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AbstractðThis paper implements a novel approach of 

identifying edges in images using a two-way nested design. The 

test comprises of two steps. First step is based on an F-test. The 

sums of square (SS) of various effects are used to extract the 

mean square (MS) effect of respective effects and the unknown 

effect considered as noise. The mean square value has a chi-

square distribution. The ratio of two chi-square distributions has 

an F-distribution. The final decision is based on testing a 

hypothesis for the presence or absence of an effect. The second 

step is based on contrast function (CF). This test identifies the 

presence or absence of an edge in four directions that are 

horizontal, vertical, and the two diagonal directions. The test is 

based on Tukeyôs T-test. The performance of nested design is 

compared with the edge detection using Sobel filter. A rigorous 

testing reveals that the nested design yields comparable results 

for images that are either free of noise or corrupted with light 

noise. The nested design however outperforms the Sobel filter in 

situations where the images are corrupted with heavy noise. 

KeywordsðAnalysis of variance (ANOVA); Edge detection; F-

test; nested design; T-test 

I. INTRODUCTION 

The detection of edges, in a digital image, has several 
industrial, biological, medical, scientific, and other real life 
applications. In a recent paper, the tracking of wild life has 
been performed by detecting the edges of animals and then 
keeping their record in a database [1]. The FPGA has enabled 
us implement advanced algorithms that were previously 
considered impossible due to their longer processing time. 
Several fast real time edge detection schemes have been 
demonstrated in [2]-[3]. An algorithm of image segmentation 
using genetic algorithm (GA) has been proposed in [4]. A 
wavelet transform based technique for SAR (synthetic 
aperture radar) images is given in [5]. Several other wavelet 
transform based solutions are given in [6]-[8]. The nonlinear 
techniques generally outperform linear filters for edge 
detection. A comparison of several nonlinear techniques, like 
order statistics filters, hybrid filters, neural filters, and bilateral 
filters is made in [9]. Various statistical approaches for edge 
detection are demonstrated in [10]-[12]. A Kalman-based edge 
detection scheme is demonstrated in [13]. A few advance 
gradient based edge detection techniques are Marr-Hildreth, 
and Canny edge detectors [14]. The edge detection using 
cellular neural network (CNN) is given in [15]. A combination 
of ant colony optimization (ACO) and wavelet transform 
based edge detection technique is given in [16]. The linear 
vector quantization for edge detection has been demonstrated 
in [17]-[18]. 

There are generally two distinct approaches followed in 
digital image processing. The first approach is by using 
gradient analysis, and the second approach is by using some 
kind of transform. The gradient analysis identifies an edge 
with a significant change in pixel value. Some of the earlier 
gradient operators are Roberts, Prewitt, and Sobel filters [19]-
[21]. The transform based approach uses discrete cosine 
transform (DCT), or wavelet transform [21]. A significant 
advantage of the gradient type approach is that their results are 
based on the local pixel analysis. The wavelet transform 
considers local effects to some extent, but still the fine details 
are lost. The second transform technique like DCT completely 
ignores the local details. All the above approaches fail in case 
the given image is corrupted with heavy noise. 

The mathematical detail of analysis of variance (ANOVA) 
is available in standard textbooks of statistics [22]-[23]. The 
detection of edges by using Graeco-Latin square (GLS) design 
involves a template of 5x5 pixels, such that the Greek & Latin 
letters are assigned to each pixel. The presence or absence of 
an effect in four directions is tested statistically by testing a 
hypothesis for each of these letters [24]. The contrast function 
(CF) is also a well-tested statistical approach, where the mean 
of a set of pixels within the template is statistically compared 
with the remaining pixels. The approach used Tukeyôs T-test 
for testing the hypothesis of an edge that is present at a 
particular location [25]. The classification of multispectral 
imaging data is given in [26]. The statistical analysis of 
moving object detection that is previously corrupted with 
noise is given in [27]. In this paper, we have used two distinct 
techniques comprising of two-way nested design (TND), and a 
contrast function (CF). Both the approaches help in 
identifying edges in an image that are previously corrupted 
with significantly higher degree of Gaussian noise. After a 
brief introduction, the next section discuses two-way nested 
design. The mathematical details of analysis of variance 
(ANOVA) are given in section III. This is followed by the 
mathematical background of contrast function (CF) in section 
IV. The significant results and their critical analysis are given 
in section V. Section VI concludes this paper. 

II. TWO-WAY NESTED DESIGN 

A two-way nested design comprises of two levels A, and B 
such that the level-B is nested through level-A. In literature, 
this is mentioned as B(A). Graphically this is represented as in 
Fig. 1. The two-way nested design is quite appropriate for 
spatial image analysis, which identifies small homogenous 
regions with sufficient regional details. The level-A comprises 
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of Ὥ levels where Ὥ ρȟȢȢȢὍ. Level-B comprises of  Ὦ levels, 
such that Ὦ ρȟȣȟὐ. In principle, for each  Ὦ the numbers of 
elements can vary for each Ὥ. Though, in this particular 
situation the value j is same for each i. Further, there is 
nothing in common for various levels of  Ὥ. Theoretically, the 
subscript Ὦ should be writing as  Ὦ, and the nested factor-B 

should be written as ὄ . Instead of this complicated notation, 

a more friendly notation of ὄ  is used. The complete analysis 

is performed on a square mask of ψ ψ pixels. The 
subsequent mask is taken by scanning the raster from left to 
right and from top to bottom. The algorithm is extremely fast 
when the mask positions are non-overlapping. However, this 
results in missing out several edges. The mask locations can 
be overlapped that identifies more edges, but also results in 
larger processing time. The analysis of variance (ANOVA) is 
applied statistically for identifying and marking regions 
having considerable gray level changes within a mask. The 
final decision is made by testing a hypothesis. In case there is 
significant confidence developed by rejecting the Null 
hypothesis of either the effect-A or effect-B (alternately, 
accepting the presence of an edge), then a second test 
comprising of contrast functions (CF) further identifies edges 
in four directions: vertical, horizontal, 45

o
 diagonal, and  135

o
 

diagonal. Only one edge in any one direction is allowed. 
However, edges in multiple directions within a particular 
mask are possible. 

A 
Ҩ 
B 

Fig. 1. Two-way Nested Design (TND) 

A. Mask Partition 

The partition of mask is given in Fig. 2. The mask of ψ ψ 
pixels is partitioned into four segments each comprising of 
τ τ pixels. The subscripts in equation do not represent rows 
and columns as used in standard images. Instead they 
represent various regions of a mask. Each of these regions has 
four rows and four columns. Different regions are represented 
by  Ὥ ρȟȢȢȟτ. The top-left region is considered as first in the 
effect-A. The segments are marked in clockwise direction 
starting from the top-left τ τ pixel as the first region. 

 

Fig. 2. Mask comprising of ψ ψ pixels 

Effect-A (subscript Ὥ) compares the effect of four regions 
of a mask each comprising of τ τ pixels. Each of the four 
regions in level-A are further divided into four equal size sub-
regions each comprising of ς ς pixels. The sub-regions is 
represented by Ὦ such that Ὦ ρȟȣȟτ. The value of Ὦ is 
repeated for each Ὥ. It is clear that for different values of Ὥ, 
there is nothing in common for the same Ὦ. Each individual 
pixel in the ς ς sub-region is represented by Ὧ ρȟȣȟτ 
again in clockwise direction starting from top-left pixel. 

III.  THE ANALYSIS OF VARIANCE (ANOVA) 

The gray level change in a large image results in building 
chipsets that together form interesting features for human and 
computer analysis. The micro information in the form of 
pixels is combined to form the macro information in mask 
comprising of a small set of pixels. The most critical 
information is, effectively, contained within each pixel. A 
pixel is designated by ώ  where the subscripts ὭȟὮȟὯ 
correspond to effect-A, effect-B, and an unknown effect 
considered as noise. All parameters are assumed to have 
unknown but fixed value with no random value.  All 
randomness is present in the third parameter considered to be 
a random noise that has Gaussian distribution with zero mean 
and constant variance. The model is represented by, 

ɱȡ   
Ù   ʈ  ɻ  ɼ  ʀ

‐  ͯ ὔπȟ „Ὅ                     
 (1) 

Where ʈ is the general mean,  and   are two specific 

fixed effects with no randomness, and ‐  represents 

Gaussian noise of zero mean and independent variance. The 
assumption of error having Gaussian distribution with zero 
mean and independent variance results in a simple 
mathematical model. Fortunately, this assumption holds true 
in most of the real images. If zero mean condition is violated, 
then the pixel values can be recalculated by subtracting the 
mean value from each pixel generating a new image that has 
zero mean. The mathematical analysis can then be performed 
on the new image. In some applications, like texture analysis, 
a nonzero mean and dependence across various observations 
may in fact help in the image analysis. The zero mean 
assumption is considered to hold in all the subsequent analysis. 

B. The Least Square Estimate 

A nested design identifies the least square estimate (LSE) 
of various parameters. Matrices are used for simplification. A 
set of observations ◐ ɴ  ᴙ are equal to 

◐  ╧╣♫  Ⱡ (2) 

Where the observation matrix y is a column matrix 
ὲ ρ. A 2-D image is easily converted into 1-D column 

matrix by scanning rows horizontally from top-left to the top-

right, and then from top-to-bottom of a mask. ╧╣ is the 
transpose of ╧ which has p rows and ὲ columns ὴ ὲ.  ╧ is 
the transformation matrix comprising of ὴ equations each 
having ὲ number of parameters. ♫ is an unknown parameter 
matrix of size ὴ ρ, and Ů is the error of size ὲ ρ. The 

objective is to find the LS estimate ♫ of parameter space  ♫ . 
The analysis of variance (ANOVA) is very similar to the 
regression analysis. The only difference is that in regression 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

    Vol. 8, No. 3, 2017 

 

138 | P a g e 

www.ijacsa.thesai.org 

analysis, there is no restriction on the elements of ╧╣ as these 
can be integers or real numbers; whereas, ANOVA requires 

the elements of ╧╣ to be strictly zero or one. The model 
essentially assumes that a particular effect is either present or 
absent. This assumption simplifies the mathematical 
derivation, and result in an efficient and fast processing. The 
sum of square of error, Ů is 

 ◐ ╧╣♫  (3) 

By setting Ⱦ to zero and then solving for ɓ, the LS 
estimate of parameter matrix  is found. The objective is to 

find their estimated values ♫. In case ╧╣ is a square matrix 

with full rank, then the estimated value  ♫ is given by, 

♫ ╧╣ ◐ (4) 

If however ╧╣is not a square matrix, then this is converted 
into a square matrix by multiplying both sides by ὢ and then 

solving for estimator matrix ♫.  

♫ ╧╧╣ ╧◐ (5) 

If ╧╣ is not a square matrix or it is not having full rank, 
then a set of side conditions are added to make it a full rank 
matrix. The estimates are then found by 

♫ ╧╧╣ ╗╗╣ ╧╧╣ ◐ (6) 

The set of side conditions must satisfy, 

╗╣♫  (7) 

The above general mathematical analysis is applied to the 
nested design comprising of effect-A and effect-B. 

C. Sum of Square (SS) of Various Effects 

Under the assumption Ý, an observation ώ  is 

approximated by  ώ  –  Ὡ , where – ‘ 
 is the sum of the general mean µ, and the various effects  

(level-A), and   (level-B). The error is equal to Ὡ
 Ὡ – . The subscript ókô considers the unaccounted for 

effects and includes all pixels in a mask. The sum of square of 
error (SSE) is equal to 

ὛὛὉ ώ  –  (8) 

The least square estimate of mean µ is found by 
differentiating SSE with respect to µ and then setting it equal 
to zero 

ὛὛὉ

‘
 ς ώ  – π (9) 

The summation is taken over all possible values of 
subscripts i, j, and k. By replacing – ‘    and 

then solving for the estimate of µ. The estimated value of 
mean ‘Ƕ is 

‘Ƕ 
ρ

ὲ
 ώ  

ρ

ὲ
 ώȣ  ώȣ (10) 

Where ὲ is the total number of observations. The dot 
notation helps in simplifying an otherwise complex equation. 
Throughout the paper, the summation is taken across all parts, 
that is Ὥ ρȟȣȟὍ, and Ὦ ρȟȣȟὐ, and Ὧ ρȟȣȢȟὑ .  The 

sum of square (SS) of level-A (Ŭi), the level-B (ɓij), the sum of 
square of error (SSE), and the total SS (SST) are taken from 
[22]. The various parameters are, 

ώȢ  
ρ

ὲ
ώ                                        

ώȢȢ  
ρ

ὲ
ώ  

ρ

ὲ
ὲώȢ

ώȣ  
ρ

ὲ
ώ

ρ

ὲ
ὲώȢȢ

 (11) 

TABLE. I. SUM OF SQUARE OF EFFECTS 

Effect Sum of Squares (SS) 

A ὛὛὃ ὲ  ώȢȢ  ὲ ώȣ                               

B(A) ὛὛὄ ὲ ώȢ  ὲ  ώȢȢ           

Error ὛὛὉ ώ  ὲώȢ  

Total ὛὛὝ ώ  ὲ ώȢȢȢ                  

 

The  ὲ, ὲ, and ὲ  correspond to the number of pixels at 

various partitions of mask. 

 ὲ ὓ τ
 

            ὲ  ὲ ττ ρφ

ὲ ὲ τρφ φτ ὓ ρ ὩὥὧὬ ὴὭὼὧὩὰ          

 (12) 

 The degrees of freedoms (df) are given in Table II.  

TABLE. II.  DEGREE OF FREEDOM 

Effect Degree of Freedom (df) 

A (I-1) = 3 

B(A) В ὐ ρ = 4(3) = 12 

Error ВВ Вρ  ρ = 4(4)(3) = 48 

Total (n-1) = 63 

 

The mean square (MS) of each effect is found by dividing 
the sum of square (SS) of an effect with the respective degree 
of freedom. The MS value with a degree of freedom ǋὺǋ has a 
Chi-square distribution with ǋὺǋ degree of freedom. This is 
represented by  …. The ratio of two Chi-square distributions 
with the respective degrees of freedom ὺ and ὺ  gives F-

distribution, that is F-test = … Ⱦ… . The tables of F-test for 

various degrees of freedom are given in standard textbooks of 
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statistics [22]-[23]. The MS value of various effects is given in 
Table III. 

TABLE. III.  MEAN SQUARE OF EFFECTS 

Effect Mean Square (MS) 

A ὓὛὃ 
ὛὛὃ

Ὅ ρ
 

B(A) ὓὛὄ
ὛὛὄ

В ὐ ρ
 

Error ὓὛὉ 
ὛὛὉ

ВВ В ὓ ρ
 

 

The respective F-tests are given Table IV. 

TABLE. IV.  F-TESTS OF VARIOUS EFFECTS 

Effect Mean Square (MS) 

A Ὂ  
ὓὛὃ

ὓὛὉ
 

B(A) Ὂ
ὓὛὄ

ὓὛὉ
 

 

Under the Ý-assumption, the presence of significant effect 
of a factor is confirmed by testing the hypothesis Ὄ  against 
the Null hypothesis Ὄ  as 

ɋȡ        
(ȡÅÆÆÅÃÔ ! ÉÓ ÐÒÅÓÅÎÔ       
(ȡÅÆÆÅÃÔ ! ÉÓ ÎÏÔ ÐÒÅÓÅÎÔ

 (13) 

Similar hypothesis is tested for effect-B by testing 
hypothesis Ὄ . In case either the effect-A, or effect-B are 
found to be present, then the next step is to find the exact 
location of an effect as derived in the contrast function 
discussed in next section. 

IV.  THE CONTRAST FUNCTION (CF) 

A contrast function is applied in case the Null hypothesis 
of either effect-A, or effect-B is rejected against the alternate 
hypothesis. The primary objective is to identify if there is a 
significant variation in the horizontal, in the vertical, or in the 
two diagonal (45

o
 and 135

o
) directions. 

Definition:  A contrast among a set of parameters, 

ȟȟȣȣȟ is a linear function of the  ,   В ὧȟ   with 

known constant coefficient such that the condition В ὧ π 
holds. 

As per above definition, the difference of two rows, 
  Ƞ  ὭȟὮ are ρȟςȟȣȢȟὍform a valid contrast function. 

Similarly, a combination of rows with an appropriately 
selected coefficients form a valid contrast function. Other 
useful contrast functions can be formed in the vertical, and in 
the diagonal directions. The Gauss-Markov Theorem helps in 
finding the least square (LS) estimates. 

Gauss-Markov Theorem:  Under the assumption Ý: if 

Ὁώ  ╧ǋ♫ȟὥὲὨ В ╘◐ „ȟ  then every estimable function 

 ╬ǋ♫ has a unique unbiased linear estimate  which has 
minimum variance in the class of all unbiased linear estimates. 

The estimate may be found by   В ὧ by replacing 

the {} with any set of LS estimates {ȟȟȣȣȟ}.  

╧ǋis the transpose of coefficient matrix ἦ consisting of 
zeros and ones. The matrix ἦ is considered to have a full rank. 
The column matrix ♫ represents the parameter matrix. The 
matrix В Ὅ„  represents the covariance of observation matrix 

y which is assumed to be independent. All elements of this 
covariance matrix are zero, except the diagonal elements 
which are constant with the value equal to the variance  „ . 

The matrix Ἣǋ is the transpose of a column matrix ὧ, which is a 

coefficient matrix fulfilling the requirement В ὧ π. 

A least square (LS) estimate of observations is found by 
taking the sample mean of observations in four directions. 
These are horizontal, vertical, diagonal 45

o
, and diagonal 135

o
. 

The sample mean in horizontal direction is found by summing 
pixels of a row across all columns. This is represented 
by  ώȢ Вώ . Similarly the sample mean in the vertical 

direction is found by ώȢ Вώ . The LS estimates can be 

found by summing appropriate pixels in the diagonal 45
o
, and 

diagonal 135
o
 directions. Using the Gauss-Markov theorem, 

an unbiased estimate of contrast function  in the horizontal 
direction is, 

  ὧ  ὧώȢ (14) 

The variance of  is found by 

„  ὧ ὠὥὶ ώȢ  „
ὧ

ὐ
 (15) 

ὐ  is the number of observations of each column to find the 
LS estimate. „  is the variance with constant value of all 
observations. The „  has an unbiased estimate that is equal to 
the mean square error (MSE) such that Ὁ„  ὓὛὉ. The 
MSE is found by dividing the sum of square of error (SSE) 
with the respective degree of freedom. The estimate of 
contrast function is found by, 

„  ὓὛὉ 
ὧ

ὐ
 (16) 

The objective is to test the hypothesis, Ὄ which tests 
significant variation across {},  

ɱȡ        

Ù ɓ Å                   

É ρȟȢȢȟ)ȟ    Ê ρȟȢȢȟ*

Å   ͯ .πȟů             

 (17) 

There are generally two methods for multiple comparisons 
of estimated values. These are Scheffeôs S-method, and the 
Tukeyôs T-method. The T-method is preferred for pair-wise 
comparison, and the confidence interval is narrower than S-
method. The S-method is applicable to all other types of 
comparisons. Here, the T-method is used as only the pair-wise 
comparison is required. Given the gray levels of two set of 
pixels as   and  , the confidence interval of the 

parameter    ) is found by using the Tukeyôs T-test,  
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N
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Fig. 3. Flow chart of edge detection algorithm

  Ὕί ḶḶ Ὕί (18) 

The     ) represents estimate of  . The unbiased 

estimate s
2
 of variance ů

2
 has Ȭὺȭ degree of freedom and this is 

independent of samples. The ratio Ⱦί is the Studentized 
range given by ήὶȟὺ  ὺϳ . The distribution of Ȭήȭ has 
been tabulated for various values of Ȭήȭ and Ȭὶȭ in several 
standard textbooks of statistics. For reference see Table A-9 in 
[22]. An upper  -level of confidence interval corresponds to 
ρ Ⱦς percentile level. As an example an upper  πȢρ 

level of confidence interval corresponds to a percentile of 95%. 
The test confirms presence of an edge, if the above confidence 
interval does not include zero value; that is either the entire 
range is positive or the entire range is negative. 

V. SIMULATION RESULTS 

An overview of various steps is presented in Fig. 3. The 
algorithm considers a mask of 8x8 pixels. This mask size is 
selected to have four equal partitions, each 4x4 pixels. Each of 
these 4x4 pixels is further partitioned into four equal partitions, 
each 2x2 pixels. The processing is initiated from the top-left 
corner of an image, and scanned throughout from left to right 
and from top to bottom. A two-way nested design is applied 
on this mask. This generates two thresholds f_a and f_b. The 
threshold f_a signifies that there is enough variability among 
the four quarters of a mask each comprising of τ τ pixels. 
The threshold f_b signifies that there is enough variability 
within each quarter of a mask. These thresholds are compared 

with the values from tables given in standard textbooks [22] 
using ᾪ  ὓὛὃὓὛὉϳ ὊȠ ȟ , andᾪ  ὓὛὄὓὛὉϳ

ὊȠ ȟ . If any of these inequalities do not hold then it is 

considered that the variability across four quarters of a mask, 
and the variability within each quarter is not significant. This 
is deduced in accepting the Null hypothesis of no significant 
variation at two granular levels. The mask is moved to the 
next adjacent location. In case the f_a or f_b is greater than the 
threshold, then the Null hypothesis is rejected, against the 
alternate. This demonstrates that there is enough variability 
within the mask and may contain an edge. The mask needs to 
be subjected to further analysis. 

The next step involves in testing the mask for the presence 
of an edge in four directions using contrast functions. This 
step uses Tukeyôs T-test to mark edges in any of the four 
directions that are horizontal, vertical, 45 degree diagonal, and 
135 degree diagonal. An edge in the horizontal direction can 
be present anywhere between 1

st
 and 8

th
 row of a mask. 

Several contrast functions are therefore generated, and the 
highest of them is compared with the threshold for testing the 
hypothesis for presence of an edge. The location of an edge is 
marked at the specific location with the largest disparity level. 
Similarly, the location of an edge in the vertical direction is 
marked at the highest contrast location. This results in exact 
identifying the most appropriate location of an edge. The 
edges in diagonal directions are simply marked on the 
respective diagonals of mask. In case the test fails to identify  
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Fig. 4. Mask templates (a) horizontal (b) vertical (c) 45o diagonal (d) 135o diagonal 

an edge in any of the four directions then the next mask is 
selected. Only one edge is marked at a particular mask 
location, in a particular direction. The mask is moved left-to-
right and from top-to-bottom to scan the whole image. 

A. Nested Design 

The formulae for sum of square of effect-A (SSA), the 
sums of square of effect-B (SSB), and the sums of square of 
error (SSE) are given in Table 1. The aggregate of three sums 
of squares are always equal to the total sums of squares (SST). 
The respective mean square of effect-A (MSA), mean square 
of effect-B (MSB), and the mean square of error (MSE) are 
found by dividing the respective sums of squares with their 
corresponding degrees of freedom (d.f.) as given in Table 2 
and Table 3.  The mean square (MS) of an effect with a degree 
of freedom ǋ’ǋ has chi-square distribution with a ǋ’ǋ degree of 
freedom. This is represented by … . The ratio of two chi-
square distributions is represented by an F-test. The F-test for 
effect-A is measured by Ὢ ὓὛὃȾὓὛὉ which has chi-

square … … distribution; where ’, and ’ are the degrees 

of freedoms of MSA and MSE, respectively.  These degrees of 
freedoms are respectively equal to Ὅ ρ, and ВВ ὲ ρ 

which are equal to 3, and 4(4)(3) = 48 respectively. The F-test 
for effect-B is measured by  Ὢ ὓὛὄȾὓὛὉ, which is again 

a chi-square distribution, … …  with a degrees of freedom 

 ’ and  ’. The corresponding values are equals В ὐ ρ, 
and ВВ ὲ ρ, respectively. These are correspondingly 

equal to 4(3) = 12, and 4(4)(3) = 48. The details are given in 
Table II. 

B. The Contrast Function 

The contrast function is applied in four directions as in Fig. 
4. The marked and unmarked pixels are represented by ym, and 
yum, respectively. The four contrast functions are formed as, 

  ȟ  ȟ                            

  ȟ   ȟ  ώ  ώ
 (19) 

The  ȟ  and  ȟ  corresponds to marked set of pixels 

and unmarked set of pixels. The ǋύǋ corresponds to four 

directions as given in Fig. 4. The   ȟ  ȟ  is the 

corresponding estimated value, and the ώ  ώ   
represents pixel sample mean in marked and unmarked mask 
area. The total number of pixels in an ψ ψ pixel mask is 64. 
The total mean square of contrast function -3 is partitioned 
into mean square of treatment -3, and the mean square of 
error, -3%. The corresponding degrees of freedom are 
respectively equal to 3, 12, and 63. Using the Table A-9 in 
[22], the threshold is taken as 4.31 for  Ò χ, and Ö φπ for 
an upper 0.1 level of confidence interval corresponding to a 
percentile of 95%. The value of Ö φπ is taken as the closest 
value to the required Ö υφ value available in the Table A-9. 

C. Discussion 

The simulation results are given in Fig. 5 and Fig. 6. Fig. 
5(a) gives a set of five test images consisting of Lena, house, 
chilies, cameraman, and baboon. Fig. 5(b) reproduces the 
images of Fig. 5(a) with an additive Gaussian noise of N(0, 
400). The edges of the original image are detected using Sobel 
filter in Fig. 5(c). The mask size is a standard 3x3 pixels. Fig. 
5(d) gives edges detected by nested design using an ψ ψ 
pixel mask. The pixels of the mask are tested for the presence 
of level-A, and level-B effects. In case the hypothesis is 
affirmative then a follow-up contrast test are performed in 
above four directions. In order to be consistent with Sobel 
filter, the mask is shifted at every 3 pixels. This results in 
considerable overlap, but gives much improved results that are 
compared with those of Sobel filter. The comparison of Fig. 
5(c) and Fig. 5(d) reveals that both the approaches exhibit  

TABLE. V. PEAK SIGNAL-TO-NOISE RATIO, AND NUMBER OF EDGES IN PERCENTAGE OF PIXELS 

S.No Images 

PSNR (dB) Edges (% of pixels) 

Original  N(0,25) N(0,400) 
No Noise N(0,25) N(0,400) 

Sobel Nested Sobel Nested Sobel Nested 

1 Lena 14.5322 13.8472 13.8429 7.65 8.4629 8.6552 8.2973 5.5805 7.9597 

2 House 12.8944 12.8612 12.4262 5.1731 5.9555 4.0482 5.5634 6.4716 6.0989 

3 Chilli  13.5315 13.4983 13.035 7.2453 8.4164 8.0463 8.3641 6.8874 7.7858 

4 Cameraman 12.2835 12.2604 12.0398 7.6683 8.4145 9.1682 7.8503 4.6974 7.6912 

5 Baboon 16.1056 16.0374 15.1521 7.6286 12.9337 7.7011 13.0974 4.1538 14.2601 
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(a) (b) (c) (d) 

Fig. 5. (a) Original Images of Lena, House, Peppers, Cameraman, Baboon. (b) Images with additive noise of   N(0, 400). Edge detection of 

noise free images using  (c) Sobel filter (d) nested design 

comparable results in identifying the edges. The nested 
design has performed slightly better in terms of few additional 
edges marked than the Sobel filter. 

The edge detection with a moderate Gaussian noise of N(0, 
25) for Sobel and nested design is given in Fig. 6(a), and Fig. 
6(b). A comparison clearly explains that the Sobel filter is able 

to extract edges, but some of the background details are also 
marked. The nested design is able to identify clean edges. The 
performance of both algorithms under extremely heavy noise 
of N(0,400) is given in Fig. 6(c) and Fig. 6(d) for Sobel and 
nested design, respectively. A quick comparison of these 
images clearly reveals that the Sobel filter is unable to clearly  
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(a) (b) (c) (d) 

Fig. 6. Edge detection with moderate noise N(0, 25) (a) Sobel filter (b) nested design. Edge detection with heavy noise N(0, 400) (c) Sobel filter (d) nested 

design

mark the edges, while the nested design is able to identify 
edges with little or no background noise. 

A comparison of numerical result is performed by 
comparing peak-signal-to-noise (PSNR) ratio, 

ὖὛὔὙ 
ςυυ

В В ὍὭȟὮ  ὍὭȟὮ
 (20) 

Where, M, N are the number of pixels in horizontal and 

the vertical directions. ὍὭȟὮ, and ὍὭȟὮ are respectively the 
original, and the estimated image. 


