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Abstract—Meningioma subtype classification is a complex
pattern classification problem of digital pathology due to het-
erogeneity issues of tumor texture, low inter-class and high
intra-class texture variations of tumor samples, and architec-
tural variations of cellular components. The basic aim is the
achievement of significantly high classification results for all the
subtypes of meningioma while dealing with inherent complexity
and texture variations. The ultimate goal is to mimic the prognosis
decision of expert pathologists and assist newer pathologists in
making right and quick decisions. In this paper, a novel hybrid
classification framework based on nuclei shape matching and
texture analysis is proposed for classification of four subtypes
of grade-I benign meningioma. Meningothelial and fibroblastic
subtypes are classified on basis of nuclei shape matching through
skeletons and shock graphs while an optimized texture-based
evolutionary framework is designed for the classification of transi-
tional and psammomatous subtypes. Classifier-based evolutionary
feature selection is performed using Genetic Algorithm (GA) in
combination with Support Vector Machine (SVM) to select the
optimal combination of higher-order statistical features extracted
from morphologically processed RGB color channel images.
The proposed hybrid classifier employed leave-one-patient-out
5-fold cross validation and achieved an overall 95.63% mean
classification accuracy.
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I. INTRODUCTION

Now-a-days, Computer-Aided Diagnosis (CAD) is in wide
practice in clinical work for the detection and prognosis of
various types of abnormalities. For this, medical images ac-
quired in various tests by utilizing diverse imaging modalities
are used. CAD has emerged as one of the key research areas
in medical imaging, diagnostic pathology and radiology.

Histologic textures of tumor specimens being real-world
textures are quite complex and different from synthetic tex-
tures that are captured in the controlled circumstances. The
correct prognosis of tumors requires the expertise of a trained
pathologist and is a time consuming task. The variability in
the opinion of different pathologists and the variation in the
opinion of a single pathologist at different timings may also
be observed in the prognosis decision of a tumor specimen
[1]. Due to these reasons, adaptive approaches and quantitative
methods for computer-aided diagnosis are needed to assist
histopathologists for correct diagnosis and prognosis of tumors.

The CAD is highly desired to reduce the workload on pathol-
ogists by focusing on benign areas so that the pathologists can
concentrate on the more difficult malignant cases [2].

Meningioma refers to a group of tumors or neoplasms,
which arise from the defensive layers of the brain and the
spinal cord named meninges. Meningiomas comprise 34% of
all primary brain neoplasms and appear mainly in middle-aged
patients with a higher prevalence among females. The World
Health Organization (WHO) classification of tumors of the
Central Nervous System categorized the meningioma tumor
into three main grades (I: Benign, II: Atypical, III: Malignant)
[3]. Almost 92% cases of meningioma tumor are diagnosed
as benign, 6% cases are characterized as atypical while the
remaining 2% are malignant. The WHO classification recog-
nized nine histological variants of benign meningioma based
on cytologic structure and morphologic features. The four
most frequently occurring variants of grade-I meningioma are:
Meningothelial - Mn (63%), Fibroblastic - Fb (13%), Transi-
tional - Tr (19%) and Psammomatous - Ps (2%) [4]. Benign
lesions have low proliferative potential and are curable through
surgical resection. Unlike other benign tumors elsewhere in the
human body, they may cause serious problems and even death
of the patient depending on the size and location of their origin
[3].

The digitized histology images of four major subtypes of
benign meningioma are shown in Fig. 1. The pathologists
scan histology samples under the microscope in order to
discriminate different subtypes or grades on account of a
diverse range of morphological characteristics. The menin-
gioma images have high morphological variations between the
images of same subtype while low variations in the underlying
morphology of two different subtypes. The different subtypes
of meningioma possess morphological characteristics includ-
ing compact meningothelial whorls, collagen matrix, round or
oval meningothelial cells, and psammoma bodies. Most of the
meningioma subtypes from the same grade possess all these
features with slight differences. Therefore, classification of a
test image on account of these features is quite complex and
challenging. Mn and Fb images are mostly misclassified due to
considerable morphometric similarity with Tr subtype and vice
versa. Similarly, nuclei of Ps images have a great similarity
with Mn nuclei. Therefore, due to such similar morphological
and textural characteristics, images from different subtypes
of meningioma are misclassified. In addition, the overlapped
nuclei, non-crisp object contours, architectural variations of
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cellular components, and heterogeneous or dynamic nature
of tissue textures induce ambiguity in the pattern recognition
procedures. These issues need to be resolved for the precise
classification of real-world multi-class meningioma textures.

In this paper, the classification of histology images of
benign meningioma into four major subtypes is performed.
For this, structural and textural analysis techniques in addition
to machine learning algorithms are exploited. A novel hybrid
classification framework based on nuclei shape matching and
image-level texture analysis is proposed to deal with inherent
tumor textures complexity. The nuclei shape matching is per-
formed by computing nuclei skeletons and analyzing skeletal
graphs. The image-level texture analysis is performed by ex-
tracting higher-order statistical features from morphologically
processed RGB color channels. An optimal feature subset is se-
lected through a classifier-based evolutionary feature selection
scheme which employed Genetic Algorithm in combination
with Support Vector Machine. The selected optimal feature set
is used for classification. An extensive analysis of a number
of classifiers is performed and the best one is implied for
meningioma subtypes classification.

The remaining sections of this paper are arranged as
follows. The overview of the previous work regarding menin-
giomas classification is given in Section II. The detailed
description of the proposed framework is presented in Section
III. The experimental setup and results are presented in Section
IV. The discussion on results is given in Section V. The final
outcomes and an overview of the future research are given in
Section VI.

II. LITERATURE REVIEW

In past decade, the use of pathological whole-slide images
is highly investigated in many areas for automated diagnosis
and classification of cancers. The cancer classification tech-
niques can be grouped into two classes based on features
extraction methods: 1) The techniques which perform structure
or nuclei segmentation and make shape analysis at nuclear
level. These techniques exploit geometrical or statistical texture
features for confining histological characteristics of nuclei [5],
[6], [7]. 2) The techniques which perform the texture analysis
at image level and scan the texture patterns globally to confine
the inherent spatial characteristics [8], [9], [10], [11]. The
performance of these techniques mainly depend on the intrinsic
complexity and nature of the problem.

A few of the meningioma classification techniques [5], [6],
[7] reported in literature performed the morphometric analysis
at nuclear level to explore local regions. Wirjadi et al. [5]
explored a base of grey-scale and colored image features to
classify normal and meningioma tumorous cells. Representa-
tive feature space is created from 6 histology images. Strange
et al. [6] exploited morphology features to capture pathological
characteristics for classification of meningioma images through
random forest classifier. Zeng et al. [7] explored unsupervised
color segmentation and shape features. Ten shape features
including area, perimeter and major/minor axis length are
computed and classified through k-Nearest Neighbor (kNN)
classifier.

The meningioma classification techniques proposed in [10],
[8], [12] employed the wavelet transform to perform multi-

resolution analysis of meningioma textures at image level. It
is beneficial to examine these images at multiple scales in
order to capture the minor inherent texture variations. On the
other hand, the computation of wavelet packet transform and
best basis selection is computationally expensive, because with
each wavelet level, the number of coefficients increases expo-
nentially. Lessmann et al. [12] employed the discrete wavelet
and color transforms to extract features for the clustering of
meningioma subtypes. Unsupervised self organizing map is
employed to visualize and explore the wavelet-based feature
space. Qureshi et al. [8] proposed an Adaptive Discriminant
Wavelet Packet Transform (ADWPT) technique. Grey-level co-
occurrence matrix (GLCM) features extracted from the most
stable subbands are classified through SVM classifier with 88%
accuracy. 5-fold cross validation is performed by using one
patient data for testing and data of remaining four patients from
each subtype for training. Al-Kadi performed meningioma
classification employing wavelet packets and Fractal Dimen-
sions (FD) on blue color channel image. FD signatures from
selected wavelet subbands are used for classification through
kNN, naive Bayesian, and SVM classifier [10]. In another
work [9], Al-Kadi explored various texture measures across
blue color channel to classify meningioma subtypes through
Bayesian classifier. The combination of Gaussian Markov
random field and Run-Length Matrix (RLM) features selected
by correlation thresholding performed better than other texture
measures. Majeed et al. [11] proposed an abstract feature
based evolutionary framework for meningioma classification.
Abstract features are created by identifying linkages among
basic RLM features and combining them into a high-level
optimal feature set.

Fatima et al. proposed a novel hybrid technique for improv-
ing meningioma classification based on Texture features and
Shape Analysis (TSA) [13]. The skeletons and shock graphs
are computed for segmented nuclei to represent and match
their basic shapes. Mn and Fb subtypes are classified with
good accuracy through nuclei shape matching. For Tr and Ps
subtypes, GLCM texture features are extracted and classified
through multi-layer perceptron with 92.50% accuracy. The
shape and texture cues are important for classification as the
meningioma dataset have morphometric variations for two
subtypes and highly discriminating global texture for the other
subtypes. However, in this work, features were extracted only
from grey-scale image. The size of train and test database
was also small. The classification of an individual nuclei was
performed on account of one most similar nucleus. The test
image was classified based on majority voting.

All the reported meningioma classification techniques are
either limited to grey-scale or a single color channel for
feature extraction. While, for classification of a true colour
RGB image, all the channels are imperative based on colour
information contained in each channel. In some scenarios, their
significance can be ranked but their individual role cannot be
ignored. The meningioma classification techniques discussed
above either performed nuclear level analysis or image level
analysis to capture underlying texture variations. Mn and Fb
subtypes have notable differences in shape of majority of
nuclei while, Tr and Ps subtypes have clear image level
textural differences. Therefore, to capture such type of pattern
variations no classification technique exploited structural char-
acteristics at nuclear level and textural characteristics at image
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(a)    (b)    (c)    (d)

Fig. 1. Four Subtypes of benign meningioma. From (a-d) are RGB images of Meningothelial, Fibroblastic, Transitional and Psammomatous subtypes.

level in a hybrid manner to solve multi-class classification
problem of meningioma.

In this paper, a hybrid classification framework is proposed
for improved multi-class classification of meningioma. The hy-
brid framework addressed some of the limitations of previous
works, including (1) use of nuclear-level (shape) and image-
level (texture) features to take advantage of both simultane-
ously; (2) use of three RGB color channels to capture texture
variations; (3) selection of kernel function of SVM based on
train data classification accuracy. The main contributions of
the proposed work are:

1) Use of improved segmentation procedure to get well-
segmented nuclei with less possible noise to compute
true representative skeletons and shock graphs

2) Use of hybrid classification measure, voting and
confidence averaging for test image classification

3) Development of train database of reasonable size to
represent maximum data variations with less compu-
tational cost

4) Quantification of image level higher-order texture
features from three RGB color channels to exploit
color information contained in each channel

5) An extensive analysis of classifiers and implication
of the best one for meningioma classification

III. THE PROPOSED MENINGIOMA CLASSIFICATION
FRAMEWORK

In this paper, an optimized hybrid framework is proposed
for classification of digitized histology samples of grade-I
benign meningioma into four major subtypes. The proposed
classification framework comprises two main phases. In phase-
I, the meningioma images are classified on account of struc-
tural information of cell nuclei into Mn and Fb subtypes with
a reliance greater than an empirically defined threshold α. In
phase-II, meningioma test images from phase-I; that is, either
of Tr and Ps subtypes or have labels of Mn and Fb subtypes
with reliance less than threshold α are classified as Tr and Ps
subtypes on account of intrinsic textural characteristics. The
detailed architecture of the proposed classification framework
is given in Fig. 2.

A. Phase I: Classification Based on Structural Geometry

The structural geometry offers important clues for recog-
nition of objects, although, in many scenarios the precise
extraction, characterization, and representation of objects is a
quite complicated task. In meningioma histology images, the
cell nuclei are the most prominent objects and seem valuable
for the recognition of tumor samples. Therefore, the histology
images of meningioma are processed to take benefit of nuclei
structural information for correct classification.

In phase I, following major steps are performed: 1). The
colored meningioma images are converted to grey-scale and k-
means clustering is performed. The morphological operations
are performed to remove irregularities. 2). The meningioma
nuclei are extorted from segmented images in order to perform
structural analysis. 3). The skeletons are formed for extracted
nuclei bearing precise boundaries to acquire true estimation of
nuclei basic structure. 4). The skeletons are processed to form
skeletal or shock graphs. 5). The shock graphs of a test and a
train nuclei are compared through a graph matching algorithm
to find resemblance of two nuclei. The steps of phase I have
been explained in detail in the following subsections.

1) Nuclei Segmentation and Extraction: For the segmen-
tation and extraction of cell nuclei, colored RGB images
of meningioma variants are converted to grey-scale. k-means
clustering [14] is performed to partition images into primary
cellular components on account of pixel values. The images
are partitioned into two clusters representing nuclei (bluish
region) and background (pink colored cytoplasmic region and
a little white region of fat). After getting a clustered image,
the morphological operations [15] of closing and holes filling
are performed to refine uneven nuclei contours and to fill
holes present in nuclei structures. For this, a flat disk-shaped
structuring element is used with radius R = 3. Watershed
algorithm [15] is applied to split merged and overlapped nuclei.
For this, distance transform of binary image is calculated based
on Euclidean distance metric. A signed distance map is then
used as input to the watershed algorithm. Image erosion is
performed to make boundaries smooth and wipe out noisy
pixels. For this, disk-shaped structuring element is used with
radius R = 2. An area filter of 200 − 1200 pixels is applied
to remove segmented objects of very small or large size. The
border pixels are also removed to clear misleading objects.
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Fig. 2. Proposed hybrid framework for meningioma subtype classification

The segmented images are processed to extract well-
segmented nuclei for structural analysis. Morphological fea-
tures are used for nuclei filtering based on size and shape.
Four morphological features (area, perimeter, eccentricity and
solidity) are computed for segmented nuclei. For all the fea-
tures, quartiles are formed using feature values of all the nuclei
present. Two most dense quarters with maximum nuclei count
are identified. The nuclei common to dense quarters of all the
features are selected. These nuclei are used for skeletonization
and shock graph computation. The steps performed for nuclei
segmentation and extraction are shown in Fig. 3.

2) Skeletons and Shock Graphs Computation: The struc-
tural analysis techniques for the recognition of objects based
on skeletons and shock graphs are proposed in [16], [17],
[18]. The concept of skeleton was first introduced by H.
Blum in 1973 [19] and served as a tool for shape analysis
and recognition. A skeleton is defined as a smallest possible
set of points or lines equidistant to the object boundaries
that completely represent the basic shape of a binary object.
Accordingly, skeletonization is the reduction of foreground
pixels in a binary image to a minimum collection of con-
nected pixels in order to maximally preserve the basic shape
of an object. The skeletons are computed through different
skeletonization techniques which use distance maps to identify
ridges, calculate Voronoi diagrams and use morphological
operators. A skeletal or shock graph [20] offers a dynamic
representation of a skeleton with connected path of flow. A
shock graph is a hierarchical, Directed Acyclic Graph (DAG)
representing the decomposition of a 2-D object boundary into
primary components named shocks.

The skeletonization of extracted nuclei is performed for

the recognition of meningioma samples exploiting structural
information. For all the nuclei extracted from each training and
testing image, the skeletons are computed employing distance
transform (DT) based skeletonization technique proposed in
[21]. An augmented Fast Marching Method (FMM) is used
to compute DT for evolution of nuclei boundaries on regular
path with constant speed. The binary images of cell nuclei for
four meningioma subtypes and their respective skeletons are
shown in Fig. 4.

A shock graph gives better illustration of the shape of
a binary object as compared to a skeleton. Therefore, after
computation of skeletons for all the extracted nuclei of training
and testing images, shock graphs proposed in [20] are formed
to further process these skeletons for shape analysis. All the
graph edges corresponding to the boundary noise are pruned
to deal with noise raised due to segmentation errors.

3) Nuclei Shape Matching: The acyclic shock graphs are
converted to shock trees by removing cyclic vertices using
shock graph recognition grammar [22]. To perform subtrees
matching in polynomial time, shock graphs are converted to
finite and unique rooted trees. A comparison is made between
two shock trees with the help of a tree matching algorithm
in order to discover an optimal set of matching nodes. The
information about two key terms is incorporated in algorithm
for matching two shock trees. 1). Topological similarity of the
subtrees rooted at each vertex. 2). Similarity between the shock
geometry encoded at each node.

In order to measure the similarity between two nodes
or vertices u and v, a low dimensional curve through their
respective shock trajectories is interpolated, and assigned a cost
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(a) (b) (c)  (d)

Fig. 3. Segmentation and extraction of meningioma nuclei. (a). colored image, (b). after k-means clustering for k=2, (c). after morphological operations and
watershed transform, (d). final segmented image with extracted nuclei.

(a) (b)

(c) (d)

Fig. 4. The cell nuclei and the skeletons for four meningioma subtypes. From (a) to (d) are meningothelial, fibroblastic, transitional and psammomatous nuclei
and their respective skeletons.

C(u, v) to an affine transformation that aligns one interpolated
curve with the other. C(u, v) is termed as topological distance
or shock distance (weight) between u and v. The depth-first
search is applied in adaptive fashion to match the subtrees
which effectively recomputes the branches at each node by
choosing the next branch to descend in a best-first manner.
The tree matching algorithm determines the minimum weight
matching between two shock trees to find subtrees which
are maximally similar in terms of their topological structure
and geometry of their root nodes. For detailed theory on
shock graphs, tree matching algorithms, and graphs recognition
grammar, a reader may consult [20], [22].

4) Nuclei Classification: For nuclei classification, a train
database having nuclei extracted from the segmented images
of train set is created. The train database is divided into two
partitions: train1 database having 75% data and test1 database
having 25% data. All the nuclei from train1 and test1 database
are processed to form skeletons and shock graphs (trees). The
shock trees of all the extracted nuclei from the test image are
matched to the shock trees of nuclei present in train database
by using the tree matching algorithm.

To classify a single test nucleus from test1 database,
k most similar nuclei to test nucleus are identified from
train1 database. The value of k is determined in the range
{1, . . . , 100} through cross validation. The class label of a test
nucleus is assigned with majority vote from the k train nuclei
with confidence CN being the normalized frequency of class
as given in equation 1.

CN =
c

k
. (1)

Where CN is the confidence of an individual test nucleus
in the range [0-1]. k is the total count of most similar train
nuclei used for comparison. For each nucleus, c is the count of
majority vote (i.e. count of k most similar train nuclei having
the assigned class label). If there are more class labels with
same value of c then one class label is selected at random. All
the extracted nuclei of a meningioma test image are therefore
labeled through majority vote of k similar train nuclei.

To classify a test image, class label is assigned by consid-
ering two measures, majority voting and confidence averaging
of its labeled nuclei. The voting of all the test nuclei based
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on class label is performed and a confidence value CClass,
that is mean of confidence values of the nuclei belonging to a
particular class is calculated as given in equation 2.

CClass =

f∑
n=1

CNn
f

. (2)

Where f is the frequency of a particular class determined
on account of voting of nuclei from a test image. CNn is the
confidence value of a particular test nucleus.

In order to assign a class label to a test image, two scenarios
are followed:

• If a particular class has the highest number of votes
with the highest CClass value, then assign the label
of that class to test image.

• If one class has the highest number of votes but some
other class has the highest CClass value, then class
label is assigned by performing the following steps.

1) Sort all the classes based on CClass value
2) Select the class with the highest CClass value

till the class with the highest number of votes
3) Retain the selected class having atleast 25%

votes, otherwise discard the class
4) Keep the count of nuclei nc for the class with

the lowest number of votes
5) Sort all the nuclei of each selected class based

on CN values and retain top nc nuclei
6) Calculate CClass value for each class by using

equation 2
7) Assign class label to the test image with the

highest CClass value

If classification results obtained for test1 database are
satisfactory for all the classes of a dataset, then the classifi-
cation framework is based on phase-I. In case of meningioma
dataset, the classification results obtained for test1 database
for Mn and Fb subtypes are good, while for Tr and Ps
subtypes are unsatisfactory. This emphasized the need of a
hybrid framework which not only focuses on local structural
characteristics but also considers global texture for improved
classification of weakly classified subtypes. In order to identify
test samples for classification through phase II, the comparison
is made on basis of CClass value. The class label is declared
correct for test samples that are classified as Mn and Fb with
CClass value greater than an empirically specified threshold
α=0.5. On the other hand, the remaining test samples that
are labeled as Tr or Ps or as Mn or Fb with a confidence
less than threshold α are classified through phase II based on
intrinsic texture. The value of threshold α is determined in
the range [0-1] through cross validation on training data. The
obtained value of α confirms the assignment of class label by
considering more than 50% votes.

B. Phase II: Classification Based on Intrinsic Texture

In this phase, the meningioma test images that were labeled
in phase I as either Tr and Ps subtypes or as either Mn and Fb
subtypes with CClass value less than threshold α are recog-
nized on the basis of their inherent textural patterns. The statis-
tical texture features are computed at different orientations to

get significant textural correlations and used for classification.
In phase II, the main steps performed are as follows: 1) input
RGB images are decomposed into constituent color channels
and grey-scale morphological operations are performed; 2)
the statistical RLM features are extracted from three color
channels; 3) an optimal feature subset is selected through
a classifier based evolutionary feature selection scheme; and
4) finally, the selected optimal feature subset is used for
recognition of unknown test samples through SVM classifier.

1) Pre-processing: All the input images are decomposed
into R, G, B color components. The basic grey-scale mor-
phological operations [15] are executed on each color channel
image to highlight the basic textural trends and to eradicate
superfluous details. The Morphological gradient (Mg) – the
difference between dilation and erosion of an input image
– is computed to pre-process meningioma images by using
equation 3.

Mg = (I(x, y)⊕ s(x, y))− (I(x, y)	 s(x, y)) (3)

Where I(x, y) is a grey-scale image and s is a structuring
element determined empirically to be a square of 5x5 pixels
of ones.

The red color channel images for two meningioma subtypes
(Tr and Ps) and their corresponding morphological processed
images are shown in Fig. 5.

(a)   (b)

Fig. 5. Pre-processing of meningioma subtypes images. From (a-b) are red
color channel images (top ones) of Transitional, and Psammomatous subtypes
and their corresponding morphological processed images (bottom ones).

2) Feature Extraction: Grey-level run-length matrices basi-
cally quantize image regions in runs of pixels and compute his-
tograms of grey-level run-lengths in various orientations. Four
run-length matrices are computed at orientations (0◦, 45◦, 90◦,
and 135◦) using 256 grey-levels for three R, G, B color channel
images. Eleven statistical textural features are calculated from
computed run-length matrices [23]. These features include:
Short Run Emphasis (SRE), Long Run Emphasis (LRE), Grey-
Level Non-uniformity (GLN), Run Length Non-uniformity
(RLN), Run Percentage (RP), Low Grey-Level Run Emphasis
(LGLRE), High Grey-Level Run Emphasis (HGLRE), Short
Run Low Grey-Level Emphasis (SRLGLE), Short Run High
Grey-Level Emphasis (SRHGLE), Long Run Low Grey-Level
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Emphasis (LRLGLE), Long Run High Grey-Level Emphasis
(LRHGLE).

3) Evolutionary Feature Selection Scheme: In the proposed
framework, an evolution-based optimization search technique
is employed which used classification accuracy as criterion
for optimal feature selection. The Genetic Algorithm (GA)
in combination with Support Vector Machine (SVM) is used
to select the most relevant subset of features that improves
classification accuracy on training data for Tr and Ps subtypes.
There is no minimum or maximum limit on number of selected
features from GA. Therefore, a heuristic search is performed
in space of subsets of features where the quality of a candidate
feature subset is evaluated through SVM classifier. Three
kernel functions of SVM (linear, Gaussian RBF and quadratic)
are explored and three optimal feature subsets are obtained.

a) Chromosome Design: A GA individual called chro-
mosome is used to signify a feature subset from the space of
all possible feature subsets. A random population of 150 chro-
mosomes is created where each chromosome is represented
through a binary string which possess a set of active or inactive
genes. Active genes indexes represent the features which will
contribute in the classification process. The length of each
chromosome is 132, where 44 genes are reserved for features
from each red, green and blue color channels respectively.

The interpretation of chromosome for the red color channel
is shown in Fig. 6. Each feature has four indexes reserved for
it. These correspond to the four orientations that are 0◦, 45◦,
90◦ and 135◦. The genes with ”1” represent active features
and ”0” represent inactive features.

b) Fitness Function: Fitness of each chromosome is a
measure of its goodness on classification problem. To compute
this, active genes in the chromosome are employed for clas-
sification and resultant average accuracy is used as fitness of
the chromosome. The fitness of each individual is evaluated
through SVM classifier. The primary task of fitness function
is to guide the system towards selecting the most effective
features. The classification accuracy ACC is the number of
meningioma samples (instances) correctly classified (true pos-
itives plus true negatives) from all the classified samples and
is calculated by using equation 4.

ACC =
ICC
ITC

× 100 (4)

Where ICC is the number of instances correctly classified
and ITC is the total number of instances classified.

c) Individual Selection: The most fit individuals are se-
lected for genetic operations through the tournament selection
operator. A set having seven most fit individuals is selected to
have a contest for individual selection.

d) Recombination Operators: The genetic information
is exchanged between a couple of selected chromosomes by
using one point crossover operator with a suitably higher
crossover rate i.e. 0.8. A uniform mutation operator is used
to introduce diverse individuals by flipping binary gene values
of the selected chromosomes with 0.01 probability.

e) Termination Criteria: Each run of GA is terminated
when there is no improvement in fitness value for a specified
number of generations. The best individual at the end of one
run is hired to survive as individual in the initial population
of next run. Therefore, the optimization process of GA is
proceeded in the form of cascaded runs; that is, the most fit
individual of the final generation of one run is seeded to the
next run for incorporation as individual in the initial random
population. The best individual of last run is selected as the
final feature subset. A sufficient number of cascaded runs are
performed for the efficient exploration of search space and
avoidance of getting local optimal solution.

4) Classification of Meningioma Textures: Three kernel
functions (linear, RBF and quadratic) of SVM and associated
selected feature subsets are compared based on training ac-
curacy. The kernel function and the feature subset with the
highest accuracy are selected for recognition of unseen test
samples. Therefore, SVM classifier with the selected kernel
function is employed for classification of unseen meningioma
textures. The optimal values for SVM parameters are found
through grid-search method using cross validation and values
with the highest cross validation accuracy are selected. The
value for γ; that is, width of Gaussian function for RBF SVM,
is found in the range {2−3, ..., 24} and value of cost parameter
C is found in the range {2−3, . . . , 221}. For estimation of
separating hyperplane, Least Squares (LS) [24] method is used.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Meningioma Dataset

The dataset used in this research is anonymized and de-
identified. The diagnostic meningioma tumor samples are
attained from the neurosurgical resections at the Bethel De-
partment of Neurosurgery, Bielefeld, Germany. The routinely
formalin-fixed, paraffin-embedded, Hematoxylin and Eosin
(H&E) stained histological slides are examined on a Zeiss
Axioskop2 plus microscope having a Zeiss Achroplan 40x/0.65
lens. Zeiss AxioVision 3.1 software and a Zeiss AxioCam HRc
digital color camera (Carl Zeiss AG, Oberkochen, Germany)
is utilized to capture 24 bit, true color RGB pictures in TIF
format. For each subtype, histology data of five patients is
collected and for each patient, four digital images having
dimensions of 1300x1030 pixels are captured. First, all the dig-
itized histology images are truncated to 1024x1024 pixels, then
each truncated image is further partitioned into four images of
512x512 pixels having non-overlapping visual content. Hence,
16 images are attained for each patient and 80 images for
each subtype. After processing, the final database comprises
320 images in total.

B. Classification Results

Meningioma dataset contains images of four subtypes,
where each subtype have data of five different patients. Leave-
one-patient-out cross validation strategy is applied by utilizing
four patients of each subtype for training and one unseen
patient (16 images) for evaluation. In this manner, five different
folds are performed for fair evaluation of unseen test patients
of four subtypes. In each fold, the dataset having data of 20
patients is divided into two sets: train set having data of 16
patients (4 patients per subtype) and test set having data of 4
patients (1 patient per subtype).
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Fig. 6. Proposed chromosome structure for red color channel. Each feature is assigned four indexes corresponding to four directions, 0◦, 45◦, 90◦ and 135◦.
The values within the boxes show the selection or otherwise of the corresponding feature.

In phase I, five different training databases having nuclei
extracted from training images are created excluding all the
test images to perform five folds. From training data of
four subtypes, 1024 meningioma nuclei are added to each
database with an equal share of 256 nuclei from each sub-
type. 64 nuclei are collected from each patient with active
contribution from each image. The increase in size of train
database after a reasonable figure has no positive impact
on classification results but negative impact on problem in
terms of increased computational cost. To draw and match
skeletons and shock graphs, an object recognition application
named Shape Matcher 5 [25] is used. For evaluation of unseen
meningioma samples, all the nuclei from a test image are
compared with the entire training database to find relative
similarity with each nuclei. The class label for test image
is assigned based on voting and confidence averaging of all
the test nuclei. The Mn subtype is classified with 93.75%
accuracy. Likewise, the Fb, Tr and Ps subtypes are classified
with 90%, 68.25% and 66.75% accuracy respectively. The
classification results achieved through phase I revealed that
the images belonging to Mn and Fb subtypes are classified
with significantly high accuracy while the images from Tr and
Ps subtypes with comparatively low accuracy. Therefore, it
is perceived that the structural analysis of meningioma nuclei
is a competent approach to discriminate Mn and Fb subtypes
while it remained unable to perform well in case of Tr and Ps
subtypes.

In phase II, the linear SVM with the optimal feature sets
achieved an overall test accuracy of 99.38% over five folds.
Tr subtype has 100% and Ps subtype has 98.75% accuracy.
It is observed that there is a significant improvement in
classification accuracy achieved through texture analysis at
image-level for both the Tr and Ps subtypes as compared
to nuclei shape matching. The classification results achieved
through the proposed hybrid classifier for four subtypes of
meningioma in five folds are presented in Table I.

The overall classification accuracy obtained for four sub-
types of meningioma averaged over five folds is 95.63%.
The mean accuracy of 93.75% is achieved for Mn, 90% for
Fb, 100% for Tr and 98.75% for Ps. The proposed hybrid
classification framework achieved high accuracy; that is, 90%
or more for all the subtypes of meningioma.

1) Performance Comparison of Classifiers: The perfor-
mance of various classifiers is investigated by classifying the
feature set with all the features (132 features) through a
diverse group of classifiers widely used in medical imaging
applications including RBF SVM, linear SVM, Multilayer
Perceptron (MLP), Random Forest, Naive Bayes and k-NN.

TABLE I. CLASSIFICATION RESULTS FOR FOUR MENINGIOMA
SUBTYPES USING THE PROPOSED HYBRID CLASSIFIER IN FIVE FOLDS.
AccMn , AccFb , AccTr AND AccPs – ACCURACY OF Mn, Fb, Tr AND
Ps RESPECTIVELY. AccOverall = MEAN CLASSIFICATION AACCURACY

AVERAGED OVER FOUR SUBTYPES FOR A PARTICULAR FOLD. Avg =
AVERAGE ACCURACY FOR FIVE FOLDS

Fold#
Phase1 Phase2 Hybrid

AccMn AccFb AccTr AccPs AccOverall

1 100 93.75 100 100 98.44
2 100 87.50 100 100 96.88
3 87.50 87.50 100 100 93.75
4 100 93.75 100 100 98.44
5 81.25 87.50 100 93.75 90.63

Avg 93.75 90 100 98.75 95.63

The classification result obtained through different classifiers
is presented in Table II. The result showed that linear SVM
outperformed other classifiers for both Tr and Ps subtypes
while, quadratic SVM classified the Ps subtype with high
accuracy.

TABLE II. CLASSIFICATION RESULTS (ACCURACY (%)) OBTAINED
THROUGH DIFFERENT CLASSIFIERS BY USING COMPLETE FEATURE SET

(132 FEATURES). Fo IS THE COUNT OF THE FEATURES USED. AccTr AND
AccPs ARE % ACCURACY OF Tr AND Ps SUBTYPES. AccOverall IS THE

MEAN ACCURACY OF TWO MENINGIOMA SUBTYPES)

Classifier Fo AccTr AccPs AccOverall

SVMLinear 132 88.75 96.25 92.50
SVMRBF 132 78.75 83.75 81.25
SVMQuadratic 132 78.75 96.25 87.50
MLP 132 68.75 96.25 82.50
Random Forrest 132 58.75 92.5 75.63
Näıve Bayes 132 58.75 83.75 71.25
KNN 132 48.75 97.5 73.13

Table III shows the parameter values used by each classi-
fier.

TABLE III. VALUES OF THE PARAMETERS USED BY DIFFERENT
CLASSIFIERS

Classifier Parameter Name Parameter Value

SVM RBF Kernel’s Gamma γ γ ∈ {2−3, . . . , 24}
Cost parameter C C ∈ {2−3, . . . , 221}

MLP Hidden Layers 1
Neurons in Hidden Layer 4 (no. of classes)
Learning Rate 0.3
Momentum 0.2

Random Forest No. of Trees 10

kNN No. of Neighbors 1

2) Performance Comparison of Meningioma Classification
Techniques: The proposed framework was compared with the
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recently published best techniques for the classification of
meningioma dataset. The classification results are presented
in Table IV. ADWPT [8] and TSA [13] techniques have
performed 5-folds (leave-one-patient-out) cross validation for
experimentation which is comparable with the proposed frame-
work. The tabular statistics show that the proposed framework
has shown considerable improvement in the highest overall
classification accuracy along with the highest accuracy for all
the subtypes of meningioma.

TABLE IV. COMPARISON OF CLASSIFICATION RESULTS AVERAGED
OVER 5-FOLDS. AccMn , AccFb , AccTr AND AccPs – ACCURACY OF
Mn, Fb, Tr AND Ps RESPECTIVELY. AccOverall = CLASSIFICATION

ACCURACY AVERAGED OVER FOUR SUBTYPES OF MENINGIOMA
ACHIEVED BY ADWPT, TSA AND PROPOSED FRAMEWORK

Technique AccMn AccFb AccTr AccPs AccOverall

ADWPT [8] 89 80 85 97 88
TSA [13] 93.75 90 95 91.25 92.50
Proposed 93.75 90 100 98.75 95.63

V. DISCUSSION

The meningioma nuclei and their respective skeletons with
noteworthy characteristics are expected to offer significant
contribution for the classification of meningioma variants. The
histology images of meningioma subtypes shown in Fig. 1.
have a clear visual representation of nuclei shapes owned by
different subtypes. The nuclei for Mn subtype are usually
round or oval shaped. The nuclei for Fb subtype are rod
or spindle shaped and appear as thin thread like structures.
If the visual structural analysis of Mn and Fb subtypes is
performed on account of nuclei shapes and their respective
skeletons, they show quite different nuclei and consequently
their skeletons. The Tr subtype is also known as a hybrid
or mixed subtype having characteristics of both Mn and Fb
subtypes. The nuclei of Tr subtype are round, oval, rod-like
or spindle shaped. Therefore, the Tr nuclei skeletons have a
considerable similarity with skeletons of Mn or Fb nuclei. All
the images of Ps subtype have a large number of psammoma
bodies and relatively a small number of cell nuclei. In most of
the cases, the nuclei are very small in size. For images of some
Ps patients the nuclei look like very thin fibers or thread-like
structures, while in some images of other patients, the nuclei
are round or oval just like Mn nuclei. Again, some images
have majority of small sized nuclei showing characteristics
of Tr subtype. Therefore, the Ps nuclei and their skeletons
show a mixed pattern of similarity to other subtypes besides
some different and true Ps representatives. The morphological
features of meningioma nuclei and their respective skeletons
provides a valid reason for low classification accuracy achieved
for Tr and Ps subtypes.

The images from Tr and Ps subtypes for test1 database are
weakly classified owing to insufficient or small number of true
representative nuclei. There are large variations in the nuclei
contours appearing in different images of Tr and Ps subtypes.
In case of Ps subtype, insufficient number of nuclei present
in most of the segmented images and over-split or irregular-
shaped nuclei also provided a reason for misclassification. If
a test trial is performed to evaluate a Ps patient with images
having thread-like nuclei, then the nuclei of test images will
show greater similarity to Fb train nuclei as compared to Ps. In
this case, when the class label will be assigned to an individual

nucleus based on similarity, there will be great chance of
misclassification. Accordingly, when the class label for a test
image will be decided based on nuclei voting only, the image
will be labeled as Fb instead of Ps.

Most of the meningioma classification techniques cited
in Section II performed the texture analysis at image level
for all the subtypes. Two subtypes of meningioma (Mn and
Fb) have considerable structural differences, while the other
two subtypes (Tr and Ps) have noteworthy textural variations.
In this paper, the hybrid framework is proposed to capture
both types of characteristics (local shape contours and global
texture) for improved meningioma classification. The proposed
hybrid framework presented the highest classification results in
comparison with other meningioma classification techniques. If
a histology dataset has some visual differences in nuclei shapes
of all the subtypes, then phase-I is expected to present good
classification results. If a dataset has subtypes with both types
of structural and textural variations as in meningioma dataset,
then hybrid framework seems a good option for classification.

VI. CONCLUSION

Meningioma subtype classification is a real-world multi-
class classification problem of digital pathology. It is a quite
complex pattern classification problem due to heterogeneity
issues of tumor texture, low inter-class and high intra-class tex-
ture variations of tumor samples, and architectural variations of
cellular components. In this paper, a novel hybrid framework
based on nuclear level shape and image level texture analysis is
proposed for the histology classification of benign meningioma
subtypes. The basic aim of the proposed hybrid framework
is the achievement of promising classification results for all
the subtypes of meningioma while dealing with the inher-
ent complexity and texture variations. The ultimate goal is
to mimic the prognosis decision of expert pathologists and
assist newer pathologists or others in making the right and
quick decisions. The proposed framework comprises two main
phases: Shape analysis of nuclei through matching of skeletons
and shock graphs and texture analysis through extraction of
higher-order texture features from RGB color channels. The
proposed hybrid framework efficiently captured shape and
texture variations and classified meningioma subtypes with
95.63% accuracy. In the future, other texture measures and
methods for optimal feature subset selection may be explored.
The alternate methods to improve the quality of segmentation
may also be investigated.
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