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Abstract—In this paper, we present a new hardware 

architecture of an entropy encoder for an H.264/AVC video 

encoder. The proposed design aims to employ a parallel module 

at a pre-encoding stage to reduce a critical path. Additionally, the 

arithmetic table elimination method is used to eliminate the 

memory cost. Besides, the reduction in the size of VLC tables 

offers area saving. This architecture is synthesized on an FPGA 

Virtex IV. The simulation results show that this design can 

operate up to 234 MHz, which allows processing a 4CIF video 

format in real time. 
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I. INTRODUCTION 

The entropy encoder is the last part of an H.264/AVC 
encoder. H.264/AVC identifies two types of entropy coding 
methods, which are the Context-Based Adaptive Variable 
Length Coding (CAVLC) and the Context-Based Binary 
Arithmetic Coding (CABAC) [1]. In a baseline profile, only 
the CAVLC is utilized as an entropy coder mode with 
Exponential-Golomb (Exp-Golomb) codes. The CAVLC 
produces coding with higher efficiency than the conventional 
VLC coding. However, the CAVLC adds a high computational 
complexity due to context-adaptive characteristics. 

Some work has presented the VLSI architecture of the 
CAVLC encoder to improve the performance of the entropy 
encoder.  However, most work has focused only on how to 
increase the throughput of the CAVLC encoder.  For instance, 
the pipelining architecture is usually used [2, 3, 4]. The work in 
[2] proposed a two-stage pipeline architecture. This method 
could reduce the time needed to process a block until reaching 
half of the mean time but it involved double memory size to 
store all syntax element information. In [3], the parallel coding 
of level and run-before sub-module encoders was applied. 
Moreover, the authors in [5] tried to increase the throughput by 
scanning the coefficient in parallel. However, it clearly doubled 
the area cost. 

To reduce this area cost, [5] put forward optimized 
coefficient token (coeff-token) VLC Look-Up Tables (LUTs) 
into 9-bit words instead of storing 16-bit words. An arithmetic 
manipulation of encoding levels was exploited in [6] to 
eliminate some of the large size of conventional VLC LUTs. 

On the other hand, some work has concentrated on 
designing a low-power CAVLC encoder. For instance, the 

authors in [7] used the side information-aided and symbol 
look-ahead techniques to minimize memory access. 

This paper presents full hardware architecture of entropy 
coding, which contains Exp-Golomb and CAVLC encoders for 
an H.264/AVC baseline profile. To improve the timing 
performance, parallel coding modules are introduced at the pre-
coding stage. To decrease the cost memory, an arithmetic table 
elimination technique is exploited to encode level and run-
before sub-module encoders instead of using conventional 
VLC LUTs. Furthermore, the optimized coeff-token VLC and 
total-zero LUTs are applied to reduce the memory size as well. 

This paper is organized as follows. Section 2 introduces 
both CAVLC and Exp-Golomb entropy encoding algorithms. 
The proposed architecture designs of the CAVLC and the Exp-
Golomb are illustrated respectively in sections 3 and 4. Finally, 
the conclusion is drawn in section 5. 

II. ENTROPY CODING ALGORITHM IN H.264 

In the baseline profile, H.264 uses two tools for entropy 
coding: the CAVLC coding and the Exp-Golomb one, as 
presented in Fig.1. The residual information (quantized 
coefficients) is coded using the CAVLC, while the other data 
are coded utilizing the Exp-Golomb. 

Exp-Golomb
coder

CAVLC
coder

Assembler

Syntaxe 

elements

Coded

elements

 
Fig. 1. Block diagram of entropy coder in baseline profile 

A. CAVLC algorithm  

The CAVLC is the entropy encoding used to encode the 
residual information in 4x4 or 2x2 blocks, which are generated 
by the quantification step [1]. Each block must be firstly 
scanned in a zigzag order to produce five main syntax 
elements.  The latter were defined in [1] as: 

 The coeff-token represents two values : the total 
number of non-zero coefficients (total-coeff) and the 
number of trailing ones (TT1s) in the block. The trailing 
ones (T1s) are non-zero coefficients whose values 
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are+/- 1 at the end of the zigzag sequence. Each block 
has at most three T1s. 

 The signs of T1s are the coefficients with absolute 
value equal to one from zero to three bits wide. They 
represent the signs of the T1s coefficients in the reverse 
order. 

 The levels are the values of each non-zero coefficient in 
the block, other than the T1s case. They are taken in the 
reverse order. 

 The total-zeros is the total number of zero coefficients 
before the last non-zero coefficient in the zigzag 
sequence. 

 The run-before represents the runs of zeros before each 
non-zero coefficient in the reverse order. 

After that, these syntax elements will be encoded into five 
sequentially coding steps. The coeff-token, run-before and 
total-zero steps are encoded through different VLC LUTs. The 
CAVLC encoder steps are depicted in Fig.3. 

 In step 1, the coeff-token are encoded using four VLC 
LUTs, based on the number of the total coefficients in 
the left block (nA) and the upper block (nB) of the 
current block (the context-adaptive notion), as shown in 
Fig.2. 

 In step 2, each T1s is encoded with its corresponding bit 
sign in a reverse order. The positive sign is represented 
by „0‟, and the negative sign is represented by „1‟. 

 In step 3, the level values of the 4x4 block are encoded 
in a reverse order using seven VLC LUTs selected by 
the total-coeff and TT1s. The choice of the VLC LUTs 
to encode each level depends on the magnitude of the 
last encoded level ( the context-adaptive notion). 

 In step 4, 15 VLC LUTs are utilized to encode the total 
zeros, indexed by the total-coeff value. 

 In step 5, the run-before is coded with codewords taken 
from seven VLC LUTs selected by zero-left values, 
which is the total number of the remaining zero 
coefficients. 

Top block 

nB

Left Block

                 nA

 

nC

Current Block

If (nA = nB =0) then 

nC =0;

Else 

nC =(nA +nB)/2;

End if;        
                  (a)                                              (b)                                         

Fig. 2. Context-adaptive notion at coeff-token coding step (a) Data 
dependence (b) Correspond pseudo-code 

B. Exp-Golomb algorithm 

The Exp-Golomb coding is performed on two stages as 
provided in Fig.3. 

Begin

Inputs 

(K)

Classification of each entry 

according to the type of mapping 

(me, ue, se or te)

Calculation of codeNum 

according to specific table in 

ITU-Recommendations  [1]

Codenum = k si k >1,

Codenum =1÷ k si k  1
CodeNum = k 

CodeNum =2×ǀ kǀ si k  0,

CodeNum =2×ǀ kǀ-1 si k >0

Me Te Ue Se

M = log2 (codeNum + 1)

INFO = (codeNum +1)-2M

CodeNum

M

INFO M

Codeword = [M zero] [1] [INFO]

End

M bits

(2xM+1) bits

Step 1:
 CodeNum calculation 

Step 2: 
Codeword generation  

M bits 1 bit

 

Fig. 3. Diagram of Exp-Golomb algorithm 

 Firstly, each syntax element to be coded with the Exp-
Golomb noted k is mapped to a non-negative integer 
named “codeNum.” Based on the statistical 
characteristic, each syntax element is represented by a 
codeNum in various ways [1]. 

 If a syntax element is always larger than zero or equal 
to zero and if the most frequently occurring values are 
the lower ones, the applied process will be called 
“unsigned Exp-Golomb (ue) coding”. The value of the 
corresponding codeNum is the same value of the 
unsigned element. 

 If a syntax element is signed and the expectation value 
is zero, the applied process will be named “signed Exp-
Golomb (se) coding”. The value of the corresponding 
codeNum is mapped to the syntax element value k as 
follows: 

 CodeNum = 2|k| when (k ≤ 0)  

 CodeNum = 2|k| - 1 when (k > 0) 

 If an unsigned element has different statistical 
characteristics from the ue, its corresponding codeNum 
is then mapped to its value in a special way, as 
indicated in ITU-T recommendations  [1]. The applied 
process is called “mapped Exp-Golomb (me) coding.”  

 If an unsigned element has 1 as the largest possible 
value, then “the truncated Exp-Golomb (te) coding” 
will be applied ; i.e., the bit representing the syntax 
element is the inverted value of the element. 
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Secondly, the codeNum parameter is mapped to coded 
string bits. The latter has the following generic form: 

                          {M-zeros, 1, M-bit     INFO}    (1) 

where M and INFO are given by equations 2 and 3. 

 M = floor (log2 [codeNum + 1])      (2) 

 INFO = codeNum +1 – 2M        (3) 

III. PROPOSED CAVLC ARCHITECTURE 

The suggested design processes each 4x4 block through 
two sequential stages. The pre-coding stage produces the 
Syntax Elements (SEs) to be encoded from the residual input 
frames, and the encoding stage translates each SE into a related 
codeword length and codeword value. In the following 
subsections, both stages are described. 

A. Pre-encoding CAVLC stage architecture  

The pre-encoding architecture is depicted in Fig.4. It has 
five main modules and four Random Access Memories 
(RAMs). The main modules are depicted in the figure below:

CAVLC 
scanning

Syntax 
elements 
calculator 

TT1s

Total-coeff

Total-zeors

Non-zero 
coefficients 

RAM

(16X12 bits)

Sub-module of 
new representaion 

of non-zero 
coefficient

Run-before
Calculator  

Run-
before

RAM

(16X4 bits)

Zero-
left

RAM

(16X4 bits)

acc
Zero-left

Run-before

non-zero 
coefficient 

End_flag

En End 
pre-encoding 

CAVLC

inverse-zigzag 
reordered-
coefficients 

RAM

(16X12 bits)

Pre-Encoding CAVLC Controller 

Table selector 
block

nA

nB

nC

Reordered-Coeff

-

Clk 

Rst

Pre-coding CAVLC stage 
 

Fig. 4. Pre-encoding CAVLC architecture

The zigzag module is responsible for ordering in an inverse 
zigzag order the residual information coming from the 
quantification process. After that, the zigzagged reordered 
coefficient is stored in a first memory called “inverse-zigzag 
reordered-coefficient RAM.” This module is not included in 
the CAVLC modules, but it is required for its correct operation. 

The generator module of syntax elements has as an input 
the reordered coefficients. This module generates the first 
syntax elements to be produced, which are the TT1s, the total-
coeff, and the total-zeros. When the values of these syntax 
elements are calculated, the next two modules, shown in red 

squares, start to be processed. Both modules are independent. 
Consequently, they are processed in parallel. 

The parallel module on the top is responsible for storing the 
T1s and the level values into a “non-zero coefficient RAM” 
memory. The total number of levels and TT1s represent all 
total non-zero coefficients. Each non-zero coefficient is saved 
with a new format that represents the absolute value of the non-
zero coefficient in 11 bits and the sign bit in the 11

th
 bit, as 

illustrated in Fig.5. This format allows simplifying the level 
encoding process. 
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non-zero cofficient valueSign 

11 bits1 bits
 

(a) 

If non-zero_coeff(11) ='1' then

 non-zero_coeff_RAM (conv_integer(i)) <= '1'& (b"00000000000" -   non-zero_coeff_RAM (10 downto 0));

Else

  non-zero_coeff_RAM(conv_integer(i)) <= non-zero_coeff;

End if;

 
(b) 

Fig. 5. (a) New representation of non-zero coefficient and (b) its 

correspondent pseudo-code 

The second parallel module is formed by combinatorial 
circuits and two RAMs needed for storing each run-before and 
zero-left syntax element, respectively. First, this module 
permits calculating the different run-before values. After that, 
each calculated run-before value will be put into the “Run-
before RAM” memory. When all the run-before values are 
detected and stored, the controller enables the process of the 
next module. This latter calculates the set of zero-left values 
and stores them into a “Zero-left RAM ”memory. The zero-left 
value is initially equal to the total-zeros, and then this value is 
decremented with the accumulation of run-before values. The 
mathematical relationship between the zero-left and the run-
before is shown below. 

 Zero-left (i) = Total-zeros   - ∑ Run-before  (4) 

It is worth noting that the size of all used memory is 16 
elements, which is the maximum number of non-zero run-
before and zero-left coefficients per 4x4block.  Besides, the use 
of the inverse-zigzag reordered-coefficient, Run-before and 

Zero-left RAM memories is required for bitstream correctness. 

The nC is also generated at this stage by a combinatorial 
circuit shown in Fig. 6. It selects the appropriate VLC LUTs 
for coeff-token coding. 

The controller at the pre-encoding stage is in charge of 
defining the control unit of the different RAMs and 
synchronizing the various modules. When the end-pre-
encoding signal is set active, all the syntax elements will be 
ready to be encoded. 

00000
nA

nB

+

nC

nA_valid&nB_valid
 

Fig. 6. Table selector architecture 

B. Encoding CAVLC stage architecture 

The encoding CAVLC architecture is illustrated in Fig.7. 
The CAVLC hardware design has the outputs of the CAVLC 
pre-encoder design as inputs. It is composed of seven main 
modules: five modules in charge of encoding the different 
syntax elements, one module for the main controller, and 
another one for the output packet. These various modules and 
the optimized techniques used at this stage are detailed in the 
following subsections. 
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Fig. 7. Encoding  CAVLC architecture

1) Optimized VLC LUTs for coeff-token and total-zero 

encoders: 
The coeff-token and total-zero encoders are conventionally 

coded by different VLC LUTs in the ITU-T Recommendations 
[1]. However, large memory size is required to store the whole 
codewords‟ values and lengths, as presented in these traditional 
VLC LUTs. In the light of these details, we suggest a new 
representation of the codeword length and codeword value into 
small size. For instance, the length of the original codewords in 
conventional VLC coeff-token LUTs is in the range of 1 to 16, 
and their values are in the range of 0 to 63. Therefore, 5 bits are 
enough to represent the length information into the “coeff-
token codeword value ROM” memory, and 6 bits are enough to 
represent the value information into the “coeff-token codeword 
length ROM” memory. An example of the new representation 
of codewords is given in Table I. 

This method is applied for all VLC LUTS needed for coeff-
token and total-zero sub-module encoders .It enables 
optimizing the VLC LUTs for both coeff-tokens and total-
zeros. An example of an optimized VLC LUT is depicted in 
Fig.8. 

TABLE. I. AN EXAMPLE OF A NEW REPRESENTATION OF CODEWORD IN 

VLC LUT 

Original codeword Proposed codeword 

length Value Length Value 

10000 00000000000000010 10000 000010 

5 bits 16 bits 5 bits 6 bits 

coeff-token 
codewords 

value
 ROM

(64x16bits)

Total-coeff &T1s

6 bits

coeff-token 
codewords 

length
 ROM

(64x5bits)

16 bits

5 bits

Coeff-token

value

Coeff-token

length

coeff-token 
codewords 

value
 ROM

(64x6bits)

Total-coeff &T1s

6 bits

coeff-token 
codewords 

length
 ROM

(64x5bits)

6 bits

5 bits

Coeff-token

value

Coeff-token

length

                                
(a)                                             (b) 

Fig. 8. Block-diagram representation of an example of (a) traditional VLC 
coeff-token LUT (b) optimized VLC coeff-token LUT 

2) Arithmetic table elimination technique for level 

encoder: 
Levels are encoded using the arithmetic table elimination 

technique to replace seven level VLC LUTs represented in the 
ITU-T recommendations [1]. This technique reported from [6] 
permitted the reduction in the memory cost area. Table II 
reports the pseudo-code describing the elimination procedure, 
which presents the advantage of a very simple implementation 
circuitry. 

The format of the level code is arranged as follows. The 

maximum width of codewords’ length is 28 bits. 

  Code = 0…0 1 x…x s           (5) 
                                   


Prefix length Suffix length 
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Note where s is the level sign, 1 for negative, 0 for positive, 
and the sequence of zeros on the left of 1 and the sequence of 
bits on its right are respectively the level prefix and the level 
suffix, whose lengths, prefix length and suffix length, 
distinguish the codewords. 

This step also illustrates the context-adaptive characteristic 
such that suffix length N (ranging from 0 to 6), used for 
encoding the actual level, must be the same one to encode the 
previous level. Otherwise, it will be eventually incremented if 
its magnitude satisfies (3x2

(N-1)
). The pseudo-code of the 

adaptive context is shown in Fig.9. 

If ǀ Level ǀ > 3x2
(N-1) 

then

N  <=  N +1;

Else

N  <=  N;

End if;

 
Fig. 9. Pseudo-code of adaptive-context at level coding step 

TABLE. II. CODING ALGORITHM FOR LEVEL SYMBOL 

N Range Coding algorithm 

N=0 

ǀlevelǀ≤7 

Code=0…0 1   

Prefix length= (ǀlevelǀ≪1)-2+s 

Suffix length=0 

Size=prefix length+1 

8≤ǀlevelǀ≤15 

Code=0…0  1    s 

Prefix length=14 

Suffix length=3 

Size=19 

Level suffix=binary value(ǀlevelǀ) 

ǀlevelǀ≥16 

Code=0…0 1 x…x   s 

Prefix length=15 

Prefix length=11 

Size=28 

Level suffix=ǀlevelǀ-1-[15≫ (N-1)] 

N=1 to  6 All 

Code=0…0 1 x…x   s 

If (ǀlevelǀ-1< [15≪ (N-1)]) then 

Prefix length= (ǀlevelǀ-1) ≫ (N-1)  

Suffix length=N-1 

Size =prefix length + suffix length 

Level suffix=ǀlevel-1ǀ%2(N-1) 

Else 

as case ǀlevelǀ≥16 for N=0 

End if 

3) Arithmetic table elimination technique for run-before 

encoder: 
The seven VLC LUTs required for run-before encoding are 

eliminated and substituted by a circuitry implementing the 
pseudo-code in Table III. With this approach, we achieve a 
reduction in the memory cost as well. 

TABLE. III. CODING ALGORITHM FOR RUN-BEFORE SYMBOL 

Zeroleft Coding algorithm 

<3 

If Runbefore(i)=0 then  

Code=1 

Size=1 

Else 

Code=Zeroleft(i)-Runbefore(i) 

Size =Zeroleft(i) 

End 

≥3 and <6 

If RunBefore(i)≤6-Zeroleft(i) then 

Code=3-RunBefore(i) 

Size=2 

Else 

Code=Zeroleft(i)-RunBefore(i) 

Size=3 

End 

=6 

If RunBefore(i)=0 then 

Code=3 

Size=2 

Elsif RunBefore(i)=1 then 

Code=0 

Size=3 

Elsif RunBefore(i)=6 then  

Code=4 

Size=3 

Else 

If LSB[RunBefore(i)]=0then  

Code =RunBefore(i) >> 1 

Else 

Code =RunBefore(i) 

End if  

Size=3 

End 

>6 

If RunBefore(i)<6 then  

Code =7-RunBefore(i) 

Size=3 

Else 

Code=1 

Size=RunBefore(i)-3 

End  

4) Main CAVLC controller: 
The proposed CALVC controller is presented in Fig.10. 

The “idlestate ” represents the initial state. When the pre-
encoding stage is finished (indicated by the signal “end pre-
encoding CAVLC”), the finite state machine will go to the 
“coeff-token state”. When the coeff-token encoder process is 
finished (indicated by the signal “end coeff-token encoding”), 
the finite state machine will affect the appropriate value of the 
signal “mux-selector” to select the output of the coeff-token 
encoder as final outputs. Afterwards, the finite state machine 
will go to the “T1s state” . When the T1s encoder process is 
completed, the finite state machine will produce an appropriate 
value for the signal “mux-selector” to select the outputs of  the 
T1s encoder as final ones. 
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This process, which is produced in the coeff-token and T1s 
states, will be replicated at level, total-zero and run-before 
states. At the end of the run-before encoding process, the 
signal “end run-before encoding” is set high, informing that 
the CAVLC completely encodes the 4x4 block, and a new 
block can be encoded. 

Total-zeros
state

T1s state

 idle state

End pre-encoding CAVLC 
='0'

End level encoding ='0'

End T1 encoding  ='0'

End T1 encoding  ='1'
Level state

Coeff-token 
state

Run-before 
state

End level encoding='1'

End total-zeros encoding 
='0'

End coeff-token encoding
='0'

End run-before encoding 
='0' Mux-selector   000

Mux-selector 001

Mux-selector 010

Mux-selector 100

Mux-selector 101

Mux-selector  110

End pre-encoding CAVLC 
='1'

End coeff-token encoding
='1'

End total-zeros encoding 
='1'

End run-before encoding 
='0'

 
Fig. 10. Main CAVLC controller 

5) Output packer: 
The output packet receives as an input the signal “mux-

selector” from the main controller and all the outputs of the 
encoder modules (codeword values and codeword lengths). 
Two-word multiplexers compose this module: one to select the 
appropriate codeword value and the other to select the 
appropriate codeword length. The codeword value and 
codeword length serve as final outputs of a CAVLC coder. 

IV. PROPOSED EXP-GOLOMB ARCHITECTURE 

The proposed Exp-Golomb design is presented in the form 
of modules in Fig.11. Every module represents the functioning 
way of each stage of the Exp-Golomb algorithm already 
explained in section II. 

CodeNum 
calculactor 

module  
Binary 

logarithmic  
calculator 
module 

INFO 
calculator 
module 

Output bit-
generator 

module
+

k

Mapping 
type

" 1"

CodeNum N M

INFO
01001..

 

Fig. 11. Block diagram of Exp-Golomb 

Firstly, in every k entry, the“codeNum generator” module 
generates the corresponding codeNum value according to a 
mapping type (ue, te, se or me). When the mapping type is ue, 
te or se, the codeNum value will be generated from 
the“codeNum generator1” Module. This block produces the 
codeNum according to various mathematical operations 
described in section 2, which only involves shifting, 
complementation, and increasing by 1. Otherwise (mapping 
type =me), the codeNum will be generated by a second 
generator module, called “codeNum generator2”, based on four 
ROMs according to two mode types (intra or inter) and to the 
prediction mode. The detailed architecture of these two 

generators of codeNum values is shown, respectively, in Fig.12 
and Fig.13. 

Word Mux 
4:2 

(7 bits) 

sel
Mux select
generator

Mapping type

2 bits 2 bits

7 bits

7 bits

7 bits

7 bits

7 bits

1/K

Kx2-1

Kx2

K 

CodeNum1

 
Fig. 12. Diagram of codeNum generator1 

Word mux 
4:2

(7 bits)

sel
Mux select
generator

Chroma type

2 bits

7 bits

7 bits

7 bits

7 bits

7 bits

ROM1
Intra

ROM2
intra

ROM1
inter

ROM2
inter

CodeNum2

K

Perdiction mode
 

Fig. 13. Diagram of codeNum generator2 

The logarithm operation is required to produce the value of 
M, which is utilized for the calculation of the codeword length 
(equivalent to 2M+1). However, its implementation requires an 
expensive circuit that constitutes the hardware challenge of 
implementing an Exp-Golomb encoder. This problem can be 
solved in the following way: Consider that log2(N) is 
equivalent to the number of M times divided by 2 until the 
output reaches the zero value as in equation 3. Thus, we 
acquire an approach to get the value of M by computing the 
shift operation number. 

 M = log2(N) ↔N = 2
M

= 2x2x2x2….x2                  (6)                    

 

 

The suggested architecture of the logarithm operation is 
given in Fig.14. The output of the barrel shifter is loaded in the 
register FF. The output Q of this register is connected to the 
inputs of the multiplexer and the combinatorial circuit of the 
OR gates. This circuit is responsible for checking whether the 
output Q reaches the value 0 or not by producing a one-bit 
value, noted C, as an output. 

Initially, the counter is set at 0. If the value of Q is different 
from zero; the value C is equal to 1. Consequently, the AND 
gate will be an ascending counting; the counter will count up 
by a single step. In this case, the multiplexer is going to assign 
the value Q to the input K of the barrel shifter. When Q reaches 
the value 0, the value of the output C is set to 0. Therefore, the 

M times 
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logic 0 generated on the output of the AND gate stops the 
counter. In this case, the output of the counter corresponds to 
the output value M such as M =log2 (N). 

Barrel shifter

Register FF

Computer 
CLK

Combinatory 
circuit

N

M

C Q

k

1                 0

ZZZZ 

1                    0

 
Fig.14. Architecture of binary logarithm 

After the logarithm operation, the INFO value should 
follow formula (3), which involves shifter and subtraction 
operations. 

The last module (Exp-Golomb bit-generator) is in charge of 
producing the output code word considering the value of M and 
INFO. It is designed by the implementation of the finite state 
machine that contains two states, as shown in Fig.15. The i

th
 

counter is initialized to state 1. The second state corresponds to 
the generation of the output codewords bit by bit, following the 
structure presented in formula (1). Each bit is generated in one 
clock. 

State1

i  0

    State2

i  i +1

Act =0

Act =1

Inputs : M  et INFO

Output : bit by bit

i<2xM

i>2xM

 
Fig. 14. Finite state machine of bit Exp-Golomb bit-generator 

V. PERFORMANCE ANALYSIS AND COMPARISON 

A. Performance analysis 

The proposed CAVLC and Exp Golomb architectures are 
modeled in VHDL, simulated, and synthesized by Modalism 
6.4 and Xilinx ISE development tools 14.1, respectively. The 
synthesis results of physical resource utilization on Virtex VI 
for CAVLC and Exp-Golomb modules are reported 
respectively in Table VI and Table V. 

TABLE. IV. PHYSICAL RESOURCES UTILIZATION OF CAVLC MODULES ON 

VIRTEX VI 

Module 
Slice 

LUT 

Slice 

register 

Pre-encoding CAVLC 298 467 

nC calculator 10 0 

Encoding 

CAVLC 

 

Coeff-token encoder 143 0 

T1s encoder 42 21 

Level encoder 316 77 

Total-zero encoder 62 0 

Run-before encoder 156 103 

CAVLC controller 6 3 

Output Packet 61 
0 

 

Total CAVLC 589 557 

TABLE. V. SYNTHESIS RESULTS OF EXP-GOLOMB ON VIRTEX VI 

Module Slice 

LUT 

Slice 

register 

CodeNum generator 24 0 

Binary logarithm 36 38 

INFO-calculator 10 30 

Exp_golomb bit-generator 44 26 

Exp-Golomb Controller 26 13 

Total Exp-Golomb 126 109 

Through the obtained results, it is possible to verify that the 
CAVLC coder achieves an operation frequency of 234.14 MHz 
and requires an area occupancy of  847  LUTs. The maximum 
frequency of the Exp-Golomb architecture is 234.14 MHz, and 
the memory cost is 847 in terms of LUTs. 

It is worth mentioning that no external or embedded 
memory is used to give a platform independent estimation of 
memory cost reduction, suitable for ASICs and FPGAs of 
different generations and families. 

 

Fig. 15. Simulation results of CAVLC 

The simulation results provided in Fig.16 show that the 
processing time per block exhibit a large variety. We take an 
average of 131 cycles per block. The performance of our 
proposed architecture is calculated as follows: 

The number of clock cycles needed for 4CIF (704 x 576) 
video with 30-fps= 

The number of clock cycles per block  

x the number of blocks per macroblock  

End block 

coding   
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x the number of macroblock per 704  

x 576 video frame x the number of frames per second= 

131 x 27 x 1665 x 30 clock cycles=  

176,673,150 clock cycles 

The number of required clock cycles is calculated. We 
assume the worst case without the skip mode. This means that 
our suggested architecture can meet the real-time processing of 
4CIF @30fps when running at 234 MHz. 

B. State-of-the-art comparison 

To give a reasonable comparison, both designed CAVLC 
and Exp-Golomb are synthesized with different FPGA 
platforms, as presented in Table VI. 

TABLE. VI. COMPARISONS TO HIGH-PERFORMANCE DESIGNS CAVLC 

 Tech 
Frequency 

(MHz) 

Area 

Gates 

(ASIC) 
LUTs 

(FPGA) 

[2] 0.13 250 32K - 

[3] Virtex 5 180 - 1079 

[8] Stratix IV 200 - 6549 

[9] Spartan 3 62.5 - 3447 

[10] Virtex 5 204.3 - 2563 

[11] 0.18 100 73.5k - 

[12] 0.18 125 15K - 

Proposed 

Spartan 3 91.43 - 754 

Virtex 5 234.14 - 847 

Spartan 3 313.87  1176 

Concerning speed performance, the proposed CAVLC 
design exhibits a maximum operating frequency, which is 
mostly superior compared to other CAVLC design solutions. 
The memory cost of our design is also very promising, thanks 
to the optimized VLC LUTs and the arithmetic table 
elimination techniques. 

TABLE. VII. COMPARISONS TO HIGH-PERFORMANCE DESIGNS EXP-
GOLOMB 

 
Tech 

(um) 

Logic 

(LUTs) 

Frequency 

(MHz) 

[10] Virtex VI 134 309.98 

[13] Stratix II 199 191.8 

Our design Virtex VI 126 254.4 

Table VII summarizes the specification of the suggested 
Exp-Golomb encoder and gives a comparison with the work 
presented in [10] and [13]. The operating frequency of the 
proposed architecture is lower than those presented in [10], but 
the suggested design has a lower area demand. Compared to 
the design shown in [13], the proposed architecture employs a 
higher area demand and a higher operating frequency. 

VI. CONCLUSION 

In this paper, a full hardware design entropy encoder for the 
H.264/AVC baseline profile has been put forward. Different 

techniques have been employed to improve the performance of 
the entropy encoder. Parallel modules are applied to speed up 
the coding efficiency. Meanwhile, the employment of the 
optimized VLC LUTs and Arithmetic method have been used 
to reduce the area cost. The synthesis results on Virtex IV have 
shown that the design occupies about 847 LUTs and can be 
targeted for a real-time 4CIF video format when operating at 
234 MHz. 
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