied in dysarthric speech recognition [13]: 1) The 
basic assumption for GMM is that the input representations are 
Gaussian distributed, but this is not true for dysarthric speech. 
2) The HMM model assumes that the observation probability 
of every hidden state is independent, thus the training process 
ignores the context information. 3) GMM is an efficient 
algorithm for high dimensional data, but the model often is 
very complex and ultimately affects the performance on the 
test dataset. 4) GMM is sensitive to the model parameters, thus 
it needs large amount of training data to train a robust model. 
However, the training data for dysarthric speech is low 
resource, and is not sufficient to estimate the means and 
variances for a continuous dysarthric speech recognition 
system. 

Due to the high complexity of dysarthric speech signal, it 
still is a challenge to find a precise model to recognize the 
latent patterns. Deep Neural Networks (DNNs) and its variants 
have achieved significant improvement in recognition of 
normal speech when used as a replacement of GMMs. In this 
paper we utilized the hierarchical framework proposed by 
Hinton [14], [15] to extract a set of distinctive features from 
dysarthric speech and applied the robustness of this 
probabilistic generative model to characterize the long-span 
contextual influence of dysarthric speech. 

DNNs can be an efficient alternative to GMMs because 
they possess the following advantages [16]: 1) The estimation 
of the posterior probabilities of HMM states does not require 
detailed assumptions about the data distribution. 2) DNN 
allows an easy way to combine diverse features, including both 
discrete and continuous features. 3) DNNs uses far more of the 
data to constrain each parameter since the output on each 
training case is sensitive to a large fraction of the weights. 
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In this paper we applied DBNs as the acoustical model to 
model the distribution of the dysarthric speech signal and 
compared with GMM-HMM based models. Previous studies 
showed that the latest Recurrent Neural Network (RNN) and its 
extended models have achieved significant improvement [17] 
in normal-speech recognition. However, they need large-scale 
sample data for training or otherwise it will end up with over 
fitting problems, whereas DBNs are relatively simple, and have 
a good ability in extracting latent features of dysarthric speech. 
It can be trained more easily with limited data than those 
complex models [18]. 

II. MATERIALS AND FEATURE DESCRIPTION 

In this paper, we used TORGO database, which provides 
more than 8400 dysarthric utterances [19]. There are several 
other speech databases available for dysarthric speech 
recognition, but they primarily provide data about the voice 
recordings of isolated words. The stimuli in this database came 
from the sentences for the Yorkston-Beukelman assessment of 
intelligibility [20] and the TIMIT transcript, which ensured the 
balance of different phonemes. The single word stimuli in the 
database include repetitions of English digits, the international 
radio alphabets, the 20 most frequent words in the British 
National Corpus (BNC), and a set of words selected to 
demonstrate relevant phonetic contrasts [21]. Other databases 
such as UA-Speech database [22] or Nemours database [23] 
mainly contain isolated words, acoustic samples of digits, radio 
alphabet letters, and computer commands, which is inadequate 
to build a continuous dysarthric speech recognition model. 

In order to compare the dysarthric speech features with 
normal speech, Fig. 1 demonstrated the oscillogram and pitch 
contours of two utterances of the same sentence by a non-
dysarthria speaker and a dysarthria speaker respectively. It is 
evident that a dysarthria speaker often has difficulties in 
controlling the time to speak and the prosody of their voice is 
also different from a normal speaker. 

 
Fig. 1. Oscillogram and pitch contours of two utterances spoken by a non-

dysarthria (top) and dysarthria speakers (bottom). 

Traditionally, MFCCs, GMMs, and HMMs co-evolved as 
the ways of conducting speech recognition since the training 
process is computationally expensive. We adopted DBNs 
model in this paper instead of GMMs, which provides a more 
computationally intensive approach for speech recognition. 
The utterance signals were windowed with a 25-msec 
Hamming window every 10 msec. We applied vocal tract 
length normalization (VTLN) to the features in the feature 
preparing process. The GMM-HMM model was trained based 
on the augmented MFCC features. In order to partially 
overcome the conditional independence assumption of HMMs, 
the derivative and acceleration were also included and then a 
DNN was trained with the speaker adapted features. 

III. ARCHITECTURE OF DYSARTHRIC SPEECH RECOGNITION 

SYSTEM 

The principal components of a dysarthric speech recognizer 
are illustrated in Fig. 2. In this paper, we mainly focus on 
Acoustic Modelling using DBNs. 

The raw waveform of the audio signal is converted into a 

sequence of acoustic vectors },,{ 1 Txxx  during the 

feature extraction phase. The decoder then attempts to find the 

sequence of words },,{ 1 LwwW  , which is most likely to 

have generated x, i.e. the decoder tries to find: 

)|(maxarg* XWPW   

However, this problem cannot be solved directly since it is 
difficult to work out the       . Therefore, the solution is to 
transfer it to another form through Bayesian formula: 

)(

)()|(
maxarg)|(maxarg*

XP

WPWXP
XWPW   

Where,      is a constant for any specific phonic.        
is the acoustic model;        is called posterior probability, 
which is simple and more straight forward to calculate, and 
P(W) is the class priors, which is called the language model. It 
is challenging to calculate the posterior probability in 
dysarthric speech as the disabled are not capable to pronounce 
phones accurately. The proposed approach applies DNN to 
remedy this problem. 

 
Fig. 2. Overview of the dysarhtirc speech recognition method/system. 
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In particular, for any given  , the corresponding acoustic 
model is synthesized by concatenating phone models to make 
words as defined by a pronunciation dictionary. The 
parameters of these phone models are estimated from the 
training data consisting of speech waveforms and their 
orthographic transcriptions. The language model is typically an 
N-gram parameters that is estimated by counting N-tuples in 
appropriate text corpora. In our system, we used a 2-gram 
language model. The Decoder operates by searching through 
all word sequence alternatives using pruning to remove 
unlikely hypotheses, which enable us to keep the search 
tractable. When the end of an utterance is reached, the most 
likely word sequence is the output. Then, the decoder is 
followed by a post-processing phase, a function for error-
correcting, which helps to improve the accuracy further. 

IV. DEEP NEURAL NETWORKS 

DBN is a probabilistic generative model with multiple 
layers of stochastic hidden units above a single bottom layer of 
observed variables that represent a feature vector. It is a multi-
layer generative model of a window of augmented speech 
coefficients. There are many cases of utilizing DBN into 
normal speech recognition and achieved significant 
improvement. 

Over-fitting usually happens when the size of the sample 
data is too small comparison with the model complexity. In 
order to avoid over-fitting, the proposed approach uses a 
generative model to find out sensible features and then 
initialize the hidden units of the neural net with these features. 
Hinton [24] showed that these features can be inference using 
an undirected graphical model called a Restricted Boltzmann 
Machine (RBM). A set of RBMs can be composed of Deep 
belief neural networks. A typical architecture of DBNs is 
shown in Fig. 3. 

 

Fig. 3. Architecture of DNNs. 

In speech recognition, it is common to use a Gaussian-
Bernoulli RBM in which the hidden units are binary but the 
input units are linear with Gaussian noise. For Gaussian-
Bernoulli RBM’s the learning procedure is very similar except 
that the visible activities are measured in units equal to the 
standard deviation of the noise [24]. 

V. EXPERIMENTS AND EVALUATION 

A. Experimental Conditions 

The dysarthric speech used in this paper is provided by the 
TORGO database. Our system were trained without applying 
the data considered for testing, which is the leave-one-subject-
out methodology and applied random cross validation for 
parameter tuning. For example, we used all utterances of F01 
as the test set while the remaining utterances from other 
subjects were used for training; this process was repeated for 
each dysarthric speaker. Before commencing the actual 
experiment, we conducted a pilot study to select the optimal 
experimental parameters, during which several pairs of 
configurations were tested. 

B. Training Deep Belief Networks as Acoustical Model 

As it is explained in [15], RBMs can be stacked and trained 
in a greedy manner to form DBNs; they were applied to extract 
phoneme posteriors probability in our study. The training 
processing can generally be separated into four steps: 1) A 
DBN was pre-trained and layered as RBM greedily. For 
Gaussian-binary RBMs, we ran 100 epochs with a fixed 
learning rate of 0.002 while for binary-binary RBMs we used 
40 epochs with a learning rate of 0.005. 2) A DNN was then 
created by adding a “softmax” output layer to the network. The 
outputs of the lower layers were fed as input of the upper 
layers. 3) Discriminative fine-tuning by back-propagation was 
done to adjust the weights and to make them better at 
predicting the probability distribution over the states of 
monophone. 4) Applying the DBN as acoustical model. The 
sequence of the predicted probability distribution was fed into 
a standard Viterbi decoder. 

C. Results and Discussion 

In the parameter selection process, we split F01 as the test 
dataset. Fig. 4 shows the performance for different amount of 
hidden layers are used while the number of input frames was 
fixed at 17 and 1024 nodes in every layer. 

Fig. 5 shows word error rates decreasing monotonically 
with the number of hidden layers of each input across different 
number of frames. As can be seen adding more hidden layers 
improved the performance. Nevertheless, the improvements 
were decreased when the number of hidden layers was more 
than five. In addition, similar results were obtained when layer 
numbers was 5 for 17 frames or 21 frames. 

In order to reduce the computation cost and get an 
acceptable result, we fixed the number of layers at 5 and used 
1024 nodes in each hidden layer. Table I shows the test result 
of different dysarthria speakers of this setting and several 
variant model of GMM-HMM. 
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Fig. 4. Accuracy versus the number of frames fed into the DBNs across 

three different numbers of nodes per layer. 

 
Fig. 5. Automatic speech recognition accuracy measured against number of 

hidden layers in acoustic model (DBNs).

TABLE I. WER OF DYSARTHRIA SPEAKERS ACROSS SEVERAL DIFFERENT MODELS 

 
Severely 

Moderate-

to-Severely 
Moderately Very mild 

 
F01 M01 M02 M04 M05 F03 M03 F02 

Baseline(monophone) 74.28 75.64 72.91 71.98 70.12 70.08 69.33 68.76 

Triphone(tri1) 71.76 73.45 76.02 74.12 70.04 69.93 67.46 68.53 

Triphone(tri2a) 67.12 65.2 68.31 67.52 64.88 64.2 62 61.78 

Triphone(tri2b) 74.4 76.54 75.22 73.27 72.3 74.56 73.25 70.36 

MMI(tri2b) 83.53 78.36 81.35 79.58 76.86 74.13 71.42 72.05 

MMI(LDA+MLLT) (tri2b) 81.37 86.9 85.09 83.46 80.28 79.82 76.45 72.64 

MPE(tri2b) 77.81 75.77 76.62 75.66 72.66 72.12 69.3 70.23 

LDA+MLLT+SAT   (tri3b) 58.09 56.69 57.68 60.04 57.39 58.36 55.69 56.03 

MMI(tri3b) 59.59 57.47 59.4 58.63 57.3 56.9 56.7 56.4 

MMI+fMMI (tri3b) 54.68 56.64 54.36 55.65 54.6 53.96 53.47 53.67 

LDA+MLLT+SAT+ 

SAT(tri3b) 
54.14 52.9 56.62 58.43 55.63 54.98 53.72 53.96 

DBN 48.56 49.32 45.59 47.36 46.68 46.92 46.56 45.9 

Results indicate that the trained model tends to perform 
better when the test speakers have higher intelligibility scores, 
and most individuals with moderate-to-severe and severe 
dysarthria tend to generate relatively higher ASR recognition 
accuracy rates. However, there are also some exceptions. For 
example, one of the severe dysarthria speakers, M01, got the 
lowest recognition accuracy. The reason for this may be due to 
different variability of different speakers, when they speak at a 
different time. All the test results got from DBNs were less 
than 50%, which is better than the initial results reported in 
[10]. 

This study has shown that the use of DBNs makes the 
recognizer more robust against the data variation of speech 
signal produced by different degrees of severity of dysarthric 
speech. The sentence error rates of this experiment are still a 
little bit high; we are exploring to find a better neural network 
algorithm to build a specific language model and correct the 
insert or addition errors of dysarthric speech in order to 
improve the word and sentence error rate further. 

VI. CONCLUSION AND FUTURE WORK 

This paper showed that the incorporation of the DNN 
model is useful in obtaining high probable phonemes with 
dysarthric acoustics. Overall, the results achieved here are 
superior to similar work discussed in Section 1. However, 
given the limited number of dysarthric speech samples 
provided in the database, the results can be considered 
preliminary; more work with additional data sets would be 
required to make more conclusive claims. 

In future, further studies will be necessary to explore the 
performance of some different kinds of advanced Deep Neural 
Networks algorithms, applying different input features streams 
to improve the system’s performance on a larger dataset. 
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