
 (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

239 | P a g e

www.ijacsa.thesai.org

Self-Protection against Insider Threats in DBMS

through Policies Implementation

Farukh Zaman, Basit Raza

Department of Computer Science

COMSATS Institute of Information Technology

Islamabad, Pakistan

Ahmad Kamran Malik, Adeel Anjum

Department of Computer Science

COMSATS Institute of Information Technology

Islamabad, Pakistan

Abstract—In today’s world, information security of an

organization has become a major challenge as well as a critical

business issue. Managing and mitigating these internal or

external security related issues, organizations hire highly

knowledgeable security expert persons. Insider threats in

database management system (DBMS) are inherently a very hard

problem to address. Employees within the organization carry out

or harm organization data in a professional manner. To protect

and monitor organization information from insider user in

DBMS, the organization used different techniques, but these

techniques are insufficient to secure their data. We offer an

autonomous approach to self-protection architecture based on

policy implementation in DBMS. This research proposes an

autonomic model for protection that will enforce Access Control

policies, Database Auditing policies, Encryption policies, user

authentication policies, and database configuration setting

policies in DBMS. The purpose of these policies to restrict insider

user or Database Administrator (DBA) from malicious activities

to protect data.

Keywords—autonomic; self-protection; insider threats; policies;

DBMS

I. INTRODUCTION

Data is probably most important and valuable asset on
which entire organization depends. However, it’s difficult to
memorize some data so these data should be kept in an
organized way in a special storage location called databases.
It’s necessary to build a trustworthy relationship with an
organization and its clients by protecting its data from possible
threats. Data should protect by imposing CIA (Confidentiality,
Integrity, and Availability) security model which should be
guaranteed in any kind of security system [5] [34] [35] [36]
[37] [38]. Without CIA security model data can be lost or
destroyed. Some security threat against database management
systems are:

 Misuse of sensitive data by the authenticated user

 Malware infection causing damage to data or programs

 Physical damage of database server

 Weak parameter setting or design flaws causing
vulnerabilities in DBMS

 Unauthorized access of DBMS

Database threat may have initiated either in an external
way or from within an organization. The external threat can be
detected by imposing software tools and technologies such as

Firewall, network traffic monitoring, enforcing password
mechanism and penetration testing [4]. However, it’s difficult
to monitor insider’s intent. According to CERT survey, more
than 700 cases were caused by the insider threats [6]. To
protect against these threats database should have some extra
features of Autonomic Computing like self-protection. We
first provide an introduction to Autonomic computing and its
components.

Autonomic computing has the ability to self-manage its
system [39] [40]. It controls all the functionality of computer
systems or applications without any user involvement.
Autonomic computing concept is taken from human body’s
autonomic nervous system, which controls human body
functions such as heart rate, respiratory rate, pupillary
response parts and Digestive system without the conscious
input of an individual [2]. How the human body mechanisms
manage itself without external involvement in many cases?
The main objective of autonomic computing is to build a
system that has a self-managed characteristic and make a
decision on its own by using high-level functionalities when
any unpredictable problem occurs. Autonomic computing
framework based on autonomic components that interact with
each other. The autonomic computing system has the ability to
respond to any problems occur and make the system precise
and available to the user. Instead of directly user input in the
system, User defines general procedures and policies that
guide the self-management process. IBM defines four main
self-* components [7] [41] [42] [43] [44] [45].

 Self-optimization

 Self-healing

 Self-configuration

 Self-protection.

Some other extended self-* features are defined as in [8]
are Self-Adaption, Self-regulation, Self-learning, Self-
awareness, Self-organization, Self-creation, Self-management
and Self-descriptive. When all these self-* features of self-
managed apply to any system that system has the ability to
protect any external or internal threats and heal itself when it
is needed without any user input [9][3]. Autonomic functions
and their management are automated in a control loop task
called MAPE. Self-optimization consists of the system’s
automatic ability to configure and optimize itself to achieve
top level performance against current settings, workload, and
resources [9]. In DBMS environment different features are

https://en.wikipedia.org/wiki/Respiratory_rate
https://en.wikipedia.org/wiki/Pupillary_dilation
https://en.wikipedia.org/wiki/Pupillary_dilation

 (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

240 | P a g e

www.ijacsa.thesai.org

used to achieve the best optimization. The query optimizer is
used to optimize and execute the query execution plan. The
Database statistic manager is used to collect statistics of
database objects. Such features are already configured to
obtain self-optimization in DBMS.

Self-healing is to recover the damaged part or data
automatically without any human intervention in order to
remain active and operating correctly [9] [45]. Self-healing is
a grand-challenge to an autonomic system which first detects a
problem in the system, diagnoses it, and then repairs it
automatically. Self-Healing deals with lacking precision in
the uncontrolled situation and recovers it according to the
dynamics. Healing the system is a serious problematic
situation when the information is being corrupted by a
malicious attack or any insider’s malicious intent or by
mistake as this could lead to disastrous decisions when it
comes to Military or Health database. For this, the system
must be smart enough that it can detect the problem, prepare a
plan against it and execute it to bring the database to a normal
state.

An autonomic computing system configures its
components automatically to achieve its goal [9]. In this
environment, the system automatically detects changes and
configures, reconfigures its components accordingly [48].
Since the adaptation needs to achieve optimal performance,
the category of self-configuring is close to self-optimize.
Following features provide self-configuration in autonomic
DBMS: Memory components, dynamic parameter
configuration, supporting objects for performance purpose,
such as indexes, materialized views, partitions, etc. are all
components which are used to provide self-configuration
ability in the Database. Self-protection is a key component of
self-managed systems capable of automatically defend against
malicious attacks at runtime. A self-protecting system or
application proactively identifies malicious threats and
triggers necessary actions to stop them [9] [46] [47]. Security
professionals used different tools and skills such as (protection
filters, detectors of suspicious activity, logging mechanism &
backtracking tools) to protect their systems [1].

The organization of this research paper comprises of the
following sections. Section 2 discusses autonomic computing
in Database Management system that mainly focuses on the
self-protecting perspective. Section 3 discusses current
approaches to database protection and section 4 present
proposed autonomic model w.r.t self-protection. provides
analysis and discussion of database protection and section 5
concludes the research and provide future directions.

II. AUTONOMIC COMPUTING IN DBMS

In today’s era Complex Databases and their manageability
have become a serious concern for organizations nowadays.
These databases need to be easily accessible and available to
their clients. For this purpose, it requires expert Database

Administrators (DBA) for their continuous monitoring,
evaluation, and availability. Keeping in view the scarcity of
such expert Database Administrators in the market and the
cost of their hiring, the concept of the Autonomic Database
Management System is introduced which is capable of
managing and maintaining such databases without any human
intervention [2].

A. Self-Protection in DBMS

Self-protection of the database is to protect your data from
both external threats and internal threats and make available
24/7 to their clients. Experienced DBAs are being hired by
organizations for continuous monitoring and availability of
complex databases. As a DBA has full access to the database
so he or she can easily carry out or harm organization data.
The organization uses different techniques and methods to
protect their information or data from the internal user, but
these techniques and methods are insufficient or not enough.
In this regard, the database should have some extra ability or
features of autonomic computing, i.e. Self-healing, Self-
protection, Self-configuration and Self-optimization to protect
and manage its information without any human interventions.
The autonomic computing system has the capability to
respond automatically to any issue occurred and to make the
system precise and available to the user.

A number of authors use different techniques and
approaches to achieve database security. Data is an important
asset for any organization and its security is critical for
maintaining the relationship between an organization and its
end users. Different techniques such as access control,
encryption scheme, auditing policies, and inference control are
used in database management system by a different
researcher. While combining autonomic properties such as
self-healing and self-protection with database security features
such as access control, encryption, database auditing features,
we can get the more secure DBMS without the involvement or
intervention of any DBA or security engineer. Such autonomic
properties are very useful for insider threat or monitoring
DBA activities. Table I, presents protection techniques against
different attacks and Self-protection of external threat is
mostly implemented by configuring the firewall and network
traffic monitoring. On the other hand, self-protection against
internal threat or insider’s malicious intent should achieve by
obtaining best security policies [2]. Implementing these
policies within a database block every attempt to compromise
the state of the database. Database security achieved by user
access control mechanism and by using stored procedures to
manage the internal database threat. When the attacker
attempts a request to change security configuration request
carried to the stored procedure for verification. Fig 1 shows
some critical areas need to be considered in Database Security
[5] and how different researcher use different techniques and
methods to mitigate these risks.

 (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

241 | P a g e

www.ijacsa.thesai.org

TABLE. I. PROTECTION TECHNIQUES AGAINST DIFFERENT ATTACKS

Protection Techniques Attack type Reference

Access Control Policies Used for both insider and outsider attacks [11, 12, 16, 19, 22]

Mixed Cryptographic Database Used for both insider and outsider attacks [13]

RSA Encryption Technique Insider attack [15,17]

Attributes Based Encryption Used for both insider and outsider attacks [3]

Hash-Based Encryption Used for both insider and outsider attacks [18, 28, 29]

Data Centric Approach Insider attack [23]

SQL Injection
and insider misuse detection system

Used for both insider and outsider attacks [20]

Auditing Method Used for both insider and outsider attacks [24, 27]

Hackers exploit these critical areas and security holes in a
database application to gain database administrator (DBA)
level grants and privileges to access sensitive data and cause a
denial of service (DOS) attacks. Following are the security
threats that need attention [10].

 Excessive and unused privileges: granted extra
privileges to user that exceed the requirement of their
job function

 Privilege abuse: authenticated user misuse authentic
database privileges for illegal purposes

 SQL injunction: targets traditional database and big
database [NoSQL]. Inserting malicious statement into
the input field of web application and big data
components.

 Malware: an advance attack that uses multiple
approaches to stealing organization data. these
approaches are phishing emails and malware.

 Weak audit trail and misconfigured database

 Storage media Disclosure such as backup media needs
for special protection.

III. CURRENT PROTECTION APPROACHES

Database security has the main concern of computer
security or information security. Security Analyst uses
different security controls, i.e. (physical, procedural and
technical) to protect their organization data. Protecting
databases on multiple hosts and securing information within
the database are done with these controls. It’s all required
deeper research to protect the database from malicious
activities. Researcher used different method and techniques
such as Access control [4] [11] [12] [14] [16], Encryption
technique [3] [13] [15], Audit Trail [19] [24] [27] mechanism
for Database security purposes. The Summary of these
methods and techniques are as follows.

A. User Identification

User identification means to verify any user or application
identity who use information or data. User identification is
based on password management system and password should
keep secret all times. Password management system control
through the user profile. Self-protection is a key component of

self-managed systems capable of automatically defend against
the malicious user, attacks at runtime. A self-protecting system
or application proactively identifies users, malicious threats
and triggers necessary actions to stop them [9] [46] [47].
Security professionals used different tools and skills such as
(protection filters, detectors of suspicious activity, logging
mechanism & backtracking tools) to protect their systems [1].

B. Access Control

Jabbour, et al. [4] presents Insider threat security
architecture (ITSA), of self-protection in databases against
insider threats. In this architecture privileged user
compromised the database state where ITSA can protect. ITSA
framework consists of security policy and defense mechanism
managed by the super system owner. Security policy contains
system parameter and their values while built-in logic is
embedded in defense mechanism in the form of stored
procedures and triggers and this logic is used to protect the
system parameters. Three main components of ITSA are
Autonomic Access Control Enforcement (AACE), Integrated
Self-Protection Capability (ISPC), and Integrated Business
Intelligence Capability (IBIC). The author discussed how the
same scenario can be moderated under the Insider threat
security architecture framework.

Jabbour, et al. [11] present notion based self-protection
framework within the database by using the policy based
approach. These policies are created by the system owner and
block every attempt that compromises the Database state. Each
action in the database is verified by the system owner before it
applied to the database. Protection is achieved by
implementing stored procedures, functions and triggers that
have the built-in logic of checking insider user request. When
an insider or attacker wants to change database security
parameters, its request for changing parameters goes through a
verification process through stored procedures before the
following change can be applied to the database. If the change
request truly verifies set of policies, then it can be applied to
the database and its audit trail is maintained in the database. If
the request is not verified from stored procedures, then change
request is blocked and system owner is alerted through email
and audit trail is maintained. Author present four types of
policies, i.e. verifying and controlling user actions, monitoring
database resources, changing security policy conditions and
their parameters.

 (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

242 | P a g e

www.ijacsa.thesai.org

Fig. 1. Critical areas need to be considered in DBMS Security

Jabbour, et al. [12] addresses a protective framework for
securing autonomic system policies. The author used two
types of methodology in this framework. The first type is to
partition security policies, blocks into numerous levels and
then adding complexity to the entire architecture of the
policies. This assists the purpose by adding alleged obscurity,
which denies the potential attackers from decoding the
policy’s contents and directives. The second method is to
insert false sense or false elements to different partitions of the
policies (parameters and their values). Whose purpose is too
confusing an attacker and giving a false sense of
accomplishing his/her goal. K. Ahmed, et al. [14] addressed
different types of a security layer, i.e. Database administrator
(DBA), the System administrator (SA), Security officer (SO),
Database developers and client or end user. These security
layers are applied at almost all DBMS i.e. (Oracle, SQL
Server, DB2, Teradata) environment. Theses security layers
are responsible for implementing some well-defined security
policies. The purpose of implementing these policies to ensure
security features such as Confidentiality, integrity, efficiency,
access control and privacy within the database.

A. Patil, et al. [16] presented Access control policy
mechanism is used to secure a database against insider user.
Three types of AC policies are mainly used, i.e. discretionary
access control policy (DAC), Mandatory access control policy
(MAC) and Role Base access control policy (RBAC). DAC
based on the discretion of information creator or owner of the
data. DAC used to restrict access of user on the basis of user
identity and authentication. In MAC all users follow the same
rule created by the Database administrator. RBAC used in a
large organization where turnover rate of the employee is high.
RBAC model built on the notion of role where role signifies a
specific function within the organization. Each user performs a
specific action which is granted to the specific role associated
with it.

C. Auditing

Auditing is one of the important components in Database
security infrastructure. In the database production environment
in various database operations such as user login, Data
manipulation language statements (DML), Data definition
language statements (DDL) are needed to obtain an audit trail.
Different methods and techniques are used by Researcher for
auditing. The Database auditing purpose is to monitor and
record user actions what he or she performs on the database.

Olumuyiwa O. Matthew et al. [24] discussed several
already existing database auditing techniques such as
statement auditing, privilege auditing, schema object auditing
and fine-grained auditing etc. at various database
environments. The author also discussed issues concerning
about handling of audit trails against different database
environment. According to author Database Auditing performs
level by level. At first level logging (login and logoff)
activities are a monitor, second level privileges check are an
audit. In third level changes made to database schema are
monitored, fourth level database DML activities are monitored
and fifth level concerned with auditing changes made to a
stored procedure, function and other codes. In next level
database error is an audit and in the last level auditing any
changes made to the definition of what is to be audited.

Li Yang [25] developed to extend auditing concept and
technique by applying practical lab experience on security and
auditing of a relational table that comprising an audit log of all
commands and causes data changes on the target table. Some
Common techniques of database auditing for monitoring
database access control attempts, user login and logoff
attempts, Data Control Language (DCL) activities, Data
Definition Language (DDL) activities, and Data Manipulation
Language (DML) activities. Erroneous queries should also be
logged and monitored. Database auditing is implemented

 (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

243 | P a g e

www.ijacsa.thesai.org

through log files and audit tables. According to author security
and auditing should be applied with integrated way.

Liu and Huang [26] present a framework of network-based
database auditing that offers zero-impact of database
performance. An agent is configured in passive mode to
capture traffic flowing from the Database system and extract
the audit log data which is beneficial for audit log analysis and
then store this log information on another server. The author
used Berkeley Packet Filter (BPF) filtering mechanisms to
capture traffic and compare them against given conditions.
They divided their methodology into three steps: packet
filtering, the packet analyzing and data storage. Then alarm
will be generated against any database anomaly or upon
detection of malfunction of security regulation.

Narongrit Waraporn [27] suggested four methods
implement database auditing for historical data. These
methods are row-based auditing, column-based auditing, log-
table auditing and semi-structure-based auditing. In row-based
auditing, a separate audit table was created against each
relational table. The operational table contains the last updated
value while auditing table contains both static and historic
data, two timestamps (start time and end time), operation type
(update, delete, insert) and username. Row-based auditing
caused data redundancy because the same record exists in two
tables. To remove data redundancy column-based auditing is
used. Column-based auditing does not contain the static data
in auditing table. Column-based auditing caused null value in
auditing table. The author suggests two approaches using log-
table mechanisms. In the first approach extra table creates
against each auditing column, while in second approach the
only single audit table will be created against all operational
tables. Semi-structure-based auditing also categories in two
ways, i.e. Object-relational type, and XML type.

D. Fabbri et al. [31] proposed the idea of select triggers
which are executed implicitly when a select query takes place
on a specific object on which it is defined. Mostly none of the
database management systems are implementing such a select
trigger. Only Microsoft, however, is working on select query
trigger and its researchers have presented their work earlier.
Mostly triggers are based on the insert, update or delete
commands, but the author also extends trigger in select
command. It is also important to understand the action which
is performed during trigger execution. The major issue of
integrating select triggers in the DBMS is to handling a low
overhead mechanism while ensuring the semantics are richly
adequate to capture the modification of data access using SQL
queries.

D. Encryption/ Decryption

In [3], Akinyele et al. present a flexible approach using
attribute-based encryption (ABE) to generate self-protecting
electronic medical records (EMRs), when health data is
transferred on cloud servers or cell phones which are outside
the trust boundaries of the healthcare organization. The EMR
system ensures availability when the provider is offline. In this
approach, the patient can encode each node of medical records
in XML-based EMR file with attached access policy before it
is transferred to the cloud storage. The Policy engine creates
these access policies over electronic medical records on the

basis of different user types (patient, physician, and insurance
agent). Policy engines further define attribute sets, i.e. record
type, patient age, and date to encode each record using
attribute based encryption.

H. Kadhem, et al. [13] presented Mixed Cryptographic
Database MCDB [13], a new data classification framework
used to protect the databases by encrypting it in the semi-
trusted scenario where data are shared among different parties
using different keys. In this technique, database encryption is
done over the unsecured network in an altered way that
involves keeping numerous keys of different parties. In This
scheme encryption is done at the client side, untrusted
database and server side and it use symmetric key encryption
mechanism. The purpose of keeping numerous keys by
different authenticated parties that when the database is
attacked by the attacker (insider or outsider) the database is
not compromised. The performance of queries and security
analysis is affected because of encryption Algorithms.

S. Sachdeva et al. [15] proposed negative database as extra
security layers on generic databases. Negative data defined by
some database security researchers as a database that contains
a large amount of data consisting of bogus data and as well as
real data. In this approach, author separated the information
into two parts, i.e. sensitive information and non-sensitive
information. Non-sensitive information directly stores in the
Database while sensitive information first encrypted using
RSA encryption algorithm and then convert the cipher text of
sensitive information into base 32 shrink its length and then
create large amount counterfeit. Now encrypted sensitive data
along with counterfeit data stored in the database.

L. Bouganim et al. [18] suggest A new approach which
embeds the security server inside the hardware security
module (HSM). HSM is used to manage users, privileges,
encryption policies and keys. HSM is responsible for all
cryptographic operations and encryption keys are not exposed
from this technique. Security server cannot modify or altered
because it’s fully embedded in the tamper-resistant Hardware
Security module. The main limitation with this approach is
that the Hardware Security Modules require a complex piece
of software to be embedded in it. In this approach, encryption
is done at the storage level, database level, and application
level.

R. Jena et al. [28] proposed a cryptographic hash based
function and digital timestamp technique to prevent from
silently corrupting audit log files from both insider and
outsider malicious user. Proposed technique will be
implemented for the database system and trusted timestamp is
efficiently used if logs are compromised or corrupted. The
author implements their results in a high-performance engine.
Audit log files comprise of log entries and each entry contains
an element in a hash chain which authenticates the value of
previous log entries. Two additional columns such as
HashCode and Chain_ID and an additional table for digital
timestamp is added. Chain_ID contain at most recent digital
timestamp and it is generated by timestamp authority. Hash
code based on previous values or data. If any audit log entry is
tempered then database forensic analysis algorithm identifies

 (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

244 | P a g e

www.ijacsa.thesai.org

the tempering and regulate who, when, where and what
components of audit log are tempered.

Kyriacos E. Pavlou et al. [29] developed a prototype
DRAGOON to monitor the audit logs of the database and then
detect malicious activities and perform forensic analysis
against both insider and outsider users. They added some
additional properties in DRAGOON to support information
accountability in a cloud computing environment. The author
used a cryptographic one-way hash function to protect silently
corrupting audit log from an insider or an outsider or an
unknown error in DBMS. Analyst used a series of algorithms
which were designed for the forensic purpose to detect
malicious activities. Extending some more features in
DRAGOON architecture in database management systems
increase scalability and it supports multiple databases and
DBMSs. Extended DRAGOON architecture isolates four
different areas of control. The first area is user application and
GUIs controlled by the company itself. The second area is
monitored by cloud provider where the monitored database
resides (CLOUD A). The third area is monitored by cloud
provider where DRAGOON resides (CLOUD B). The final
area is END, which should not use cloud services. The
extended DRAGOON architecture is scalable and
customizable for providing a level of security and forensic
analysis.

Kyriacos E. Pavlou et al. [30] highlighted the deep
relations between time and the definition, Temper detection,
forensic analysis of temper detection, and characterized
different level of a database exploitation within the context of
information accountability. Time in the context of applying
information accountability and identifying time-security
interactions. They categorized their audit system in three
phases. The first phase is audit system execution phase second
is their sub-phases and the third phase is an action performed
during each phase. Transactions are hashed and cumulative
associated with a cryptographically strong hash function in the
first phase and the results of its digitally notarized with an
external digital notarization service. In the second phase hash
values are again extracted and matched from previously
notarized. If the hash values are not matched from previously
notarized, then these values are detected. The author
introduces different forensic algorithms to detect when

malicious activities occurred and what type of data has been
corrupt.

E. Inference control

Inference control is a data mining technique used to attack
databases where malicious user or attacker infers data from
complex databases at a high level. The inference is used to
find information hidden from common users. Popeea T et al.
[32] presented multi-layer security to database anonymity and
database security in a data warehouse which contains
information of current and past employees of large companies.
They mainly focus on securing communication channel,
securing operating system and securing the database. They
developed an engine based on java, which provides protection
of both static and dynamic sensitive data. In this paper, an
inference can be classified into six categories, i.e. splits
queries, overlapping inferences, subsume inferences,
complementary inferences, unique characteristic inferences
and functional dependency inferences. To achieve high-level
database security, they used mandatory access control layer,
secure communication channel SSL, Ubuntu OS enhanced
with MAC module and MYSQL as an open source DBMS.

Yang et al. [33] provide a secure inference control model
by the trusted computing paradigm. This model entrusts the
implementation of inference control to specific users’
computer platforms. In this architecture, the database server is
liable for the implementation of traditional access control,
while the individual user’s platform is allowed to handle
inference control based on their own query logs in a
decentralized manner. This architecture is used for complex
and large databases. In traditional architecture, both access
control and inference control are imposed at The Database
server side. The Access control module (ACM) implements
access control functionality, while the inference control
module (ICM) performs a designated inference control
algorithm. In the new architecture, inference control module
resides at user side instead of server side. The user requests a
query to inference control module (ICM), ICM transfer this
query request to the access control module (ACM). ACM
further check user requests against access rules and policies. If
the user has granted access, then ACM return a response to
ICM together with IC policy. Table II summarized the
literature review with respect to protection in DBMSs.

TABLE. II. LITERATURE REVIEW SUMMARIZED

Refer

ences
Research Contribution Attack Type

Protection

Techniques Used
Limitation

[11]

Policies are enforced for securing

database configuration from inside user or
DBA

Insider Attack
Embedding policies in
DBMS

Policies based on the notion.
Database configuration specific

policies.

No confidentiality provided as DBA

can view data.

[12]
Protect security policies of autonomic
system

Insider attack

Partitioning and giving a

false sense by adding false

elements

[13]

Encryption of database over untrusted

networks,

data classification is based on data
ownership

data is confidential if one key

compromise

Both for Insider and
Outsider attacks

MCDB technique using any
symmetric algorithm

Performance of queries and security

analysis is affected because of
encryption

 Algorithms.

[4]
ITSA based on security policies and

defense mechanism.
Insider attacks

Security policy and defense

mechanism

Works only Autonomic Access

Control Enforcement, Integrated Self-

 (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

245 | P a g e

www.ijacsa.thesai.org

Security policies consist of database

parameter and their values
Defense mechanism comprises logic

encoded in a set of stored procedures.

Protection Capability, and Integrated

Business Intelligence Capability

[14]
Define database security layer
Each layer has some specified policies for

authentication and authorization purpose

Used for both insider

and outsider attack

Policies based

[15]

Proposed extra security layer through

negative database techniques
Entity, attribute, and value (EAV) model

is used

Insider attack
Negative DB and RSA
encryption technique

More complex

Taking more query execution time
 More costly and variable k value is

fixed

[16] Review key access control models
Both for Insider and
Outsider attack

DAC, MAC, RBAC

[17]

Protection of real world health databases

to restrict access to data from internal user

or outsider

Both for Outsider and
Insider attack

RSA Technique

Provide application based Database

security
Not for generic database

Security.

[3]

Implementing autonomic property to

protect electronic medical records
(EMRs) using attribute-based encryption

scheme (ABE).

Both for inside and
outside attacks

Attributes based encryption

 access control using RBAC

and content based

Encryption and decryption time based

on a number of attributes in access

policies.

[18]

Review different encryption level,

techniques, and methods

Key management and their issues.

Both Insider and

outsider attacks

HSM Encryption Strategy

for key management.

HSM now requires a complicated piece

of software to be embedded in it

[19]

DBMS-Layer is a most appropriate layer

to protect against insider for exfiltration
detection.

Virtualization techniques are used to

tackle provenance.

Insider attack

Role based access

Profiles and threshold
Provenance Embedding and

virtualization Techniques

Modeling and Specification of Lineage

Information
Authentication and Authorization

Systems and network issues

[20]

Discuss database security threats against

both internal and external threats.

Proposed SIIMDS to detect both internal
and external attacks.

Both internal and

external attacks

SQL Injection and Insider
Misuse Detection System

(SIIMDS)

[21]

A large number of abnormal queries are

running in same specific time caused

query-flood attacks.
Degrade database performance.

Insider attack Attack detection algorithms DB performance slow

[22]

Review all requirements of access control

for the context of scalability, granularity,
and situation-aware decisions.

Insider attack

RBAC approach

Fine Grained Access
Control

Implementation is not done.

[23]

Each activity of users is modeled on the

basis of SQL commands running and data
generated by that user.

Insider Attack
DATA-CENTRIC

APPROACH
Performance consideration

[24]

Outlines main auditing techniques and

methods

Issues relating to handling of audit trail
are also discussed and key important

impacts of security are also highlighted

Both internal and

external attacks

Auditing methods such as
FGA, Statement auditing,

Privilege auditing, schema

object auditing

Discussed already existing auditing

technique

[25]

To engage students actively, practical labs
are developed to assimilate theories of

database security and auditing

Use of two major database products
(Microsoft SQL Server and Oracle 10g

Paper used for

Database Security

purpose

Monitoring database access

attempts, DCL activities,
DDL activities, and DML

activities

Some issues regarding terminology and

capabilities of DB are not completely

discussed in a hands-on lab.

[26]

Monitor network flowing into and of DB

system and generate log information

about DB
Execute audit analysis through event

correlation

Generate alarm in case of any violation

detected

Both internal and

external attacks

Agent-based network
monitoring

Used Berkeley Packet Filter

(BPF) filtering to scan
packets

Network-based logging has its

limitation too if DB has been
encrypted, then passive

packets capturing method will be

invalid

[27]

Discuss different four methods to achieve

database auditing.
Discuss multiple audit log columns, tables

for transaction logs

Single audit table for transaction logs

Paper used for
Database Security

purpose

Row-based auditing

Column-based auditing
Log-Table auditing

Semi-structured based

auditing

Row-based auditing caused data

redundancy

In column-based auditing, null values
in the table would lead to problem

[28]

Auditing data integrity themselves is a
very serious concern

Malicious activities are performed both by

authorized user and as well as
unauthorized user

Both internal and
external attacks

Cryptographic Hash-based

technique used for forensic

analysis
Trusted Timestamping used

to prevent the log files from

both internal and external

Implement in the only online

transactional database.
Does not produce tamper resistant audit

log

 (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

246 | P a g e

www.ijacsa.thesai.org

users

[29]

Developed a prototype called DRAGOON
for information accountability

periodically audits database, detect

malicious activities and then perform
forensic analysis

DRAGOON support non-cloud databases

Deploy how existing prototype extending
within the cloud

Both internal and
external attacks

DRAGOON use

cryptographic hashing
technique

Concurrency issue raised when

transaction data is replicated at

application level

Hashing occur at the application level is
open design issue

[30]

Notarization and validation of database

exploit the temporal semantics of

transaction times database.

Insider attacks
Monochromatic forensic
algorithms

[31]

Triggers are useful to track and log any

changes made on data by executing any

DML commands
Trigger assists row-level auditing of both

DML and DDL commands

Select trigger fires when a select
operation takes place on the object

Internal attacks Select trigger techniques
Some scenario’s large number of false

positive occur

[32]

Inference detection is done here with SSL

communication channel
The Re-identification algorithm is an

implementation of k-anonymity

Both internal and
external attacks

Split queries Data anonymity is not fully completed

IV. PROPOSED AUTONOMIC MODEL W.R.T SELF-

PROTECTION

In this proposed model firstly we will explain how an
adversary or the attacker can perform what types of malicious
actions to compromise database state. In our survey adversary
can be internal users or database administrator. He or she can
perform the following actions to attack the database. The
Attacker can change some configuration parameters of
database management system that change the state of the
database in a way that Database performance is slow or it’s not
obvious to its end user. For example, in Oracle database,
database administrator changes various system configuration
parameters such as disable auditing parameter or run the
database in NOARCHIEVE log mode or changes some other
security parameter that compromises the database health or its
behavior.

In some organization, DBA with full access to the database
can run any DML (update, delete or insert) or DDL (create,
alter, drop, truncate) commands on sensitive data or
information to change it. The DBA can also drop any database
or drop any schema in the database. Audit trail used for
forensic analysis, provide documentary proof of the sequence
of actions that have affected at any time a specific operation.
The attacker also Change or remove Audit trail information in
the database. If a user is granted database privileges that
exceed their job role and requirements, then those privileges
can be abused or misused.

Fig 2 shows proposed autonomic model against insider
threats in DBMS with respect to self-protection diagram. In
this proposed model, we mainly discussed self-protection
property in database management system against insider
threats. Self-protection against insider threats in DBMS,
previously proposed techniques is based on embedding
security policies for enforcing database security configuration
parameters. In our proposed architecture, we imposed CIA
(Confidentiality, Integrity, and Availability) security model for
building policies against these three properties.

In this model super user, build security policies for
database security. These security policies are related to Access
control, Database configuration parameter setting policies,
password management policies and encryption policies, etc.
When an insider user or DBA attempts to change in the DBMS
through SQL command Prompt, the request goes for
verification phase. If the request verifies set of policies, then
the request will be applied in DBMS and audit trail record will
also be saved in a log table, else insider request will be
rejected, alert through an email is generated to the super user,
notify the insider user and audit trail will be recorded. For
monitoring malicious activities against internal threats we used
Alert mechanisms. When any malicious activities found alert
will be generated.

 (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

247 | P a g e

www.ijacsa.thesai.org

Fig. 2. Autonomic Model against Insider Threats in DBMS with respect to Self-Protection

In data confidentiality insider user or DBA has full access
to view sensitive information and non-sensitive information.
In our model super user-segregated information into two ways,
i.e. sensitive information is non-sensitive information.
Sensitive information stored in encrypted form in the database
after applying the encryption function and the non-sensitive
information is stored as it is in the database. The only
superuser can encrypt or decrypt sensitive information. Our
purpose is to make sensitive information more confidential
from inside user. We evaluated our proposed Architecture with
an already existing architecture based on the following
criteria:

 Set of Polices is verified using a set of queries.

 Improved Autonomous property of self-protection.
(Autonomic Improving Capability)

 Generation of alerts at the time of any attack in DB.

We are expecting our enhanced model provides more
secure protection against insider threats in database
management systems.

V. CONCLUSION AND FUTURE WORK

Data is probably most valuable property on which entire
organization depends. Database security is one of the main
concerns of the researchers nowadays. This paper addressed
the security threats against database management systems and
how to mitigate these threats by using autonomic computing
properties. The research emphasized some critical areas such
as access control, encryption, auditing, accountability and
inference control that need to be considered in database

security. This study identified, how malicious user exploits
these areas and gain DBA level access to the database and
causes a denial of service attack. An autonomic model is
proposed which protects data against insider threats. A number
of security techniques and policies are addressed that should
be used in database management system to achieve protection
against the insider threats. The premise of our proposed model
is to highly enforce the concept of separation of duties in an
organization and also brings security. We adapted the concept
of building system level policies in such a way that meets the
autonomous self-protecting capabilities to defeat privileged
insider users and unintentional actions. Organizations owner
or super-user builds policies for database security against
critical areas. The alerts can also be generated through an
email against malicious activities of insider user.

As for future research, we will implement and demonstrate
all above mention policies in database management system.
We plan to implement access control policies at the database
connection level, DML and DDL command level to achieve
self-protection in DBMS. Similarly, we will implement
database configuration level policies, encryption level policies
and auditing level policies, etc. We believe that it would be
valid and beneficial attempts to apply and demonstrate these
different levels of policies in the DBMS environment to
achieve security.

REFERENCES

[1] Depalma, N.; Claudel, B.; Lachaize, R, “Self-Protected System: an
experiment,” In 5th Conference on Security in Network Architectures
(SAR). Addison Wesley, Longman, England, 2006.

 (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

248 | P a g e

www.ijacsa.thesai.org

[2] B. Raza, A. Mateen, M. Sher, M. M. Awais, and T. Hussain,
“Autonomicity in Oracle Database Management System,” 2010 Int.
Conf. Data Storage Data Eng., pp. 296–300, Feb. 2010.

[3] A. Akinyele, C. U. Lehmann, M. D. Green, M. W. Pagano, Z. N. J.
Peterson, and A. D. Rubin, “Self-protecting electronic medical records
using attribute-based encryption,” Cryptology ePrint Archive, Report
2010/565, 2010.

[4] Jabbour, G. G., & Menasce, D. A, “The Insider Threat Security
Architecture: A Framework for an Integrated, Inseparable, and
Uninterrupted Self-Protection Mechanism,” 2009 Int. Conf. Comput.
Sci. Eng., pp. 244–251, 2009.

[5] L. Basharat, F. Anam and A. Wahab Muzaffar, “Database Security and
Encryption; A Survey Study”, International Journal of Computer
Application, vol. 47, (2012), pp. 28-34.

[6] Cert, “cert insider,” 2007. [Online]. Available:
http://www.cert.org/insider-threat/research/database.cfm?

[7] P. Horn, “a u t o n o m I c o m p u t i n g : the information technology
industry loves to prove the impossible possible. We obliterate barriers
and set records with astonishing regularity. But now we face a problem
springing from the very core of ou,” 2011.

[8] M. R. Nami and K. Bertels, “A survey of autonomic computing
systems,” in ICAS ’07: Proc. Third International Conference on
Autonomic and Autonomous Systems. Washington, DC, USA: IEEE
Computer Society, 2007, p. 26.

[9] M. C. Huebscher and J. A. McCann, “A survey of autonomic computing
- degrees, models, and applications,” ACM Comput. Surv., vol. 40, no.
3, 2008.

[10] P. A. Pe, “Top Ten Database Security Threats The Most Significant
Risks of 2015 and How to Mitigate Them Red Flag.”

[11] Jabbour, G. G., & Menasce, D. A, “Policy-Based Enforcement of
Database Security Configuration through Autonomic Capabilities,”
Fourth Int. Conf. Auton. Auton. Syst., pp. 188–197, Mar. 2008.

[12] I. Technology and C. Science, “Securing Security Policies in Autonomic
Computing Systems,” 2008.

[13] H. Kadhem, T. Amagasa, and H. Kitagawa, “A Novel Framework for
Database Security Based on Mixed Cryptography,” 2009 Fourth Int.
Conf. Internet Web Appl. Serv., pp. 163–170, 2009.

[14] K.Ahmad, “Policy Levels Concerning Database Security,” no. Feb 2016.

[15] S. Sachdeva, “Implementing Security Technique on Generic Database,”
2015.

[16] A. Patil and P. B. B. Meshram, “Database Access Control Policies,”
Applications (IJERA) vol. 2, no. 3, pp. 3150–3154, 2012.

[17] N. Batra and Pooja, “Secure Mechanism for Medical Database Using
RSA,” IJAIEM vol. 3, no. 7, pp. 320–327, 2014.

[18] L. Bouganim and Y. Guo, “Database encryption,” in Encyclopedia of
Cryptography and Security, Springer, 2010, 2nd Edition.

[19] Bertino and G. Ghinita “Towards mechanisms for detection and
prevention of data exfiltration by insiders.” In Proc. 6th ACM Symp. on
Information, Computer, and Communications Security. pages 10–19,
2011.

[20] Asmawi A, Sidek ZM, Razak SA. " System architecture for SQL
injection and insider misuse detection system for DBMS," in
International Symposium on Information Technology (ITSim'2008),
2008, pp. 1 -6.

[21] A. C. Squicciarini, I. Paloscia, and E. Bertino, “Protecting databases
from query flood attacks,” in ICDE, 2008, pp. 1358–1360.

[22] Park, J. S. & J. Giordano, “Access Control Requirements for Preventing
Insider Threats,” Proc. ISI’06 LNCS 3975, pp. 529–534, Springer,
2006.

[23] S. Mathew, M. Petropoulos, H. Q. Ngo, and S. Upadhyaya, "Data-
Centric Approach to Insider Attack Detection in Database Systems,"
Recent Advances in Intrusion Detection, 2010.

[24] O. O. Mathew and C. Dudley. "Critical Assessment of Auditing
Contributions to Effective and Efficient Security in Database
Systems." Int Conf on CSITA, At Royal Orchid Central Bangalore,
India pp. 1-11, March, 2015.

[25] Yang, L., “Teaching Database Security and Auditing,” Proceedings of
the 40th ACM Technical Symposium on Computer Science Education
(SIGCSE), Chattanooga TN, March, 2009.

[26] Liu, L. and Huang, Q. "A Framework for Database Auditing". Computer
Sciences and Convergence Information Technology, 2009.

[27] Waraporn, N. “Database Auditing Design on Historical Data.” In
Proceedings of the Second International Symposium on Networking and
Network Security (ISNNS ’10). Jinggangshan, China, April. 2010, pp.
275-281

[28] Jena, R., Aparna, M., Sahu, C., Ranjan, R. and Atmakuri. "Ensuring
Audit Log Accountability through Hash Based
Techniques." International Journal of Future Computer and
Communication 1.4, Dec. 2012.

[29] Kyriacos E. Pavlou and Richard T. Snodgrass, "Achieving Database
Information Accountability in the Cloud" Tucson, AZ 85721–0077,
USA, 2002.

[30] Pavlou, Kyriacos E., and Richard T. Snodgrass. "Temporal implications
of database information accountability." 2012 19th International
Symposium on Temporal Representation and Reasoning. IEEE, 2012.

[31] Fabbri, D., Ramamurthy, R. & Kaushik, R. “SELECT triggers for data
auditing.” Proceedings of the 29th International Conference on Data
Engineering (ICDE). IEEE:1141-1152, 2013.

[32] T. Popeea, A. Constantinescu, L. Gheorghe and N. Țăpuș, "Inference
Detection and Database Security for a Business Environment.",
International Conference on Intelligent Networking and Collaborative
Systems, (2012), pp. 612-617.

[33] Yang, Y., Li, Y., and Deng, R.H., “New paradigm of inference control
with trusted computing.”, in Proceedings of the 21st annual IFIP WG
11.3 working conference on Data and applications security, Redondo
Beach, CA, USA. 2007, pp. 243-258.

[34] Martin S. Olivier. “Database privacy: balancing confidentiality, integrity
and availability.” SIGKDD Explor. Newsl., 4(2):20–27, 2002.

[35] Von Solms R, Van Niekerk J. “From information security to cyber
security.” Computers & Security. 2013 Oct 31;38:97-102.

[36] Safa, N. S., Von Solms, R., & Furnell, S. “Information security policy
compliance model in organizations.” computers & security, 56, 70-82,
(2016).

[37] Chen D, Zhao H. “Data security and privacy protection issues in cloud
computing.” InComputer Science and Electronics Engineering
(ICCSEE), 2012 International Conference on 2012 Mar 23 (Vol. 1, pp.
647-651). IEEE.

[38] Tianfield, Huaglory. "Security issues in cloud computing." In Systems,
Man, and Cybernetics (SMC), 2012 IEEE International Conference on,
pp. 1082-1089. IEEE, 2012.

[39] Buyya R, Calheiros RN, Li X. “Autonomic cloud computing: Open
challenges and architectural elements.” InEmerging Applications of
Information Technology (EAIT), 2012 Third International Conference
on 2012 Nov 30 (pp. 3-10). IEEE.

[40] Patel A, Taghavi M, Bakhtiyari K, JúNior JC. “An intrusion detection
and prevention system in cloud computing: A systematic review.”
Journal of network and computer applications. 2013 Jan 31;36(1):25-41.

[41] Maggio M, Hoffmann H, Papadopoulos AV, Panerati J, Santambrogio
MD, Agarwal A, Leva A. “Comparison of decision-making strategies for
self-optimization in autonomic computing systems.” ACM Transactions
on Autonomous and Adaptive Systems (TAAS). 2012 Dec 1;7(4):36.

[42] De Lemos, Rogério, Holger Giese, Hausi A. Müller, Mary Shaw, Jesper
Andersson, Marin Litoiu, Bradley Schmerl et al. "Software engineering
for self-adaptive systems: A second research roadmap." In Software
Engineering for Self-Adaptive Systems II, pp. 1-32. Springer Berlin
Heidelberg, 2013.

[43] Frei, Regina, Richard McWilliam, Benjamin Derrick, Alan Purvis,
Asutosh Tiwari, and Giovanna Di Marzo Serugendo. "Self-healing and
self-repairing technologies." The International Journal of Advanced
Manufacturing Technology 69, no. 5-8 (2013): 1033-1061.

[44] Eze, Thaddeus, Richard Anthony, Chris Walshaw, and Alan Soper.
"Autonomic computing in the first decade: trends and direction."
In Proceedings of the Eighth International Conference on Autonomic
and Autonomous Systems (ICAS). 2012.

 (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

249 | P a g e

www.ijacsa.thesai.org

[45] Ferreira da Silva, Rafael, Tristan Glatard, and Frédéric Desprez. "Self-
healing of operational workflow incidents on distributed computing
infrastructures." In Proceedings of the 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (ccgrid
2012), pp. 318-325. IEEE Computer Society, 2012.

[46] Chen, Qian, Sherif Abdelwahed, and Abdelkarim Erradi. "A model-
based approach to self-protection in computing system." In Proceedings

of the 2013 ACM Cloud and Autonomic Computing Conference, p. 16.
ACM, 2013.

[47] De Palma, Noel, Daniel Hagimont, Fabienne Boyer, and Laurent Broto.
"Self-protection in a clustered distributed system." IEEE Transactions on
Parallel and Distributed Systems 23, no. 2 (2012): 330-336.

[48] Ayala, Inmaculada, Mercedes Amor, and Lidia Fuentes. "Self-
configuring agents for ambient assisted living applications." Personal
and Ubiquitous Computing 17, no. 6 (2013): 1159-1169.

