
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

281 | P a g e

www.ijacsa.thesai.org

Real-Time H.264/AVC Entropy Encoder Hardware

Architecture in Baseline Profile

Ben Hamida Asma
1
, Dhahri Salah

2

1,2
Laboratory of Electronic and Micro-Electronic

(LAB-IT06),

Faculty of Sciences of Monastir,

University of Monastir, Tunisia

Zitouni Abdelkrim
3

3
College of Education in Jubail,

University of Dammam,

Saudi Arabia

Abstract—In this paper, we present a new hardware

architecture of an entropy encoder for an H.264/AVC video

encoder. The proposed design aims to employ a parallel module

at a pre-encoding stage to reduce a critical path. Additionally, the

arithmetic table elimination method is used to eliminate the

memory cost. Besides, the reduction in the size of VLC tables

offers area saving. This architecture is synthesized on an FPGA

Virtex IV. The simulation results show that this design can

operate up to 234 MHz, which allows processing a 4CIF video

format in real time.

Keywords—H.264/AVC; CAVLC; Exp-Golomb

I. INTRODUCTION

The entropy encoder is the last part of an H.264/AVC
encoder. H.264/AVC identifies two types of entropy coding
methods, which are the Context-Based Adaptive Variable
Length Coding (CAVLC) and the Context-Based Binary
Arithmetic Coding (CABAC) [1]. In a baseline profile, only
the CAVLC is utilized as an entropy coder mode with
Exponential-Golomb (Exp-Golomb) codes. The CAVLC
produces coding with higher efficiency than the conventional
VLC coding. However, the CAVLC adds a high computational
complexity due to context-adaptive characteristics.

Some work has presented the VLSI architecture of the
CAVLC encoder to improve the performance of the entropy
encoder. However, most work has focused only on how to
increase the throughput of the CAVLC encoder. For instance,
the pipelining architecture is usually used [2, 3, 4]. The work in
[2] proposed a two-stage pipeline architecture. This method
could reduce the time needed to process a block until reaching
half of the mean time but it involved double memory size to
store all syntax element information. In [3], the parallel coding
of level and run-before sub-module encoders was applied.
Moreover, the authors in [5] tried to increase the throughput by
scanning the coefficient in parallel. However, it clearly doubled
the area cost.

To reduce this area cost, [5] put forward optimized
coefficient token (coeff-token) VLC Look-Up Tables (LUTs)
into 9-bit words instead of storing 16-bit words. An arithmetic
manipulation of encoding levels was exploited in [6] to
eliminate some of the large size of conventional VLC LUTs.

On the other hand, some work has concentrated on
designing a low-power CAVLC encoder. For instance, the

authors in [7] used the side information-aided and symbol
look-ahead techniques to minimize memory access.

This paper presents full hardware architecture of entropy
coding, which contains Exp-Golomb and CAVLC encoders for
an H.264/AVC baseline profile. To improve the timing
performance, parallel coding modules are introduced at the pre-
coding stage. To decrease the cost memory, an arithmetic table
elimination technique is exploited to encode level and run-
before sub-module encoders instead of using conventional
VLC LUTs. Furthermore, the optimized coeff-token VLC and
total-zero LUTs are applied to reduce the memory size as well.

This paper is organized as follows. Section 2 introduces
both CAVLC and Exp-Golomb entropy encoding algorithms.
The proposed architecture designs of the CAVLC and the Exp-
Golomb are illustrated respectively in sections 3 and 4. Finally,
the conclusion is drawn in section 5.

II. ENTROPY CODING ALGORITHM IN H.264

In the baseline profile, H.264 uses two tools for entropy
coding: the CAVLC coding and the Exp-Golomb one, as
presented in Fig.1. The residual information (quantized
coefficients) is coded using the CAVLC, while the other data
are coded utilizing the Exp-Golomb.

Exp-Golomb
coder

CAVLC
coder

Assembler

Syntaxe

elements

Coded

elements

Fig. 1. Block diagram of entropy coder in baseline profile

A. CAVLC algorithm

The CAVLC is the entropy encoding used to encode the
residual information in 4x4 or 2x2 blocks, which are generated
by the quantification step [1]. Each block must be firstly
scanned in a zigzag order to produce five main syntax
elements. The latter were defined in [1] as:

 The coeff-token represents two values : the total
number of non-zero coefficients (total-coeff) and the
number of trailing ones (TT1s) in the block. The trailing
ones (T1s) are non-zero coefficients whose values

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

282 | P a g e

www.ijacsa.thesai.org

are+/- 1 at the end of the zigzag sequence. Each block
has at most three T1s.

 The signs of T1s are the coefficients with absolute
value equal to one from zero to three bits wide. They
represent the signs of the T1s coefficients in the reverse
order.

 The levels are the values of each non-zero coefficient in
the block, other than the T1s case. They are taken in the
reverse order.

 The total-zeros is the total number of zero coefficients
before the last non-zero coefficient in the zigzag
sequence.

 The run-before represents the runs of zeros before each
non-zero coefficient in the reverse order.

After that, these syntax elements will be encoded into five
sequentially coding steps. The coeff-token, run-before and
total-zero steps are encoded through different VLC LUTs. The
CAVLC encoder steps are depicted in Fig.3.

 In step 1, the coeff-token are encoded using four VLC
LUTs, based on the number of the total coefficients in
the left block (nA) and the upper block (nB) of the
current block (the context-adaptive notion), as shown in
Fig.2.

 In step 2, each T1s is encoded with its corresponding bit
sign in a reverse order. The positive sign is represented
by „0‟, and the negative sign is represented by „1‟.

 In step 3, the level values of the 4x4 block are encoded
in a reverse order using seven VLC LUTs selected by
the total-coeff and TT1s. The choice of the VLC LUTs
to encode each level depends on the magnitude of the
last encoded level (the context-adaptive notion).

 In step 4, 15 VLC LUTs are utilized to encode the total
zeros, indexed by the total-coeff value.

 In step 5, the run-before is coded with codewords taken
from seven VLC LUTs selected by zero-left values,
which is the total number of the remaining zero
coefficients.

Top block

nB

Left Block

 nA

nC

Current Block

If (nA = nB =0) then

nC =0;

Else

nC =(nA +nB)/2;

End if;
 (a) (b)

Fig. 2. Context-adaptive notion at coeff-token coding step (a) Data
dependence (b) Correspond pseudo-code

B. Exp-Golomb algorithm

The Exp-Golomb coding is performed on two stages as
provided in Fig.3.

Begin

Inputs

(K)

Classification of each entry

according to the type of mapping

(me, ue, se or te)

Calculation of codeNum

according to specific table in

ITU-Recommendations [1]

Codenum = k si k >1,

Codenum =1÷ k si k 1
CodeNum = k

CodeNum =2×ǀ kǀ si k 0,

CodeNum =2×ǀ kǀ-1 si k >0

Me Te Ue Se

M = log2 (codeNum + 1)

INFO = (codeNum +1)-2M

CodeNum

M

INFO M

Codeword = [M zero] [1] [INFO]

End

M bits

(2xM+1) bits

Step 1:
 CodeNum calculation

Step 2:
Codeword generation

M bits 1 bit

Fig. 3. Diagram of Exp-Golomb algorithm

 Firstly, each syntax element to be coded with the Exp-
Golomb noted k is mapped to a non-negative integer
named “codeNum.” Based on the statistical
characteristic, each syntax element is represented by a
codeNum in various ways [1].

 If a syntax element is always larger than zero or equal
to zero and if the most frequently occurring values are
the lower ones, the applied process will be called
“unsigned Exp-Golomb (ue) coding”. The value of the
corresponding codeNum is the same value of the
unsigned element.

 If a syntax element is signed and the expectation value
is zero, the applied process will be named “signed Exp-
Golomb (se) coding”. The value of the corresponding
codeNum is mapped to the syntax element value k as
follows:

 CodeNum = 2|k| when (k ≤ 0)

 CodeNum = 2|k| - 1 when (k > 0)

 If an unsigned element has different statistical
characteristics from the ue, its corresponding codeNum
is then mapped to its value in a special way, as
indicated in ITU-T recommendations [1]. The applied
process is called “mapped Exp-Golomb (me) coding.”

 If an unsigned element has 1 as the largest possible
value, then “the truncated Exp-Golomb (te) coding”
will be applied ; i.e., the bit representing the syntax
element is the inverted value of the element.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

283 | P a g e

www.ijacsa.thesai.org

Secondly, the codeNum parameter is mapped to coded
string bits. The latter has the following generic form:

 {M-zeros, 1, M-bit INFO} (1)

where M and INFO are given by equations 2 and 3.

 M = floor (log2 [codeNum + 1]) (2)

 INFO = codeNum +1 – 2M (3)

III. PROPOSED CAVLC ARCHITECTURE

The suggested design processes each 4x4 block through
two sequential stages. The pre-coding stage produces the
Syntax Elements (SEs) to be encoded from the residual input
frames, and the encoding stage translates each SE into a related
codeword length and codeword value. In the following
subsections, both stages are described.

A. Pre-encoding CAVLC stage architecture

The pre-encoding architecture is depicted in Fig.4. It has
five main modules and four Random Access Memories
(RAMs). The main modules are depicted in the figure below:

CAVLC
scanning

Syntax
elements
calculator

TT1s

Total-coeff

Total-zeors

Non-zero
coefficients

RAM

(16X12 bits)

Sub-module of
new representaion

of non-zero
coefficient

Run-before
Calculator

Run-
before

RAM

(16X4 bits)

Zero-
left

RAM

(16X4 bits)

acc
Zero-left

Run-before

non-zero
coefficient

End_flag

En End
pre-encoding

CAVLC

inverse-zigzag
reordered-
coefficients

RAM

(16X12 bits)

Pre-Encoding CAVLC Controller

Table selector
block

nA

nB

nC

Reordered-Coeff

-

Clk

Rst

Pre-coding CAVLC stage

Fig. 4. Pre-encoding CAVLC architecture

The zigzag module is responsible for ordering in an inverse
zigzag order the residual information coming from the
quantification process. After that, the zigzagged reordered
coefficient is stored in a first memory called “inverse-zigzag
reordered-coefficient RAM.” This module is not included in
the CAVLC modules, but it is required for its correct operation.

The generator module of syntax elements has as an input
the reordered coefficients. This module generates the first
syntax elements to be produced, which are the TT1s, the total-
coeff, and the total-zeros. When the values of these syntax
elements are calculated, the next two modules, shown in red

squares, start to be processed. Both modules are independent.
Consequently, they are processed in parallel.

The parallel module on the top is responsible for storing the
T1s and the level values into a “non-zero coefficient RAM”
memory. The total number of levels and TT1s represent all
total non-zero coefficients. Each non-zero coefficient is saved
with a new format that represents the absolute value of the non-
zero coefficient in 11 bits and the sign bit in the 11

th
 bit, as

illustrated in Fig.5. This format allows simplifying the level
encoding process.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

284 | P a g e

www.ijacsa.thesai.org

non-zero cofficient valueSign

11 bits1 bits

(a)

If non-zero_coeff(11) ='1' then

 non-zero_coeff_RAM (conv_integer(i)) <= '1'& (b"00000000000" - non-zero_coeff_RAM (10 downto 0));

Else

 non-zero_coeff_RAM(conv_integer(i)) <= non-zero_coeff;

End if;

(b)

Fig. 5. (a) New representation of non-zero coefficient and (b) its

correspondent pseudo-code

The second parallel module is formed by combinatorial
circuits and two RAMs needed for storing each run-before and
zero-left syntax element, respectively. First, this module
permits calculating the different run-before values. After that,
each calculated run-before value will be put into the “Run-
before RAM” memory. When all the run-before values are
detected and stored, the controller enables the process of the
next module. This latter calculates the set of zero-left values
and stores them into a “Zero-left RAM ”memory. The zero-left
value is initially equal to the total-zeros, and then this value is
decremented with the accumulation of run-before values. The
mathematical relationship between the zero-left and the run-
before is shown below.

 Zero-left (i) = Total-zeros - ∑ Run-before (4)

It is worth noting that the size of all used memory is 16
elements, which is the maximum number of non-zero run-
before and zero-left coefficients per 4x4block. Besides, the use
of the inverse-zigzag reordered-coefficient, Run-before and

Zero-left RAM memories is required for bitstream correctness.

The nC is also generated at this stage by a combinatorial
circuit shown in Fig. 6. It selects the appropriate VLC LUTs
for coeff-token coding.

The controller at the pre-encoding stage is in charge of
defining the control unit of the different RAMs and
synchronizing the various modules. When the end-pre-
encoding signal is set active, all the syntax elements will be
ready to be encoded.

00000
nA

nB

+

nC

nA_valid&nB_valid

Fig. 6. Table selector architecture

B. Encoding CAVLC stage architecture

The encoding CAVLC architecture is illustrated in Fig.7.
The CAVLC hardware design has the outputs of the CAVLC
pre-encoder design as inputs. It is composed of seven main
modules: five modules in charge of encoding the different
syntax elements, one module for the main controller, and
another one for the output packet. These various modules and
the optimized techniques used at this stage are detailed in the
following subsections.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

285 | P a g e

www.ijacsa.thesai.org

Total-coeff

T1s

Zero-left

Run-before

End pre-encoding
CAVLC

Main CAVLC Controller

Coeff-token
encoder

T1s
encoder

Level
encoder

Total-zeros
encoder

Run-before
encoder

End Coeff-token encoder

End T1s encoder

Total-zeros codeword length

End total-zeros encoder

Run-before codeword value

End RB encoder

Codeword
value

nC

Output
packer

Selector

Codeword
length

Encoding CAVLC stage

En

Fig. 7. Encoding CAVLC architecture

1) Optimized VLC LUTs for coeff-token and total-zero

encoders:
The coeff-token and total-zero encoders are conventionally

coded by different VLC LUTs in the ITU-T Recommendations
[1]. However, large memory size is required to store the whole
codewords‟ values and lengths, as presented in these traditional
VLC LUTs. In the light of these details, we suggest a new
representation of the codeword length and codeword value into
small size. For instance, the length of the original codewords in
conventional VLC coeff-token LUTs is in the range of 1 to 16,
and their values are in the range of 0 to 63. Therefore, 5 bits are
enough to represent the length information into the “coeff-
token codeword value ROM” memory, and 6 bits are enough to
represent the value information into the “coeff-token codeword
length ROM” memory. An example of the new representation
of codewords is given in Table I.

This method is applied for all VLC LUTS needed for coeff-
token and total-zero sub-module encoders .It enables
optimizing the VLC LUTs for both coeff-tokens and total-
zeros. An example of an optimized VLC LUT is depicted in
Fig.8.

TABLE. I. AN EXAMPLE OF A NEW REPRESENTATION OF CODEWORD IN

VLC LUT

Original codeword Proposed codeword

length Value Length Value

10000 00000000000000010 10000 000010

5 bits 16 bits 5 bits 6 bits

coeff-token
codewords

value
 ROM

(64x16bits)

Total-coeff &T1s

6 bits

coeff-token
codewords

length
 ROM

(64x5bits)

16 bits

5 bits

Coeff-token

value

Coeff-token

length

coeff-token
codewords

value
 ROM

(64x6bits)

Total-coeff &T1s

6 bits

coeff-token
codewords

length
 ROM

(64x5bits)

6 bits

5 bits

Coeff-token

value

Coeff-token

length

(a) (b)

Fig. 8. Block-diagram representation of an example of (a) traditional VLC
coeff-token LUT (b) optimized VLC coeff-token LUT

2) Arithmetic table elimination technique for level

encoder:
Levels are encoded using the arithmetic table elimination

technique to replace seven level VLC LUTs represented in the
ITU-T recommendations [1]. This technique reported from [6]
permitted the reduction in the memory cost area. Table II
reports the pseudo-code describing the elimination procedure,
which presents the advantage of a very simple implementation
circuitry.

The format of the level code is arranged as follows. The

maximum width of codewords’ length is 28 bits.

 Code = 0…0 1 x…x s (5)

Prefix length Suffix length

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

286 | P a g e

www.ijacsa.thesai.org

Note where s is the level sign, 1 for negative, 0 for positive,
and the sequence of zeros on the left of 1 and the sequence of
bits on its right are respectively the level prefix and the level
suffix, whose lengths, prefix length and suffix length,
distinguish the codewords.

This step also illustrates the context-adaptive characteristic
such that suffix length N (ranging from 0 to 6), used for
encoding the actual level, must be the same one to encode the
previous level. Otherwise, it will be eventually incremented if
its magnitude satisfies (3x2

(N-1)
). The pseudo-code of the

adaptive context is shown in Fig.9.

If ǀ Level ǀ > 3x2
(N-1)

then

N <= N +1;

Else

N <= N;

End if;

Fig. 9. Pseudo-code of adaptive-context at level coding step

TABLE. II. CODING ALGORITHM FOR LEVEL SYMBOL

N Range Coding algorithm

N=0

ǀlevelǀ≤7

Code=0…0 1

Prefix length= (ǀlevelǀ≪1)-2+s

Suffix length=0

Size=prefix length+1

8≤ǀlevelǀ≤15

Code=0…0 1 s

Prefix length=14

Suffix length=3

Size=19

Level suffix=binary value(ǀlevelǀ)

ǀlevelǀ≥16

Code=0…0 1 x…x s

Prefix length=15

Prefix length=11

Size=28

Level suffix=ǀlevelǀ-1-[15≫ (N-1)]

N=1 to 6 All

Code=0…0 1 x…x s

If (ǀlevelǀ-1< [15≪ (N-1)]) then

Prefix length= (ǀlevelǀ-1) ≫ (N-1)

Suffix length=N-1

Size =prefix length + suffix length

Level suffix=ǀlevel-1ǀ%2(N-1)

Else

as case ǀlevelǀ≥16 for N=0

End if

3) Arithmetic table elimination technique for run-before

encoder:
The seven VLC LUTs required for run-before encoding are

eliminated and substituted by a circuitry implementing the
pseudo-code in Table III. With this approach, we achieve a
reduction in the memory cost as well.

TABLE. III. CODING ALGORITHM FOR RUN-BEFORE SYMBOL

Zeroleft Coding algorithm

<3

If Runbefore(i)=0 then

Code=1

Size=1

Else

Code=Zeroleft(i)-Runbefore(i)

Size =Zeroleft(i)

End

≥3 and <6

If RunBefore(i)≤6-Zeroleft(i) then

Code=3-RunBefore(i)

Size=2

Else

Code=Zeroleft(i)-RunBefore(i)

Size=3

End

=6

If RunBefore(i)=0 then

Code=3

Size=2

Elsif RunBefore(i)=1 then

Code=0

Size=3

Elsif RunBefore(i)=6 then

Code=4

Size=3

Else

If LSB[RunBefore(i)]=0then

Code =RunBefore(i) >> 1

Else

Code =RunBefore(i)

End if

Size=3

End

>6

If RunBefore(i)<6 then

Code =7-RunBefore(i)

Size=3

Else

Code=1

Size=RunBefore(i)-3

End

4) Main CAVLC controller:
The proposed CALVC controller is presented in Fig.10.

The “idlestate ” represents the initial state. When the pre-
encoding stage is finished (indicated by the signal “end pre-
encoding CAVLC”), the finite state machine will go to the
“coeff-token state”. When the coeff-token encoder process is
finished (indicated by the signal “end coeff-token encoding”),
the finite state machine will affect the appropriate value of the
signal “mux-selector” to select the output of the coeff-token
encoder as final outputs. Afterwards, the finite state machine
will go to the “T1s state” . When the T1s encoder process is
completed, the finite state machine will produce an appropriate
value for the signal “mux-selector” to select the outputs of the
T1s encoder as final ones.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

287 | P a g e

www.ijacsa.thesai.org

This process, which is produced in the coeff-token and T1s
states, will be replicated at level, total-zero and run-before
states. At the end of the run-before encoding process, the
signal “end run-before encoding” is set high, informing that
the CAVLC completely encodes the 4x4 block, and a new
block can be encoded.

Total-zeros
state

T1s state

 idle state

End pre-encoding CAVLC
='0'

End level encoding ='0'

End T1 encoding ='0'

End T1 encoding ='1'
Level state

Coeff-token
state

Run-before
state

End level encoding='1'

End total-zeros encoding
='0'

End coeff-token encoding
='0'

End run-before encoding
='0' Mux-selector 000

Mux-selector 001

Mux-selector 010

Mux-selector 100

Mux-selector 101

Mux-selector 110

End pre-encoding CAVLC
='1'

End coeff-token encoding
='1'

End total-zeros encoding
='1'

End run-before encoding
='0'

Fig. 10. Main CAVLC controller

5) Output packer:
The output packet receives as an input the signal “mux-

selector” from the main controller and all the outputs of the
encoder modules (codeword values and codeword lengths).
Two-word multiplexers compose this module: one to select the
appropriate codeword value and the other to select the
appropriate codeword length. The codeword value and
codeword length serve as final outputs of a CAVLC coder.

IV. PROPOSED EXP-GOLOMB ARCHITECTURE

The proposed Exp-Golomb design is presented in the form
of modules in Fig.11. Every module represents the functioning
way of each stage of the Exp-Golomb algorithm already
explained in section II.

CodeNum
calculactor

module
Binary

logarithmic
calculator
module

INFO
calculator
module

Output bit-
generator

module
+

k

Mapping
type

" 1"

CodeNum N M

INFO
01001..

Fig. 11. Block diagram of Exp-Golomb

Firstly, in every k entry, the“codeNum generator” module
generates the corresponding codeNum value according to a
mapping type (ue, te, se or me). When the mapping type is ue,
te or se, the codeNum value will be generated from
the“codeNum generator1” Module. This block produces the
codeNum according to various mathematical operations
described in section 2, which only involves shifting,
complementation, and increasing by 1. Otherwise (mapping
type =me), the codeNum will be generated by a second
generator module, called “codeNum generator2”, based on four
ROMs according to two mode types (intra or inter) and to the
prediction mode. The detailed architecture of these two

generators of codeNum values is shown, respectively, in Fig.12
and Fig.13.

Word Mux
4:2

(7 bits)

sel
Mux select
generator

Mapping type

2 bits 2 bits

7 bits

7 bits

7 bits

7 bits

7 bits

1/K

Kx2-1

Kx2

K

CodeNum1

Fig. 12. Diagram of codeNum generator1

Word mux
4:2

(7 bits)

sel
Mux select
generator

Chroma type

2 bits

7 bits

7 bits

7 bits

7 bits

7 bits

ROM1
Intra

ROM2
intra

ROM1
inter

ROM2
inter

CodeNum2

K

Perdiction mode

Fig. 13. Diagram of codeNum generator2

The logarithm operation is required to produce the value of
M, which is utilized for the calculation of the codeword length
(equivalent to 2M+1). However, its implementation requires an
expensive circuit that constitutes the hardware challenge of
implementing an Exp-Golomb encoder. This problem can be
solved in the following way: Consider that log2(N) is
equivalent to the number of M times divided by 2 until the
output reaches the zero value as in equation 3. Thus, we
acquire an approach to get the value of M by computing the
shift operation number.

 M = log2(N) ↔N = 2
M

= 2x2x2x2….x2 (6)

The suggested architecture of the logarithm operation is
given in Fig.14. The output of the barrel shifter is loaded in the
register FF. The output Q of this register is connected to the
inputs of the multiplexer and the combinatorial circuit of the
OR gates. This circuit is responsible for checking whether the
output Q reaches the value 0 or not by producing a one-bit
value, noted C, as an output.

Initially, the counter is set at 0. If the value of Q is different
from zero; the value C is equal to 1. Consequently, the AND
gate will be an ascending counting; the counter will count up
by a single step. In this case, the multiplexer is going to assign
the value Q to the input K of the barrel shifter. When Q reaches
the value 0, the value of the output C is set to 0. Therefore, the

M times

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

288 | P a g e

www.ijacsa.thesai.org

logic 0 generated on the output of the AND gate stops the
counter. In this case, the output of the counter corresponds to
the output value M such as M =log2 (N).

Barrel shifter

Register FF

Computer
CLK

Combinatory
circuit

N

M

C Q

k

1 0

ZZZZ

1 0

Fig.14. Architecture of binary logarithm

After the logarithm operation, the INFO value should
follow formula (3), which involves shifter and subtraction
operations.

The last module (Exp-Golomb bit-generator) is in charge of
producing the output code word considering the value of M and
INFO. It is designed by the implementation of the finite state
machine that contains two states, as shown in Fig.15. The i

th

counter is initialized to state 1. The second state corresponds to
the generation of the output codewords bit by bit, following the
structure presented in formula (1). Each bit is generated in one
clock.

State1

i 0

 State2

i i +1

Act =0

Act =1

Inputs : M et INFO

Output : bit by bit

i<2xM

i>2xM

Fig. 14. Finite state machine of bit Exp-Golomb bit-generator

V. PERFORMANCE ANALYSIS AND COMPARISON

A. Performance analysis

The proposed CAVLC and Exp Golomb architectures are
modeled in VHDL, simulated, and synthesized by Modalism
6.4 and Xilinx ISE development tools 14.1, respectively. The
synthesis results of physical resource utilization on Virtex VI
for CAVLC and Exp-Golomb modules are reported
respectively in Table VI and Table V.

TABLE. IV. PHYSICAL RESOURCES UTILIZATION OF CAVLC MODULES ON

VIRTEX VI

Module
Slice

LUT

Slice

register

Pre-encoding CAVLC 298 467

nC calculator 10 0

Encoding

CAVLC

Coeff-token encoder 143 0

T1s encoder 42 21

Level encoder 316 77

Total-zero encoder 62 0

Run-before encoder 156 103

CAVLC controller 6 3

Output Packet 61
0

Total CAVLC 589 557

TABLE. V. SYNTHESIS RESULTS OF EXP-GOLOMB ON VIRTEX VI

Module Slice

LUT

Slice

register

CodeNum generator 24 0

Binary logarithm 36 38

INFO-calculator 10 30

Exp_golomb bit-generator 44 26

Exp-Golomb Controller 26 13

Total Exp-Golomb 126 109

Through the obtained results, it is possible to verify that the
CAVLC coder achieves an operation frequency of 234.14 MHz
and requires an area occupancy of 847 LUTs. The maximum
frequency of the Exp-Golomb architecture is 234.14 MHz, and
the memory cost is 847 in terms of LUTs.

It is worth mentioning that no external or embedded
memory is used to give a platform independent estimation of
memory cost reduction, suitable for ASICs and FPGAs of
different generations and families.

Fig. 15. Simulation results of CAVLC

The simulation results provided in Fig.16 show that the
processing time per block exhibit a large variety. We take an
average of 131 cycles per block. The performance of our
proposed architecture is calculated as follows:

The number of clock cycles needed for 4CIF (704 x 576)
video with 30-fps=

The number of clock cycles per block

x the number of blocks per macroblock

End block

coding

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

289 | P a g e

www.ijacsa.thesai.org

x the number of macroblock per 704

x 576 video frame x the number of frames per second=

131 x 27 x 1665 x 30 clock cycles=

176,673,150 clock cycles

The number of required clock cycles is calculated. We
assume the worst case without the skip mode. This means that
our suggested architecture can meet the real-time processing of
4CIF @30fps when running at 234 MHz.

B. State-of-the-art comparison

To give a reasonable comparison, both designed CAVLC
and Exp-Golomb are synthesized with different FPGA
platforms, as presented in Table VI.

TABLE. VI. COMPARISONS TO HIGH-PERFORMANCE DESIGNS CAVLC

 Tech
Frequency

(MHz)

Area

Gates

(ASIC)
LUTs

(FPGA)

[2] 0.13 250 32K -

[3] Virtex 5 180 - 1079

[8] Stratix IV 200 - 6549

[9] Spartan 3 62.5 - 3447

[10] Virtex 5 204.3 - 2563

[11] 0.18 100 73.5k -

[12] 0.18 125 15K -

Proposed

Spartan 3 91.43 - 754

Virtex 5 234.14 - 847

Spartan 3 313.87 1176

Concerning speed performance, the proposed CAVLC
design exhibits a maximum operating frequency, which is
mostly superior compared to other CAVLC design solutions.
The memory cost of our design is also very promising, thanks
to the optimized VLC LUTs and the arithmetic table
elimination techniques.

TABLE. VII. COMPARISONS TO HIGH-PERFORMANCE DESIGNS EXP-
GOLOMB

Tech

(um)

Logic

(LUTs)

Frequency

(MHz)

[10] Virtex VI 134 309.98

[13] Stratix II 199 191.8

Our design Virtex VI 126 254.4

Table VII summarizes the specification of the suggested
Exp-Golomb encoder and gives a comparison with the work
presented in [10] and [13]. The operating frequency of the
proposed architecture is lower than those presented in [10], but
the suggested design has a lower area demand. Compared to
the design shown in [13], the proposed architecture employs a
higher area demand and a higher operating frequency.

VI. CONCLUSION

In this paper, a full hardware design entropy encoder for the
H.264/AVC baseline profile has been put forward. Different

techniques have been employed to improve the performance of
the entropy encoder. Parallel modules are applied to speed up
the coding efficiency. Meanwhile, the employment of the
optimized VLC LUTs and Arithmetic method have been used
to reduce the area cost. The synthesis results on Virtex IV have
shown that the design occupies about 847 LUTs and can be
targeted for a real-time 4CIF video format when operating at
234 MHz.

REFERENCES

[1] Draft ITU-T Recommendation and Final Draft International Standard of
Joint Video Specification (ITU-T Rec. H.264 ISO/IEC 14496-10 AVC),"
in Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, JVT-
G050rl, May 2003.

[2] HuiboZhong,Yibo FAN, Xiaoyang ZENG , A Parallel CAVLC Design
For 4096x2160p Encoder, in Proc. 2012 IEEE International Symposium
on Circuits and Systems

[3] F.L.L. Ramos, B. Zatt, T.L. Silva, A. Susin, and S. Bampi. A High
Throughput CAVLC Hardware Architecture with Parallel Coefficients
Processing for HDTV H.264/ AVC Enconding. In Proceedings of the
17th IEEE International Conference on Electronics, Circuits, and
Systems (ICECS), 2010, Dec 2010, pages 587 – 590

[4] C. D. Chien, K. P. Lu, Y. H. Shih, and J. I. Guo, “A high performance
CAVLC encoder design for MPEG-4 AVC/H.264 video coding
applications,” in Proc. IEEE ISCAS‟06, 2006, pp. 3838–3841.”

[5] Nguyen, N. M., Tran, X. T., Vivet, P., & Lesecq, S. (2012, October). An
efficient Context Adaptive Variable Length coding architecture for H.
264/AVC video encoders. In Advanced Technologies for
Communications (ATC), 2012 International Conference on (pp. 158-
164). IEEE.”

[6] Albanese, L. F., & Licciardo, G. D. (2010, September). An area reduced
design of the Context-Adaptive Variable-Length encoder suitable for
embedded systems. In I/V Communications and Mobile Network
(ISVC), 2010 5th International Symposium on (pp. 1-4). IEEE.

[7] Tsai, C. Y., Chen, T. C., & Chen, L. G. (2006, July). Low power entropy
coding hardware design for H. 264/AVC baseline profile encoder. In
2006 IEEE International Conference on Multimedia and Expo (pp. 1941-
1944). IEEE.

[8] M. P. Hoffman, E. J. Balster, and W. F. Turri, "High-throughput
CAVLC architecture for real-time H. 264 coding using reconfigurable
devices," Journal of Real-Time Image Processing, vol. 11, pp. 75-82,
2016.

[9] Albanese, L.F.; Licciardo, G.: High-speed CAVLC encoder suitable for
field programmable platforms. In: Proceedings of 2010 international
conference on signals and electronic systems (ICSES), pp. 327–330
(2010)

[10] Thiele, C. C., Vizzotto, B. B., Martins, A. L., da Rosa, V. S., & Bampi,
S. (2012, October). A low-cost and high efficiency entropy encoder
architecture for H. 264/AVC. In VLSI and System-on-Chip, 2012
(VLSI-SoC), IEEE/IFIP 20th International Conference on (pp. 117-122).
IEEE.

[11] N.-M. Nguyen, E. Beigne, S. Lesecq, P. Vivet, D.-H. Bui, and X.-T.
Tran, “Hardware implementation for entropy coding and byte stream
packing engine in H.264/AVC,” in Proceedings of the International
Conference on Advanced Technologies for Communications (ATC), Ho
Chi Minh City, October 2013, pp. 360–365.

[12] Licciardo, G.D., Albanese, L.F.”Design of a context-adaptive variable
length encoder for real-time video compression on reconfigurable
platforms.” Image Process. IET 6(4), 301–308 (2012)

[13] Silva, T., Vortmann, J., Agostini, L., Bampi, S., & Susin, A. (2007,
February). FPGA based design of CAVLC and exp-golomb coders for
H. 264/AVC baseline entropy coding. In Programmable Logic, 2007.
SPL'07. 2007 third Southern Conference on (pp. 161-166). IEEE.

