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Abstract—In the field of automatic control system design,
adaptive inverse is a powerful control technique. It identifies the
system model and controls automatically without having prior
knowledge about the dynamics of plant. In this paper neural
network based adaptive inverse controller is proposed to control
a MIMO system. Multi layer perception and back propagation are
combinedly used in this investigation to design the NN learning
algorithm. The developed structure represents the ability to
identify and control the MIMO system. Mathematical derivation
and simulation results for both plant identification and control
are shown in this paper. Further, to prove the superiority of the
proposed technique, performances are compared with recursive
least square (RLS) method for the same MIMO system. RLS
based adaptive inverse scheme is discussed in this paper for plant
identification and control. Also the obtained simulated results
are compared for both plant parameter estimation and tracking
trajectory performance.

Keywords—Adaptive inverse control; neural network; MIMO;
multilayer perception

I. INTRODUCTION

Prior knowledge is an important factor for almost every
conventional control system. Such as in continuous time sys-
tem, number of poles and zeros or the limit of upper bounds
on the order of the plant are assumed to be known [1], [2],
[3], [4]. Again the known time delay is crucial for discrete-
time systems [5], [6], [7]. To overcome these difficulties,
the adaptive control methods were developed. Because it can
work even if the system structure and critical parameters are
unknown [6], [10]. There are several approaches are proposed
to develop the adaptive controllers [8] and already been imple-
mented for different robotic applications. Such an application
is presented in [9]. In this example work, an adaptive neural
network control approach is used to enhance the performance
of a flexible manipulator. Adaptive controllers, based on self-
Tuning method were proposed to avoid the problem of un-
cancellable zeros for the system transfer function [11], but the
reference model of the adaptive control depends on transfer
function of the plant. Due to this problem, the desired output
is not independent of the plant characteristics. The adaptive
inverse control is one of the solutions to overcome these
difficulties. It is a method to design an automatic control
system. It learns over time to control a particular dynamic
system [12]. Adaptive filtering technique proceeds with three
concurrent learning steps and eventually develops adaptive
inverse control method [13]. At the beginning, the modeled
adaptive plant identifies the system dynamics. Next, the control
dynamics of the plant is learned by a feed-forward controller.
Finally, the disturbance affecting the plant is canceled by

an adaptive feedback disturbance canceler. These controllers
approximately compensate the effect of numerator polynomial
at the output with the help of approximate inverse of the plant
[4], [10]. The desired trajectory is approximately followed by
the output of the plant with some delay which can be estimated.

The plant dynamics is controlled by several neural network
(NN) approaches. A dual step controller based on neural-
network is used to obtain feedback linearizion and learning of
the plant dynamics [14]. The calculation complexities of com-
puting inverse dynamic are reduced by using neural network
method. It also improves the precision by learning procedure.
A different neural network technique is considered using a
feed-forward inverse recurrent method based PD controller
[15]. Inversion error is compensated and disturbances are
rejected using this technique. Past investigations show the
better performance while using neural network controllers for
controlling the nonlinear plant dynamics [16]. Gain tuning is
also performed for PD controller using NN [17].

All of these techniques used for neural network controllers
have firm restrictions. In general, they require to know the
fairly precise plant model before hand. Adaptive inverse con-
trol technique is considered in this paper, which is based on
neural network using multi layer perception for MIMO system.
A simplified architecture of the NN models are incorporated
in which the modeling of the system approximate inverse of
the plant are obtained directly. Then the approximate inverse
model is used for the learning process to control the plant
dynamics.

The rest of the paper is presented as follows: The problem
stated for the purpose of this investigation is mentioned in
the the next section. Architecture of adaptive inverse control
technique is explained in Section 3 for multi input and multi
output (MIMO) system. Multilayer perception based neural
network concept is discussed in Section 4. In Section 5,
back propagation based learning algorithm is explained to
design adaptive inverse controller. Simulation results and their
discussion for a dual input and dual output system is presented
in Section 6 while using NN based adaptive inverse control
scheme. Plant identification algorithm of RLS method and
adaptive inverse control scheme is discussed in Section 8.
Also the obtained simulated results are compared for both
plant parameter estimation and tracking trajectory performance
evaluation in this Section. The Section 8 concluded the inves-
tigation.
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Fig. 1. Schematic diagram of basic adaptive inverse control
II. STATEMENT OF PROBLEM

Considering a multi input and multi output (MIMO) dis-
crete time linear system described by:

y(z) = P(2)u(z) + V(2) (1

where, multi outputs

v =) 1) wE) - - - ] @
multi inputs
u(z) = u(z) ua(z) usz) — — — un(z)]" G
disturbances
V() =Vi(z) Va(z) Va(z) — — — V()] @
and the discrete transfer function
Pii(z)  Pia(z) Pis(z) — — Pin(z)
P(z)=| —— — — - = =
P]\;l_(z) PJ\;2_(Z) PJ\;S_(Z) -~ PIL;N_(Z)
5)

In the above equations, w(z) is the inputs and y(z) is
the outputs of the measurable plant while V(z) denotes for
bounded disturbances. P(z) is the discrete transfer function
metrics. The aim of the neural network based inverse adaptive
is to obtain a set of control inputs which are bounded. With
the impact of these bounded control inputs, the outputs y(z)
should follow the reference inputs.

III. ARCHITECTURE OF ADAPTIVE INVERSE
CONTROLLER

Adaptive inverse controller is not similar to the traditional
closed loop controllers. The main concept of inverse adaptive
control is to govern the system with a control command from
the controller. The controller transfer function is the inverse of
plant transfer function. The principal idea of inverse adaptive
control is shown in Figure (1). Obtaining better tracking
performance for the plant output is the main objective of this
system. A true plant inverse need to be created by adapting the
controller parameters because the plant is usually unknown.
Comparing the plant output and command input, an error
signal is produced to use for the adjusting process of the
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Fig. 3. Adaptive inverse- plant control for MIMO system

controller’s parameters through an adaptive algorithm. Purpose
of this algorithm is to minimize the error in terms of square
mean. But this configuration has some demerits. Such as the
adaptation process of the controller can not be done directly
by the algorithm. Because the algorithm (for example, LMS)
needs an error refereed to the plant input. Therefore a different
configuration of adaptive inverse controller is proposed to
overcome this problem and shown in Figure (2) and (3) for
a MIMO system.

Rapid adaptation process and control action with plant
disturbance represented in Figure (2) and (3). The plant
identification and control mechanism are described as follows:

e Step 1: A MIMO plant model P(z) of the original
plant P(z) is identified on real time basis by using

back propagating adaptive algorithm shown in Figure
(2).

e Step 2: Updated parameters of controller C (z) is
generated from a digital copy of P(z) either on-line
or off-line and it is shown in Figure (3).

e Step 2: Finally the obtained updated C/(z) can be used
as a cascaded controller with the original plant P(z)
as presented in Figure (2).
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IV. NEURAL NETWORK WITH MULTI LAYER PERCEPTION

A multi layer neural network contains multiple neurons,
those are organized into different layers . The primary layers
are placed at input side, the output layers are organized at the
end and the middle area of the input and output is known as
hidden layers [18]. It is already known that neural network
is capable to execute in the presence of system nonlinearities
because NN is a nonlinear filter. This property encourages to
implement NN in the adaptive inverse problem. The neurons
are connected towards forward direction without having any
feed back connections between input and output. Therefore, in
this work, the adaptive inverse control is implemented by using
multi layer feed forward neural network (MLFFNN) [19] and
shown in Figure (4). The active functions of successive layers
can differ from each other. Connection link between input and
neurons contain some weight. Neuron output is applicable to
the nonlinear function.

V. ADAPTING CONTROLLER VIA LEARNING ALGORITHM

The learning algorithm of this study is supported by
back propagation technique for the NN based controller. The
activation function induced by local field at the input is shown
in Eq.(6). where, y;(n) is the output of ith neuron for the nth
iteration. The synaptic weight of the connecting link between
output of ith neuron and jth neuron is denoted by wj;(n). The
total number of inputs applied to the neuron j is indicated by
m.

v;j(n) = iji(n)yi(n) (6)
=0

The output at the jth neuron is shown in Eq.(7) while the
nonlinear function ¢() is applied to the output of any neuron.

y;i(n) = ¢;(vi(n)) (7

The synaptic weights is updated according to the back
propagation algorithm and it is expresses by the Eq.(8).

wji(n + 1) = wji(n) +1(n)d;(n)yi(n) (8)
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Fig. 5. MIMO plant identification without disturbance for output-1 (Sinu-
soidal input)

where J; is responsible for local gradient related with
jth neuron while the learning rate is denoted by 7(n). This
learning rate is updated using following technique:

P R U e v(n—m)

here

U =an(n—1)+7 |l e(n) |*

Mathematical expression of the local gradient §; is defined
by Eq.(10) for j output neuron.

’

dj(n) = e;(n)®;(v;(n)) (10)

where error e; is measured between the output and desired
response d;(n). Again the local gradient can be calculated
while the neuron comes from hidden layer and expressed by
the Eq.(11).

8;(n) = @ (0;(n)) 3 Gi(n)wiy () an
k

VI. SIMULATION RESULTS AND DISCUSSION

Transfer function of a MIMO system is used for this
investigation. To obtain direct and inverse model of MIMO
system, we have used back propagating algorithm based on
feed forward multi layer perception. The transfer function of
double inputs and double outputs MIMO plant is shown in Eq.
(12).

271(0.1182—0.1531z 1) 27 1(0.1378—0.1378z 1)
1—1.3852-1+40.4724z2 1—1.3852-1+40.4724z—2
27 1(=0.1174—0.091452"1)  271(0.09867—0.16832 1)
1

1-1.3852—140.47242—2 —1.385z*1+0.4724z*2(12)

P(z) =

A. Plant identification

Primarily the system is identified through adaptive inverse
back propagation technique with random weight values while
no disturbance is considered. Sinusoidal signal is given as the
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Fig. 6. MIMO plant identification without disturbance for output-2 (Sinu-
soidal input)

Identification of the Plant

T T T = - Actual Plant Outpyt
3| —Plant Identified
. . B ?

1P =
05t ;
o
T
2
3 0 1
£
<
05 |
ab |
o g
d h
L § |
-15 5
' i
ol 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iterrations

Fig. 7. MIMO plant identification for square input signal without disturbances
(sample result)

reference input signal. Identified plant is shown in Figure (5)
and (6) with respect to output-1 and output-2. It is observed
that the plants are identified perfectly. To see the impact of
changing the input signal the simulation was run again using
square wave (reference input) as shown in Figure (7). Due to
the changes of input signal the proposed technique found the
plant identification nearly perfect.

The same simulation was repeated with random weight
values in the presence of disturbance. With the same sinusoidal
input signal, the identified plant is shown in Figure (8) and (9).
Again the sample result of MIMO plant identification is shown
in Figure (10) with disturbance condition while the input signal
is changed from sinusoidal to square wave.

In both cases, an adaptive inverse with back propagation
technique was found the satisfactorily identified system. The
system was driven by uniform control signal. It is shown
in the Figure (5) to (10) that the neural networks could
be trained to identify the plant nearly perfect manner with
and without disturbances. Usually with the disturbance, the
plant dynamics should be disturbed. With the implementation
of adaptive inversed based back propagation technique, the
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Fig. 10. MIMO plant identification for square input signal with disturbances
(sample result)
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Fig. 11. Tracking trajectory for MIMO plant without disturbance for output-1
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Fig. 12. Tracking trajectory for MIMO plant without disturbance for output-2

system identification processes matched the nominal dynamics
of the plant. These proves the theoretical prediction.

B. Plant control

Once the plant identification is done then the control
action is implemented using adaptive inverse technique to
the MIMO system. Reference input is chosen as sinusoidal
signal. Primarily the plant is experienced with no disturbances.
The result is presented in Figure (11) and (11). The desired
plant output ( blue dashed line) and the true system output
(red solid line) are indicated in this result. Tracking of the
sinusoidal input signal is nearly perfect while the plant does
not experience any disturbances. A sinusoidal control signal is
observed for this MIMO plant.

To observe the performance of disturbance cancellation,
the disturbance signal is included in terms of noise in the
algorithm. The filter is chosen for the purpose of disturbance
cancellation. The effectiveness of the canceler was tested
perfectly. The result is in shown Figure (13) and (14). The
control signal of the MIMO plant is also sinusoidal while the
disturbance is considered. To see the impact of changing the
input signal to control the plant output, the simulation was run
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Fig. 13. Tracking trajectory for MIMO plant with disturbance for output-1
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Fig. 14. Tracking trajectory for MIMO plant with disturbance for output-2

again using square wave (reference input) as shown in Figure
(15).

VII. COMPARISON WITH RLS BASED ADAPTIVE INVERSE
CONTROL ALGORITHM

A. Recursive Least Squares (RLS) Method

The principle task of Recursive Least Squares (RLS)
method is to calculate the state variables and observation
vectors of the system. Then it compares between observation
and the actual output of system. Finally it calculates the sum
of squared errors. The parameter matrix is identified through a
continuous modification process while the sum of squared error
is achieved at its minimum range. Therefore, the identified
parameters are kept closer to the actual parameters of the
system [20]. Although RLS method is very fast process but
it is highly complex in terms of computational cost.

B. Summary of Identification Algorithm

Multi order filter is considered to summarize RLS algo-
rithm. In the Fig. 16, r(m), y(m), d(m) and z(m) are input,
output, disturbance noise and measured output respectively.
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a(m) is model parameter which is unknown. The model input
is defined as

r(m) = [ri(m), ra(m), ...rn(m)]* (13)

a=laa,..a]f (14)

Output parameters of the model is

z(m) = rT(m)a + d(m) (15)

The function of least square criterion is deduced by

n

Cla) = [2(m) = r"(m)a]® (16)

m=1

« is estimated for the minimum value of C'(«) and then &
is called the parameter values of least square estimation. Now
the recursive least square (RLS) method is expressed through

{{atm) < P =)

g(m)~t =r(m)"r(m)

Where ¢(m) is symmetric matrix positively decrease with
the increase of y. The derived formulas for recursive methods
are as follows:

a(m) = a(m —1) + M(m)[r(m) —6Ta(m —1)]  (18)

Here, M (m) is gain matrix and defined as:
_ gm—1)m)
1407 (m)q(m —1)0(m)
g(m) = [I = M(m)0"]q(m — 1) (20)
[z(m —1) — 7T (m — Da(m — 1))?
14+607(m—1)g(m —1)(m —1)
(21)

M(m) (19)

C(m)=C(m—-1)+

Therefore, the residual is expressed as:

z{m — —rTm— a\m —
(o) = [Em =D =7 = a1

)
14+60T(m —1)g(m—1)0(m —1)

(22)
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Using suitable initial values for ¢ and & recursive operation
is performed so that the residual error y(m) is reduced enough.
Hence, a minimum value is obtained for criterion function in
order to complete the identification process.

C. RLS Based Adaptive Inverse Control

Figure 17 shows a schematic diagram of RLS based
adaptive control for MIMO system. Structure contains several
blocks like original model of the plant, inverse plant, adaptive
algorithm, plant estimation algorithm, and feedback module.
In this control architecture, plant is identified using RLS
algorithm and expressed into S-function and converted into
inverse system which combined with original plant connected
in series. State feedback block forms a closed loop control
architecture.

D. Simulation results of RLS Based Adaptive Inverse Control
- A comparison

AThe same MIMO system defined in Eq. 12 is identified
through RLS based adaptive inverse technique with random
weight values. A square signal is given as the reference input
signal. Identified plant is shown in Figure (18) and (19) with
respect to output-1 and output-2. It is observed and compared
with the result produced through back propagation based
adaptive inverse control shown in Fig. 7 (without disturbance)
and Fig. 10 (with disturbance). A better identification for plant
parameters is obtained than RLS based estimation technique in
terms of overshoot. Specifically, RLS based adaptive inverse
algorithm of MIMO plant identification for square input signal
with respect to output-2 contains very high overshoot. There-
fore, the identified plant using neural network based controller
is more perfect over RLS based estimation technique.
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Fig. 19. MIMO plant identification for square input signal with respect to
output-2 using RLS based adaptive inverse algorithm

Next step of plant parameter identification is to control
the system. RLS based adaptive inverse technique is used to
control the outputs of the same MIMO system. Reference
input is chosen as square signal for this simulation. The plant
controlled results are presented in Figure (20) and (21) with
respect to output-1 and output-2. The desired plant output (
blue dashed line) and the true system output (red solid line) are
indicated in these results. It is observed that using RLS based
adaptive inverse algorithm, tracking trajectory of MIMO plant
for square input signal with respect to output-2 contains very
high overshoot. For the comparison with NN based adaptive
inverse control technique, the plant is experienced with no
disturbances which is shown in Fig. 15. It is found that the
tracking trajectory of MIMO plant is more perfect while using
back propagating algorithm based adaptive inverse control
technique because its overshoot is with acceptable range. Due
to the higher overshoot obtained in Fig. 21, it may cause
instability of the system.

Fig. 20.
respect to output-1 using RLS based adaptive inverse algorithm
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Fig. 21.  Tracking trajectory of MIMO plant for square input signal with
respect to output-2 using RLS based adaptive inverse algorithm

VIII. CONCLUSION

In this paper, back propagation based adaptive inverse con-
trol technique is proposed to find the approximate inverse of
the system. It has been shown that the proposed control method
can perform well for MIMO system. It has also been shown
nearly perfect performance while the disturbance is injected
in term of noise. Therefore, the results verify the ability of
neural network based adaptive inverse technique to control
MIMO system. To prove the superiority of the proposed tech-
nique, the performance is compared with recursive least square
(RLS) method for the same MIMO system. Plant identification
algorithm of RLS method and adaptive inverse control scheme
is discussed in this paper. Also the obtained simulated results
are compared for both plant parameter estimation and tracking
trajectory performance.
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