
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

105 | P a g e

www.ijacsa.thesai.org

An Early Phase Software Project Risk Assessment

Support Method for Emergent Software

Organizations

Sahand Vahidnia

Computer Engineering Department

Ankara University

Ankara, Turkey

Ömer Özgür Tanrıöver

Computer Engineering Department

Ankara University

Ankara, Turkey

I.N. Askerzade

Computer Engineering Department

Ankara University

Ankara, Turkey

Abstract—Risk identification and assessment are amongst

critical activities in software project management. However,

identifying and assessing risks and uncertainties is a challenging

process especially for emergent software organizations that lack

resources. The research aims to introduce a method and a

prototype tool to assist software development practitioners and

teams with risk assessment processes. We have identified and put

forward software project related risks from the literature. Then

by conducting a survey to software practitioners of small

organizations, we collected probability and impact of each risk

factor opinions of 86 practitioners based on past projects. We

developed a risk assessment method and a prototype tool initially

based on data that accumulates further data as the tool. Along

with a risk prioritisation and risk matrix, the method utilises

fuzzy logic to provide the practitioners with predicted scores for

potential failure types and aggregated risk score for the project.

In order to validate the usability of the method and the tool, we

have conducted a case study for the project risk assessment in a

small software organization. The introduced method is partially

successful at prediction of risks and estimating the probability of

predefined failure modes.

Keywords—Software Risk Identification; Software Risk

Assessment; Failure Mode Prediction; Fuzzy Decision Support

I. INTRODUCTION

According to reports [1], the global software market is
estimated to have a value of US$333 billion in 2016 which is
expected to grow by 7.2%. On the other hand, the success rate
of global (mainly US and Europe) software projects in 2015 is
only 29% [2]. Therefore, it is highly desired to follow software
engineering practices to prevent further loss in software
spending. Among software development and engineering
activities, risks assessment of software projects is a significant
task, requiring effort and time. In many organizations,
especially in small organizations, project managers do not have
enough expertise and time for risk assessment. However, the
consequences of ignoring this activity will result in loss of time
and resources for the organization, as without risk assessment
incorrect decisions can be made.

Although there are slight variations in definition of terms in
the literature, a risk factor is a potential problem that may
occur. Similarly in the software domain, risk is considered as
an uncertain event or condition with negative or positive
consequences on a software project on one or more project

objectives such as scope, schedule, cost, and quality PMBOK
[3]. It should be identified, assessed by its probability of
occurrence and impact as its two important dimensions, and a
contingency plan should be developed for remediating the
problem when it actually occurs [4].

In accordance with above definition, various studies have
been conducted and risk factors, categories [5], [6] and analysis
tools [7] have been introduced. However, most developed
methods and tools either cover a limited set of risk factor that
potentially occur later in software project lifecycle or only
focus on the improvement of a method/technique within the
risk assessment process, such as aggregation, root cause
analysis, etc. [8]–[10]. Most of the methods assume that the
organization/team already has accurate near precise
information about the project in the initial planning phase.
Experience in risk identification, existence of a potential risk
register and historical data is widely assumed. There are other
studies focusing on a specific set of risk factors (Appendix 1),
such as operational risk, requirements risk, etc. Furthermore,
risk factors used in different studies may be disjoint or
sometimes overlapping. In real world, software practitioners
cannot benefit from these methods unless in a consolidate
framework is provided. As for the available software tools,
they are mostly enterprise, expensive and the rest only have
limited predefined set of risks or no predefined risks at all.
Furthermore, they do not provide any baseline and prediction
on which the practitioner can use initially, benchmark his
project, and predict potential failure types. Hence, there is a
need to provide a consolidated method for the software
practitioners of small organizations with scarce experience and
resources. This will help them not to miss potential project
risks, especially during early phases of the project. Related
work section provides a more thorough review of the problems
stated.

Therefore, one of our goals in this study is to put out a risk
assessment method especially for practitioners of emergent
software organizations with relatively low previous experience
and historical data. To do this, from the literature, a wide
coverage list of software project related risks was identified,
which possibly rated at initial phase of the project with
relatively little information. By conducting a survey to
software practitioners, risk data have been collected; both in
terms of impact and probability based on software
practitioners’ previous project experiences. In addition to risk

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

106 | P a g e

www.ijacsa.thesai.org

prioritisation, the method assist the practitioners with an initial
set of possible risks, probability and impact values to be
revised for their specific project settings. Furthermore, based
on the data provided by the risk assessor, the tool predicts
probability of failure types, such as defects, overtime and over
budget to the risk assessor. In order to validate the usability of
the method and the tool, a case study was conducted for a
project risk assessment in a small software organization. The
conduct of this research is shown in Figure 1.

In the rest of the paper, first previous studies related to
software project risk assessment is discussed. Then, the risk
factors collection, the assessment method and the tool
developed is described. Finally, the findings of the case study
conducted for validations of the method and applicability of the
tool is presented.

Fig. 1. Study flow

II. RELATED WORKS

During last three decades, various software risk factors,
assessment and analysis tools have been introduced and
explored. Majority of these studies can fit into three categories
of: (1) Researches focusing on software risks and risk factors
identification, (2) Researches focusing on aggregation methods
of risk factors ratings, and (3) Researches proposing risk
assessment and risk management tools and methods. In the
following, some influential researches, specifically related to
software project risk assessment are provided.

In an early study published by Software Engineering
Institute [11], a risk management model and a taxonomy based
software risk identification has been performed. The method
consists of a taxonomy based questionnaire and a process for
its application. The taxonomy provided a structure for
organizing software development risks i.e. Product
Engineering, Development Environment, and Program
Constraints. Carr et al. demonstrated the application of risk
management model in five repeating activities of identify,
analyse, plan, track, control, and communicate at the centre of
activities. It has been observed that adopting Pareto 20-80 rule
is important and dealing with very first 20% of risks will be
most effective highlighting the importance of risk prioritisation
in a risk assessment method hence also considered in our
method. This generally accepted approach is adopted in widely
used text books in software project management [4].

Identification of software risks has been tackled in Li
Xiaosong’s study [5], providing a wide range of risk factors
and categories in addition to general risk matrix and risk levels
with their definitions. Another similar study by [12] contains a
set of proposed risks in development phases with their
definitions. Finally, Verner [6] has performed a literature
review of available studies. The study has extracted 77 risk
mitigation advises alongside with 85 risks. Using this and some
other works, we aggregated sometimes disjoint or overlapping
risk factors.

Due to inherent problem of difficulty in assigning numeric
values to risk factors, as an example Markowski’s study [9]
proposed to fuzzify risks ratings. Risk ratings and values are
fuzzified and fuzzy inference system (FIS) is adopted for
processing and prediction. The problem of aggregation (linear
aggregation has been found misleading) of risk scores has also
been tackled. Choquet integral based aggregation approach to
software development risk assessment [10] is an example of
second category of related work. The study provides a software
risk aggregation method to estimate the risk of a project. In
addition to aggregation method, a set of risk factors, categories,
and their associations have been developed. The study
proposes a multi Choquet integral based multi attribute
aggregation method for decision making process. For the same
aggregation problem, [13] defined a method based on fuzzy
logic. The goal of this study is early assessment of operational
risks in software development. According to the study, before
and during developing software, there are not enough data to
have a full-scale risk assessment. So a fuzzy method is
implemented to address the issue of uncertainty. In addition, a
causal model is developed using fuzzy rules.

Among researches proposing software risk assessment
methods, [14] proposes a method to statistically analyse and
evaluate risk factors and their prices. The method enables to
approximate risk-pricing parameters for four risk factors,
namely, (1) Application Task, (2) Personnel Capability, (3)
Process Maturity, and (4) Technology Platform. Hence, this
study focuses on pricing dimension and in this respect
granularity; hence the number of risk factors is small. In order
to have a better software risk control, Hu’s research [15]
suggests planning based on causality. The proposed method is
based on Bayesian Networks with Causality Constraints hence
taking a probabilistic approach rather than fuzzy logic. In this
study, in order to gather necessary data, a survey has been
conducted which is similar to our approach. The data is used
for constructing the Bayesian Networks. However, the paper
mostly focuses on finding relations between variables rather
than assessment. Bayesian Networks is used in numerous
works due to their simplicity and ease of implementation [16].
But a solid amount of data is required for constructing a proper
network.

Reference [17] proposed a risk assessment technique for
evaluating risk levels in software projects through analogies
with economic concepts. This study defines project risk levels
as the probability of project’s failure in achieving goals and
evaluates risk levels using a risk identification questionnaire.
Structurally this study is similar to ours in terms of comparing
risks and effects, but the definition of risks and methods to
handle them and comparing them is different. Costa et al. uses

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

107 | P a g e

www.ijacsa.thesai.org

weighted normalised medians for risk factor, in contrast, we
used FIS to compare risks and weights gathered in initial
questionnaire. Finally, Costa et al. addresses the issue of
financial loss and gain prediction, whereas our method uses
project failure modes as predictions.

The relationships between project setting, governance and
project success are studied recently in [18]. A survey has been
conducted in attempt to prove the positive relationship between
project management methodology (PMM) and project success.
The relationship between the project management
methodology and project success is moderated by project
governance. The first hypothesis is shown to be valid showing
the importance of the general project setting related risks for
project success can be considered as valid hypotheses.

Recently, a similar study [19] implemented fuzzy method
in aggregation of software risk factors. However, the
application of the risk assessment is extraneous and differs in
the method of data-point accumulations. In contrast to our
study, this study relies only on 7 experts’ data of the field and
considers only a handful of risk factors. As a result, the study
does not provide predictions according of expert data.

Further, tools potentially that can be used for software
project risk assessment are publicly available and accessible.
As an example, RisCal [7] is a proposed tool by Haisjackl.
RisCal implements risk identification, risk analysis and risk
prioritisation. In risk identification step, it allows for a user
defined risk models in addition to the pre-defined risk models.
There are also studies and tools with different approaches like
esrcTool [20]. esrcTool implements FPA (Function Point
Analysis) to estimate software cost and risks. The study
focuses on functional breakdown of software rather than
considering overall project environment and attributes. Hence,
the method and tool focuses on more software product risks
rather than project environment.

In the literature, each study adopts a set of risk factors for
the study in question, sometimes completely disjoint or
overlapping. Initially, most of the reviewed studies only
consider a limited set of risks (not in terms of number, but also
in terms of coverage over different aspects of software
engineering processes), so a wider coverage of software project
related risks is put forward which can potentially be assessed at
initial phase of a project. Secondly, aggregation-focused
studies are generally difficult to implement, as they require
technical expertise to apply. Thirdly, available software tools
mostly enterprise solutions only to manage a limited
predefined set of risks or no predefined risks at all. Therefore, a
risk assessment method and a prototype tool were developed so
that they can be used by practitioners of small organizations
with relatively low previous experience and historical data at
an early phase of the project. The tool suggests the
practitioners with a set of possible risks and their risk values
for a specific project setting provides risk prioritisation with
risk matrix, project risk level using fuzzy aggregation and
potential failure type score using fuzzy inference. In this
respect, our approach consolidates and supports the early risk
assessment task at initial phase of a software project.

III. THE METHOD AND PRO-TYPE TOOL

A. Risk Factors, Scales and Data

In various prior studies, risk factors considered focus on a
specific aspect or phase of software development. We aimed at
a risk factor set that can be used as a project initiation phase.
So as the first phase, risk factors and categories were extracted
from related studies [5], [12], [14], [21]–[25]. Therefore, a
superset of 128 risks with a greater coverage was created.
Then, similar and overlapping risks are unified. Furthermore,
risk statements were changed into negative statements to ease
practitioners understanding and ratings.

For the scales two components: probability and impact [7]
is considered. Risk score is usually defined as the product of
probability and impact [26]. Hence, scale definitions of
probability and impact levels are reused from [21] as shown in
Tables 1 and 2.

In addition, as an assessment tool a 3x3-risk matrix is used.
Probability and impact are two dimensions of a risk matrix. As
one of widespread tool for risk evaluation, risk matrix is
natural to understand by evaluators. There are also other
configurations of risk matrices like 5x5, 7x5 and 7x4 risk
matrices which are not adapted due to less accurate information
at early project phase and simplicity of 3x3 matrices [9]. Risk
matrix dimensions or axes are divided into three level each,
which creates a nine cell qualitative matrix [27]. This matrix
has three parts: (Figure 2).

1) High/Major Concern (red): Risk is high in these

sections and an action should be taken.

2) Medium/Concern (yellow): Risk is moderate in these

sections and there is a chance that risks in these areas may

affect project.

3) Low/No Concern (green): Risk in these sections are

low and acceptable and can be ignored.
 Low Mid High P

ro
b

a
b

ility

2/3-1

High
I1P3 I2P3 I3P3

1/3-1/3

Mid
I1P2 I2P2 I3P2

0-1/3

Low
I1P1 I2P1 I3P1

Impact

Fig. 2. Risk matrix and regions

TABLE I. PROBABILITY LEVEL DEFINITIONS

Probability Levels

High / Very

Likely

High chance of this risk occurring, thus becoming

a problem (x>%70)

Medium /

Probable

Risk like this may turn into a problem once in a
while (%30<x%70)

Low /

Improbable

Not much chance this will become a problem

(x<%70)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

108 | P a g e

www.ijacsa.thesai.org

TABLE II. IMPACT LEVEL DEFINITIONS

Impact Levels

High /

Catastrophic

Loss of system; unrecoverable failure of project;
major problem; schedule slip causing launch date

to be missed; cost overrun greater than 50% of

budget

Medium /

Critical

Considerable problem with project with
recoverable operational capacity; cost overrun

exceeding 10% (but less than 50% of planned cost

Low / Marginal Minor problem project; recoverable loss of
operational capacity; internal schedule slip that

does not impact launch date cost overrun less than

10% of planned cost or time frame

Later, as a data gathering method a questionnaire was
designed within the tool for surveying developers accessible
online (http://46.197.200.167/public_result.php). It comprises
three parts such that; first part obtains general information
regarding a previous project considered by the practitioner
such as type, size (approx. LOC), methodology used, etc.
Second part contains failure and challenges of final project
which contains 10 questions (Appendix B) These questions
were adapted from previous studies [5], [13], [14], [21]–[25],
[28], [29]. The last and 3

rd
 part of the gathers information about

the risk factor ratings for 128 risks. Based on this, initially, a
risk matrix is generated using 86 practitioners’ ratings. The
most recent version of this matrix is publicly available at the
web address mentioned earlier.

In contrast to a related study conducted previously [30],
wider cross-correlations are analysed between risks.
According to Weinberg [31], Pearson correlation coefficients
of r = ± 0.5 are considered strong and correlation coefficients
close to ±1 are the strongest. Evans recommends a correlation
coefficient of ±0.6 to ±0.79 is considered a strong correlation
[32]. As a result, to keep a safety margin, correlation
coefficients which are among ±0.6 and ±1 are considered as
strong. Table 3 demonstrates the highly cross correlated risk
factors. Cross correlation creates a duplicate variable effect,
which is not desired in the learning tools. Pearson correlation
coefficients are obtained using Matlab software’s [33]
Pearson’s correlation function of “corrcoef()”. The Pearson
correlation coefficient of two variables is measured as
following where μx and σx are the mean and standard deviation
of X:

∑ (

)

(

) (1)

There are 48 highly correlated risk factor pairs, unique risk
factors at left side. Statistically these 48 risks represent
repeated data among 128 risk. These 48 risk factors may be
eliminated from risk factor list. However, due to lack of
enough data points for further analysis, it was decided to keep
the 128 risk factors within the tool for now. When the
definitions of risk factors were analysed, it was noticed that the
most of high correlated risk factors do not have logical bounds
- at least as far as we could observe, as correlation does not
necessarily result in causation.

B. Description of First Phase of the Method

A multi-purpose method and tool is designed and
implemented. The tool gathers information from experts and
practitioners and produces a general risk matrix. It also can
produce specific risk matrices for projects with varieties of
project specifications. It calculates the overall project risk
based on fuzzy aggregation and produces probabilities of 10
different failure types for the project based on fuzzy inference.
The tool is developed using PHP scripts as a web based
software to provide an easy and wide access. Figure 3 outlines
functionality of the tool. Data from previous practitioners using
the tool is gathered and pre-processed. This data may be
referred as expert data later. The pre-processing includes
filtering missing and inconsistent data. A general risk matrix is
extracted from this data. Then practitioner input is taken for the
project under assessment. Both data sets will go through Phase
1 and where initial risk matrix for practitioner is proposed.
Then practitioner is allowed to alter proposed risks to get a
more accurate risk matrix. Remark that, in case of initial
projects risk assessment, it is difficult to measure risk
quantitatively. As proposed by Xu [13], when dealing with
qualitative variable (like low, mid, high), it is advised to work
with fuzzy numbers. The altered and more accurate risk set will
pass through Phase 2 for a failure mode analysis of the project.

In order to generate a risk matrix for practitioner, a module
is designed to accumulate necessary data for risk matrix. In
Phase 1 a query of data-points with parameters of Part I of
survey is done. These parameters are “project size (LoC)”,
“project methodology”, “project paradigm” and “development
type”. The result of is a filtered result of available practitioner
data-points in form of a risk matrix and prioritisation. This
filtered result come in form of averages of probabilities and
impacts of selected data-points for all risks based on the prior
parameters. Thus, a 3x3 risk matrix is generated from this data.

TABLE III. HIGHLY CORRELATED RISKS

High Very High

Risk

ID 1

Risk

ID 2

Correlat

ion

Coeffici

ent

Risk

ID 1

Risk

ID 2

Correlat

ion

Coeffici

ent

Risk

ID 1

Risk

ID 2

Correlat

ion

Coeffici

ent

23 106 0.6226 9 54 0.7072 90 109 0.8008

41 108 0.6242 47 126 0.7101 101 111 0.8029

5 17 0.6279 44 95 0.71029 21 30 0.8062

92 123 0.6338 27 48 0.71146 37 51 0.82162

63 76 0.63441 26 11 0.71208 39 49 0.82401

35 48 0.63496 43 104 0.71679 18 125 0.83277

32 75 0.65482 28 95 0.72975 55 111 0.84347

12 66 0.65666 3 126 0.73161 25 74 0.84403

60 96 0.66049 36 126 0.74008 38 126 0.84679

52 103 0.66168 57 88 0.74041 24 50 0.85583

86 120 0.6732 85 120 0.74108 87 93 0.85617

68 74 0.6806 70 74 0.74817

19 33 0.68681 97 115 0.75964

79 73 0.69163 122 115 0.76228

64 67 0.69514 65 120 0.76273

58 117 0.70219 29 31 0.77262

84 98 0.70398 71 93 0.77567

105 124 0.70634 56 74 0.78317

34 109 0.70646

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

109 | P a g e

www.ijacsa.thesai.org

Fig. 3. Description of the Method

Proposed risk matrix in this phase is valuable for
practitioners and will give them an initial and brief view of
possible risks and their importance in similar projects. But, this
will not exactly match to the specific project setting to rely on
before their data is collected. However, the matrix and initial
risk sorting will draw a helpful guideline for practitioner.
Practitioner can change risk impact and probability values
manually in order to achieve a better rating in next phase.

C. Description of the Second Phase of the Method

In the second phase, as proposed by Xu [13], when dealing
with qualitative variable (like low, mid, high), it is advised to
adopt fuzzy numbers. Second phase implements fuzzy logic to
assess the risks and predict failure modes. A decision matrix is
used to evaluate and rank the overall and partial failure score of
the project, using practitioner’s inputs or predicted risk scores
in first phase based on previous data. Practitioner input is
acquired in form of probabilities and impacts. Probability and
impact scores are turned into triangular fuzzy numbers and
aggregated.

Then Mamdani’s inference model [9], [34] is used for
prediction of failure types. To analyse failure modes, data
points with negative scores for the failure mode are selected.
For instance, in order to perform this selection, only the risks
with a particular failure mode score of 3 out of 3 are taken as a
match and remaining results are dismissed. In contrast,
analysing overall project risk requires all data points.

Due to missing and imprecise information at initial phase of
the projects, fuzzy decision matrix is used with triangular
fuzzy numbers (TFN) [35]. Fuzzy decision matrix has less
complexity and is effective for ranking fuzzy numbers. For
membership function μi(x) of fuzzy number, ñi can be defined
as:

 , ()- (2)

ñi > ñj if and only if eij = 1 and eji < Q, where, Q is some
fixed positive fraction less than 1.

First part of this equation requires expert data in form of
fuzzy sets. To provide this, filtered data-points are sorted into
two categories of probability and impact, with each containing
risk factor scores. The risk factor scores go through
fuzzification process (see Equation (3) and Figure 4) by a
membership function for each corresponding risk factor.

{

 (3)

A = (a, b, c)

Fig. 4. Fuzzy membership function illustration

After fuzzification of probability and impact, scores in the
data-points are aggregated to form a single expert opinion data.
To do so, an aggregation operator is adopted from Pandey [36]
which is based on arithmetic means of L-Apex and R-Apex
Angles of TFN.

 ̅

∑

 (4)

 ̅

∑ *

∑

 +

 (5)

0

1

0 0

1

a b c

𝜇𝐴 (𝑥)

1. Previous practitioners’

data
2. Practitioner data input

Preprocessing
Generating initial risk

model and matrix –

Phase 1

3. Initial practitioner risk

set and matrix

General risk matrix

Review and edit data

by practitioner

Failure mode

prediction – Phase 2

Project risk matrix and

risk model

Failure mode and total

risk analysis report

Preprocessed data

Revised data

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

110 | P a g e

www.ijacsa.thesai.org

 ̅

∑

 *

∑

 + (6)

Risk value is obtained by calculating the product of
probability and impact values; the method of Shang [37] with
adjustments is used to calculate the multiplication of triangular
fuzzy probability and impact numbers. Remark that there are
other works including Taleshian’s method, [38] which uses
trapezoidal numbers and could be also used with some
adjustments. Hence, multiplication of and can be
obtained using (7).

 ̃ =

{

 √

 √

(7)

For processing and fuzzification of data, membership
functions must be defined. The fuzzy numbers must be
triangular to match the Equation (3), so can be applied to
aggregation and multiplication equations.

To prevent misinterpretation of results, probability and
impact values are gathered in quantitative range of [0-8] with
initial peak points in range of [2-6]. Otherwise, aggregation
and multiplication equations could lead in to due to producing
negative and non-triangular fuzzy number. Remark that
normally, the probability is expected to be evaluated in [0-1]
range. However, we use the probability score as a variable to
be rated by the practitioner and transform it as a fuzzy number,
therefore it may range between 0 and 8 during calculations in
the method. Impact score are calculated in the same manner.
Now multiplication (for measuring total risk) produces fuzzy
numbers from 0 to 64 which can contain any triangular fuzzy
numbers produced using introduced techniques. Figure 5
demonstrates our predefined fuzzy membership functions,
which L stands for low, M for medium and H for high
probability or impact:

L=(0.5,2,3.5) , M=(2.5,4,5.5) , H=(4.5,6,7.5)

Fig. 5. Fuzzy membership function

D. An Example to Illustrate Second Phase of the Method

To clarify our method, a failure mode prediction example is
given. We assume a risk set with corresponding scores of
probability and impact described as below. Given the
probability and impact scores of L (low) and M (mid) for
“Lack of Development Technology Experience of Project
Team” risk, fuzzy numbers for these values can be obtained
using membership functions defined previously.

Probability L:

[0/0, 0.34/1, 1/2, 0.34/3, 0/4, 0/5, 0/6, 0/7, 0/8] (8)

Impact M:

[0/0, 0/1, 0/2, 0.34/3, 1/4, 0.34/5, 0/6, 0/7, 0/8] (9)

Using Equation (7) and defined membership functions, we
can calculate combined fuzzy risk score for risk of “Lack of
Development Technology Experience of Project Team” in this
case. See Equation (10).

R = [0/0, 0/1, 0.15/2, 0.33333333/3, 0.49/4, 0.63/5, 0.76/6,

0.88/7, 1/8, 0.89/9, 0.78/10, 0.69/11, 0.59/12, 0.50/13, 0.41/14,

0.33/15, 0.25/16, 0.17/17, 0.09/18, 0.01/19, 0/20, 0/21, 0/22,

0/23, 0/24, 0/25, 0/26, 0/27, 0/28, 0/29, 0/30, 0/31, 0/32, 0/33,

0/34, 0/35, 0/36, 0/37, 0/38, 0/39, 0/40, 0/41, 0/42, 0/43, 0/44,

0/45, 0/46, 0/47, 0/48, 0/49, 0/50, 0/51, 0/52, 0/53, 0/54, 0/55,

0/56, 0/57, 0/58, 0/59, 0/60, 0/61, 0/62, 0/63, 0/64] (10)

After calculating the expert and practitioner values by
equation (2), minimum values of each risk among test and
expert data is obtained as a vector of fuzzy numbers. Later,
maximum values of fuzzy risk scores are used to obtain a
single aggregated fuzzy number. This number is the total
failure score for provided test data. Higher score means the
chance of failure is also higher. The same method applies to all
failure modes, but it’s important to remember that all risks
must be considered and the risk of “Lack of Development
Technology Experience of Project Team” has been given only
to demonstrate how a single risk is being handled in the
method. Likewise, this matrix can potentially point out the
most influential risk factors. After processing at Equation

(2), result is defuzzified. Defuzzification for risk index can be
expressed by Equation (11).

∑

∑
 (11)

Defuzzification of (10) using Equation (11) will result in
(12):

 (12)

This way, the defuzzified and final risk score for this
example is computed, which is 7.709. As discussed earlier, this
score is also in range of [0-64] as expected. This number may
also be scaled to 12.04% to make the result more natural to
interpret by the practitioner. Higher values are representing
higher risks scores and lower values are representing lower risk
scores.

0

1

0 1 2 3 4 5 6 7 8

L M H

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

111 | P a g e

www.ijacsa.thesai.org

IV. CASE STUDY

In order to put the applicability of the proposed tool and
method, we have conducted a case study. In the case study, the
extent of support and usefulness of the tool and provided
predictions are meant to be explored. The tool does not include
risk responses. Thus, it is not expected to do a complete risk
management, but only a prediction and assessment in risks and
failure modes. The case must be able to meet the target project
specifications as explained in early sections.

As a case, we had to find a case project with small
development team with relatively low resources and little
experience in risk assessment. Additionally, assessment of a
project with Agile methodology was desired, as most of the
small organizations prefer agile approaches. Thirdly, the
project must be in early steps of development so the
practitioners have to guess the risk levels without measuring
the actual risks and failures. Otherwise, the result can be biased
and misleading. Data collection in this case study is conducted
in a first degree, direct (interview) [39] manner. It would be
preferable to perform this interview in second degree, but due
to limitations explained in next sections, this interview was
performed with interactions.

In the case study, we tried to answer the following planned
questions. Answering these questions can help us explore the
validity and quality of method and the tool. These questions
are:

1) Does this tool provide expected risk list for emergent

software organizations?

2) Are there any missing important risks?

3) Does the proposed risk model represent real (possible)

risk levels according to prior estimations?

4) How difficult is it to use the tool?

5) How long does it take to make an initial assessment of

risks and failure modes?

6) How realistic and accurate failure mode predictions

are?

7) Does the tool provide necessary insight for emergent

software organizations?

B. Setting of the Case

As our method is opting to assist emergent software
organizations with relatively less experience and knowledge in
Software Risk Assessment at initial phase of a project, after
considering three organizations, a small software company in a
University Technology Zone is agreed to participate in the case
study. The characteristics of this organization matched with the
definition of immature software organization given by Paulk
[40], [41]. This organization has seven personnel primarily
working as a subcontractor for a larger organization developing
solutions for a government organization. Hence, the
organization has relatively little experience (only 5) on
independent software development projects. However,
recently they obtained an independent contract for developing
an Emergency Triage [42] Decision Support Software for the
University Hospital.

The goal of the project is to develop triage decision support
software. This software should be able to categorize patients

after the “Triage Nurse” initially evaluates them when they
arrive to the emergency department. A patient is categorized
into a priority class based on a triage nurse’s inputs and based
on medical checks. The triage system that the software will
implement is an already proven and accepted method, namely,
the Canadian Triage and Acuity System (CTAS) [42] 5-level
systems, with 5 priority categories. The software is only meant
to serve as assistance, it should never take control from the
user, as he/she should be able to override the software actions
through his/her own professional judgment. At any time, the
systems results can be overridden and life critical patients will
be intervened outside of the system scope. Furthermore, the
system will be delivered as a prototype and will not be fully
operational until complete validation and verification; fully
operational system will be developed if accepted.

The system is planned and developed by using SCRUM
[43] by a team of two developers and a team leader (SCRUM
master). Intensive commitment exists from the part of the
emergency department management and highly dedicated
involvement during development is established by assigning
two emergency experts for the development. A Java based
framework is planned to be used in order to minimise
portability problems. In order to facilitate user interface
development, user interfaces are planned to be developed with
Jigloo GUI Builder [44]. The triage system is planned to be
integrated into the hospital’s information system should be able
to acquire patient medical history to aid the triage process. As
the database, MySQL is planned to be used. The reason for
these choices is previous expertise on the technology of the
team or ease of integration with the hospital information
system.

As there is not a formally defined risk management process
in SCRUM the team has not conducted a traditional risk
assessment. However, they have defined an initial set of 15 use
cases as high level requirements such as View non-triaged
patients, View triaged patients, Triage a patient, View patient
medical history, etc. They have agreed that 3 (such as calculate
triage category and assign treatment order of patient) of the 15
requirements will be more difficult to develop. They have
foreseen to conduct state based verification for the critical
objects within the scope of these requirements. However, they
do not have any risk assessment output for the general software
project risks. This is more or less typical for small teams
working for with an agile methodology. They have considered
a set of tools from the search engine including Jira [45], Risk
Radar [46] and Risk Management Studio [47]. Most of these
risk management tools will not provide a predefined set of risk
and probable results, except for a number of risks limited to
area like security. In contrast, our tool provides initial
predefined software project risk factors with probability and
impact levels based project attributes.

C. Conduct of the Risk Assessment with the Tool

The risk assessment is conducted with the team lead and
developers and the method/tool developer in a 3-hour meeting.
As the tool is currently in prototype state, the tool developer
was present in order to explain the details of the use tool and
explanation of the terminology used in the proposed risk
register and use of the decision support techniques
implemented. A set of informally prepared documents related

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

112 | P a g e

www.ijacsa.thesai.org

to the scope of requirements of the project and system proposal
for the bid were present. Each risk item is evaluated for its
probability and impact level by the team and agreed with
various discussions. As most of the information in the
discussion was tacit, the referral to documents was little.

The tool’s graphical user interface has two stages. The first
stage acquires general project information. In Figure 6, we
provided the tool with this information and saved the progress.

Later input stage of the tool is the evaluation stage with
default probability and impact levels and practitioner defined
probability and impact levels as demonstrated in Figure 7.
These scales are continuous that are called “visual analogue
scales” [48] which give the practitioner better control and
comfort in ratings. After customizing probabilities and impact
scales according to the case, the tool generates a risk matrix for
new data alongside the risk matrix for default data.

The team lead has made following observations during the
conduct of the assessment:

1) Initial risk register (128 risk) embedded in the

method/tool was useful for them different from any tools the

team lead had used in his previous experience such as Jira,

Radar, etc. He agreed that most of the risk factors might have

impact on the software projects in general.

2) The historical data gathered from other practitioners

used for generating approximate probability and impact levels

helped the team to elaborate on their rating decision of impact

and probability levels for each risk. In addition, the initial risk

register provided guidance to rate risk factors for which they

were unable to give levels either due to missing information or

lack of consensus.

3) Risk prioritisation automatically generated by the tool

will help them to focus risk remedial actions in a more

focused and efficient way.

4) As scale rating, provided by a slider as 0-10 implicit

levels was easy to assign for the practitioner intuitively rather

than giving discrete 0-3 ratings. This visual assignment with

more adjustments to the initial historical ratings eased the

assign changes. (Note: This also provides us to make better

predictions for specific failure types by the fuzzy prediction

algorithm.)

Fig. 6. Data register stage screenshot

5) In fact, historically generated risk ratings were

proposed by the tool to assist decision making, it became clear

that for specific project and organization setting, there could

be radical differences for some of the risks. Figure 7

demonstrates these differences in this case.

6) The team agreed that some of the risks they have not

really thought about the triage project risk existed such as

Backup Issues, Potential Increase in database size, and

Security Risks.

7) Overall risk score of the project calculated by the tool

and potential failure type estimation provided by the tool may

be used as adjustment factor for project cost, schedule and

resource.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

113 | P a g e

www.ijacsa.thesai.org

Fig. 7. Evaluation stage screenshot

D. Results

According to case data, High/Major Concern risks in
custom risk matrix are available at Table 4. In addition, total
quantitative risk score for case project is 50.30 that verbally
can be categorized as “high” level. The qualitative value of
high is a fuzzy value. A fuzzy value solves the problem of
uncertainty with uncertain answer. For instance, Figure 9
shows a peak point of 50/64 and 51/64 with the lowest point of
0.1 in 33/64. It means the risk can be called 50/64 and 51/64
risky (nearly high) most of the times, and with a very low
possibility it can be called 33/64 risky (near mid). It also means
the risk cannot be categorized as sub-mid and below 32/64 at
all. The same also applies to all other fuzzy numbers in a
similar manner.

As mentioned in early sections, a failure mode analysis is
also provided (Figure 8). According to the analysis of case
data, the risk of failure for “Project Over-Schedule” in the case
is low to medium. Result of this analysis is represented in
Figure 9. The result of failure mode analysis in a single
iteration of risk assessment may not provide necessary
information regarding the possibility of failure, as these results
are more like relative results than absolute.

This means the inference model is meant to be used as
comparison model than an evaluating model. For a better
comprehension regarding the project’s failure mode
probabilities, all failure modes are calculated -using the tool-
and compared. The calculations are done using both proposed
risk values and practitioner defined risk values of the case.
Figure 10 is a demonstration of the comparison.

TABLE IV. MAJOR RISKS IN PROJECT

Risk Region Risk Region

Low Knowledge and
Understanding of Clients
Regarding the
Requirements

I3P3
Instability and Lack of
Continuity in Project
Staffing

I2P3

Team Member
Unavailability

I3P3
Lack of Expertise with
Application Area
(Domain)

I2P3

Staff Turnover I3P3
Dependency On a Few
Key People

I2P3

High Extend of Changes
in The Project

I3P2
Lack of Organizational
Maturity

I2P3

Lack of Requirements
Stability

I3P2
Need to Integrate with
Other Systems

I2P3

Lack of Frozen
Requirements

I3P2
Excessive Reliance On a
Single Development
Environment

I2P3

Requirements NOT
Complete and Clear

I3P2
Misleading Estimation
About Skills Of Workers

I3P2

Expansion of Software
Requirements

I3P2 Gold Plating I3P2

Lack of Software
Developer Competence

I2P3

As demonstrated in Figure 10, all failure mode ratings are
in the range of 14/64 and 19/64 which can be represented in
form of 22% - 29%. It can be concluded from the results that
all failure modes are pretty far from being high, but relatively
“Defects in Application” is more probable to occur than the
rest. This can help the developer to generate a response to
“Defects in Application” failure mode. This failure mode has
been marked as relatively high in both predicted data and
practitioner data. These results are proposed to guide the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

114 | P a g e

www.ijacsa.thesai.org

developing teams to take more precautions regarding the
related risks. But for a better observation, it is recommended
for developing teams to keep observing the risks and
performing failure mode analysis in every step of the
development. Failure mode values are mostly intended to be
used as a comparison value of a failure mode in different time
spans.

In a risk management cycle, it is very important to create
responses for risks. As for this study, the response analysis is
out of scope, but in this case study we decided to produce some
suggestions to emulate a real risk management condition.
Table 5 is a brief demonstration of possible and suggested
responses in literature [6], without considering root causes. It
is important to point out that only risk responses addressing the
root cause of some, namely organizational risks may be truly
effective [49]. However, this study does not provide a root
cause analysis. Therefore, it is not expected to have an accurate
risk response analysis.

TABLE V. RISK RESPONSES EXAMPLE

Risk Response

Low Knowledge and
Understanding of
Clients Regarding the
Requirements

 Apply personal with domain knowledge.

 Define a person responsible for requirements

specification and prioritization.

Lack of Software
Developer
Competence

 Ensure that there is appropriate technical

ability. Take into account the developers’ skills

assigning tasks.

Staff Turnover  At project start up, define undisputed areas of
responsibility for all participants as well as the

relational roles being instituted people

management

Misleading Estimation
About Skills Of
Workers

 The management should have a concrete

description about the capabilities of each
member of development team while estimating

for the scope, size, and cost of the project

avoiding optimistic estimations.

V. VALIDITY

There are threats to validity and we try to address them
based on categories of validity threats which are pointed out by
[39]. First threat to validity (Construct validity) of this case can
be considered as possible misinterpretations of risks during the
assessment. Subject practitioners might misinterpret the
questions under normal circumstances, but in this case study an
interview was conducted in first degree and interruptions were
made during the interview to assure correct interpretations.

Another validity issue (internal) is correctly predicting risk
factors and failure modes. No logical link is considered. The
relations are indirectly established by data and via prediction
method introduced. To get the more valid results and facilitate
the use of the method, it is may be desirable to reduce risk
factors as high cross correlations are observed. With further
data, the method and relations can be improved. Also as
pointed out by [50], it is not advised to use too many criteria in
FIS. Thus, reduction of dimensionality in risk factors is
expected to be effective in further validity of prediction.

The case study is only valid for projects with agile
methodology and organizations with lower maturity levels (1
or 2) and cannot be generalised any further. Extending the
project setting further can be a threat to the validity (External
validity) of this case study. In order to extend the case study
further, data must be improved to cover wider project settings.
This research proposes risk assessment method and tool that
the results might alter with different input data, but the logic
behind the method will not change. It is important for future
interested researchers to consider input data for training of the
tool and do not rely on the exact same outputs. As mentioned
earlier, this case study and whole study can be improved by
improving input data and the validity of the tool improves as
the data set improves.

Fig. 8. Overschedule failure model risk

Fig. 9. Total project risk

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

115 | P a g e

www.ijacsa.thesai.org

VI. CONCLUSION

In this study, we introduced a tool for small sized software
development teams, with ability of providing initial risk set and
rating recommendations. Additionally, we provided a fuzzy
method based tool to facilitate the risk assessment by factors
and their consequences in form of failure mode analysis. In
addition, the method produces an overall project risk rating. All
this information is useful for small-scale software companies
with limited resources, especially at project bid, initiation
phases and acceptance decisions.

Fig. 10. Failure modes results

As explained in this case study, proposed risks and
predicted scores are in mid to high level which are close to
expert expectations. Another observation is based on
comparisons of the automatically predicted failure mode scores
(which are based on initial and automatically suggested risk
ratings) and the predicted failure mode scores from practitioner
manually altered input data shows a similar pattern in relatively
high and relatively low failure mode scores. For instance, in
both predicted failure mode scores (practitioner altered and
automatically generated), the failure mode of “Defects in
Application” poses a higher threat to the project and failure
mode of “Customer not Satisfied” poses a lower threat to the
project. Thus, in an overall conclusion, the method provides
strong guidelines regarding the risk for practitioners and the
steps of identifying, analysing and tracking risks. The method
can possibly predict most common failure modes according to
project data.

The tools risk rating proposal and prediction accuracy will
certainly improve and results that are more generalisable may
be drawn, as the usage of the tool by practitioners will increase
the number of data points used by the tool. In addition,
prediction method has potential for further improvements in
order to point out influential risk factors for various failure
modes. Additionally, a deeper study on risks and their
characterisations can be conducted similar to [51] in order to
have better risk control and management phases in future

studies. It is also planned to provide root cause study and
therefore a risk response advice in next version.

ACKNOWLEDGMENT

We want to thank practitioners involved in the survey and
case study who donated their precious time to us. This research
did not receive any specific grant from funding agencies in the
public, commercial, or not-for-profit sectors.

REFERENCES

[1] “Gartner Worldwide IT Spending Forecast,” Gartner, Inc., 2016.
[Online]. Available: http://www.gartner.com/newsroom/id/3482917.

[2] “CHAOS Report 2015,” 2015.

[3] Project Management Institute, A guide to the project management body
of knowledge (PMBOK ® guide). 2013.

[4] R. S. Pressman, Software Engineering A PRACTITIONER ’ S
APPROACH, 7th ed., vol. 33. 2010.

[5] L. Xiaosong, L. Shushi, C. Wenjun, and F. Songjiang, “The Application
of Risk Matrix to Software Project Risk Management,” 2009 Int. Forum
Inf. Technol. Appl., pp. 480–483, May 2009.

[6] J. M. Verner, O. P. Brereton, B. a. Kitchenham, M. Turner, and M.
Niazi, “Risks and risk mitigation in global software development: A
tertiary study,” Inf. Softw. Technol., vol. 56, no. 1, pp. 54–78, Jan. 2014.

[7] C. Haisjackl, M. Felderer, and R. Breu, “RisCal -- A Risk Estimation
Tool for Software Engineering Purposes,” 2013 39th Euromicro Conf.
Softw. Eng. Adv. Appl., pp. 292–299, Sep. 2013.

[8] L. Yu and H. Liu, “Feature Selection for High-Dimensional Data: A Fast
Correlation-Based Filter Solution,” Int. Conf. Mach. Learn., pp. 1–8,
2003.

[9] A. S. Markowski and M. S. Mannan, “Fuzzy risk matrix,” J. Hazard.
Mater., vol. 159, no. 1, pp. 152–157, 2008.

[10] G. Büyüközkan and D. Ruan, “Choquet integral based aggregation
approach to software development risk assessment,” Inf. Sci. (Ny)., no.
180, pp. 441–451, 2010.

[11] M. Carr, S. Konda, I. Monarch, F. Ulrich, and C. Walker, “Taxonomy-
based risk identification,” Softw. Eng. Inst., no. June, pp. 1–24, 1993.

[12] H. Hizazi, N. H. Arshad, A. Mohamed, and Z. M. Nor, “Risk Factors in
Software Development Phases,” Eur. Sci. J., vol. 10, no. 3, pp. 213–232,
2014.

[13] Z. Xu, T. M. Khoshgoftaar, and E. B. Allen, “Application of fuzzy
expert systems in assessing operational risk of software,” Inf. Softw.
Technol., vol. 45, no. 7, pp. 373–388, May 2003.

[14] A. Appari and M. Benaroch, “Monetary pricing of software
development risks: A method and empirical illustration,” J. Syst. Softw.,
vol. 83, no. 11, pp. 2098–2107, Nov. 2010.

[15] Y. Hu, X. Zhang, E. W. T. Ngai, R. Cai, and M. Liu, “Software project
risk analysis using Bayesian networks with causality constraints,” Decis.
Support Syst., vol. 56, pp. 439–449, Dec. 2013.

[16] M. Perkusich, G. Soares, H. Almeida, and A. Perkusich, “A procedure to
detect problems of processes in software development projects using
Bayesian networks,” Expert Syst. Appl., vol. 42, no. 1, pp. 437–450,
2015.

[17] H. R. Costa, M. de O. Barros, and G. H. Travassos, “Evaluating
software project portfolio risks,” J. Syst. Softw., vol. 80, no. 1, pp. 16–
31, 2007.

[18] R. Joslin and R. Müller, “Relationships between a project management
methodology and project success in different project governance
contexts,” Int. J. Proj. Manag., vol. 33, no. 6, pp. 1377–1392, 2015.

[19] C. Samantra, S. Datta, and S. S. Mahapatra, “Risk assessment in IT
outsourcing using fuzzy decision-making approach: An Indian
perspective,” Expert Syst. Appl., vol. 41, no. 8, pp. 4010–4022, 2014.

[20] M. Sadiq, A. Rahman, S. Ahmad, M. Asim, and J. Ahmad, “EsrcTool: A
tool to estimate the software risk and cost,” in 2nd International
Conference on Computer Research and Development, ICCRD 2010,
2010, pp. 886–890.

20

22

24

26

28

30

Defects in
Application

Project Over-
Budget

Project Difficult
to Use

Project Difficult
to Maintain

Project not
Reliable

Long Response
Time

Not Meeting
Functional…

Low Software
Quality

Costumer not
Satisfied

Project Over-
Schedule

User Data
Predicted Data

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

116 | P a g e

www.ijacsa.thesai.org

[21] S. Zardari, “Software Risk Management,” 2009 Int. Conf. Inf. Manag.
Eng., pp. 375–379, 2009.

[22] B. Shahzad, I. Ullah, and N. Khan, “Software Risk Identification and
Mitigation in Incremental Model,” 2009 Int. Conf. Inf. Multimed.
Technol., pp. 366–370, 2009.

[23] D. Wu, H. Song, M. Li, C. Cai, and J. Li, “Modeling Risk Factors
Dependence Using Copula Method for Assessing Software Schedule
Risk,” in Software Engineering and Data Mining (SEDM), 2010 2nd
International Conference on, 2010, pp. 571–574.

[24] H. Song, D. Wu, M. Li, C. Cai, and J. Li, “An entropy based approach
for software risk assessment: A perspective of trustworthiness
enhancement,” Softw. Eng. …, pp. 575–578, 2010.

[25] B. Shahzad and A. S. Al-Mudimigh, “Risk Identification, Mitigation and
Avoidance Model for Handling Software Risk,” 2010 2nd Int. Conf.
Comput. Intell. Commun. Syst. Networks, pp. 191–196, Jul. 2010.

[26] K. Olid and B. Mannan, “A Review of Software Risk Management for
Selection of best Tools and Techniques,” pp. 773–778, 2008.

[27] G. Stoneburner, A. Goguen, and A. Feringa, “Risk Management Guide
for Information Technology Systems : Recommendations of the National
Institute of Standards and Technology,” Natl. Inst. Stand. Technol., no.
800–30, pp. 1–25, 2002.

[28] Ö. Hazir, “A review of analytical models, approaches and decision
support tools in project monitoring and control,” Int. J. Proj. Manag.,
vol. 33, no. 4, pp. 808–815, 2015.

[29] A. A. Keshlaf and S. Riddle, “Risk Management for Web and
Distributed Software Development Projects,” 2010 Fifth Int. Conf.
Internet Monit. Prot., pp. 22–28, 2010.

[30] S. Vahidnia, Ö. Tanrıöver, and I. N. Askerzade, “AN EVALUATION
STUDY OF GENERAL S OFTWARE P ROJECT RISK BASED ON
SOFTWARE,” IJCSIT, vol. 8, no. 6, pp. 1–13, 2016.

[31] S. Weinberg and S. Abramowitz, “Statistics using SPSS: An integrative
approach,” 2008.

[32] [32] J. D. Evans, Straightforward Statistics for the Behavioral Sciences.
Brooks/Cole Publishing Company, 1996.

[33] The MathWorks Inc., “MATLAB.” The MathWorks Inc., 2015.

[34] E. H. Mamdani, “Application of fuzzy logic to approximate reasoning
using linguistic synthesis,” IEEE Trans. Comput., vol. C-26, no. 12, pp.
1182–1191, 1977.

[35] E. Triantaphyllou and L. Chi-Tun, “Development and evaluation of five
fuzzy multiattribute decision-making methods,” Int. J. Approx. Reason.,
vol. 14, no. 4, pp. 281–310, 1996.

[36] M. Pandey, N. Khare, and S. Shrivastava, “New Aggregation Operator
for Triangular Fuzzy Numbers based on the Arithmetic Means of the L-
and R-Apex Angles,” Submitt. Publ., vol. 2, no. 3, pp. 990–992, 2012.

[37] S. Gao, Z. Zhang, and C. Cao, “Multiplication operation on fuzzy
numbers,” J. Softw., vol. 4, no. 4, pp. 331–338, 2009.

[38] A. Taleshian and S. Rezvani, “Multiplication Operation on Trapezoidal
Fuzzy Numbers,” J. Phys. Sci., vol. 15, no. December, pp. 17–26, 2011.

[39] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empir. Softw. Eng., vol. 14, no.
2, pp. 131–164, 2009.

[40] Ö. Tanrıöver and O. Demirörs, “A process capability based assessment
model for software workforce in emergent software organizations,”
Comput. Stand. Interfaces, vol. 37, pp. 29–40, 2015.

[41] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber, “The capability
maturity model for software,” Softw. Eng. Proj. Manag., p. 48, 2006.

[42] [42] K. V. Iserson and J. C. Moskop, “Triage in Medicine, Part I:
Concept, History, and Types,” Ann. Emerg. Med., vol. 49, no. 3, pp.
275–281, 2007.

[43] [43] K. S. or. Schwaber, “Scrum,” 2016. [Online]. Available:
https://www.scrum.org/.

[44] Eclipse, “Jigloo SWT/Swing GUI Builder,” Eclipse Foundation, 2014.
[Online]. Available: https://marketplace.eclipse.org/content/jigloo-
swtswing-gui-builder. [Accessed: 06-Feb-2016].

[45] Atlassian, “JIRA Software,” Atlassian Foundation, 2016. [Online].
Available: https://www.atlassian.com/software/jira. [Accessed: 03-Feb-
2016].

[46] Pro.Concepts, “Pro Concepts,” Pro Concepts LLC, 2014. [Online].
Available: http://www.proconceptsllc.com/risk-radar.html. [Accessed:
02-Feb-2016].

[47] Stiki, “RM Studio,” Stiki, 2015. [Online]. Available:
http://www.riskmanagementstudio.com/. [Accessed: 02-Feb-2016].

[48] S. de la R. de Sáa, M. Á. Gil, G. González-Rodríguez, M. T. López, and
M. A. Lubiano, “Fuzzy rating scale-based questionnaires and their
statistical analysis,” IEEE Trans. Fuzzy Syst., vol. 23, no. 1, pp. 1–14,
2015.

[49] S. L. R. Vrhovec, T. Hovelja, D. Vavpotič, and M. Krisper, “Diagnosing
organizational risks in software projects: Stakeholder resistance,” Int. J.
Proj. Manag., vol. 33, no. 6, pp. 1262–1273, 2015.

[50] A. Rodríguez, F. Ortega, and R. Concepción, “A method for the
evaluation of risk in IT projects,” Expert Syst. Appl., vol. 45, pp. 273–
285, 2016.

[51] Y. Wang and S. Fu, “A General Cognition to the Multi-characters of
Software Risks,” 2011 Int. Conf. Comput. Inf. Sci., pp. 737–739, Oct.
2011.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

117 | P a g e

www.ijacsa.thesai.org

APPENDIX A: RISK FACTORS

ID Unsorted Risk Statement Refere

nce

ID Unsorted Risk Statement Reference

1 Large Database Size [14] 65 Developing Wrong Software Functions [21], [29]

2 Main Storage Constraint [14] 66 Developing Wrong User Interface [21], [29]

3 High Platform Volatility [14] 67 Gold Plating (changing A Working Software) [21], [29]

4 Bad Development Schedule [14] 68 Shortfalls In Outsourced Components [21], [29]

5 Lack Of Analyst Capability [14] 69 Shortfalls In Externally Performed Tasks [21], [29]

6 Lack Of Platform Experience [14] 70 Real-time Performance Shortfalls [21], [29]

7 Lack Of Use Of Modern Programming Practices [14] 71 Bad Traceability [29]

8 Low Usage Of Software Support Tools [14] 72 Insufficient Verification And Validation [29]

9 Lack Of Software Developer Competence [14] 73 Customer Unsatisfied At Project Delivery [29]

10 Project NOT Fit To Customer Organization [5] 74 Risk Reducing Technique Producing New Risk [29]

11 Lack Of Customer Perception [5] 75 Catastrophe / Disaster [29]

12 Project- Resource Conflict [5] 76 Incorrect Project Size Estimation [22]

13 Customer Conflict [5] 77 Project Funding Uncertainty [22]

14 Lack Of Leadership [5] 78 Rapid Change Of Job [22]

15 Definition Of The Program (ambiguity) [5] 79 Change In Working Circumstances By Management [22]

16 High Political Influences [5] 80 Hardware Default Changes [22]

17 Inconvenient Date [5] 81 Requirement Postponement [22]

18 Short Term Solution (lack Of Long Term Solution) [5] 82 Presence Of High Bugs/errors Count [22]

19 Lack Of Organization Stability [5] 83 Technology Change [22]

20 Lack Of Organization Roles And Responsibilities [5] 84 Underestimation Of Data Increase Due To Software

Success

[22]

21 Lack Of Policies And Standards [5] 85 Lack Of Design And Development Tool Independence [22]

22 Lack Of Management Support And Involvement [5] 86 Risk Of Intruders (hackers, Viruses, Trojan Horse) [22]

23 Lack Of Project Objectives [5] 87 Misleading Estimation About Skills Of Workers [22]

24 Lack Of User Involvement [5] 88 Lack Of Technical Feedback [22]

25 Lack Of User Acceptance [5] 89 Compromise On Profit To Save Name [22]

26 High User Training Needs [5] 90 Risk Of Economy Distortion [22]

27 Large Project Size [5] 91 Expansion Of Software Requirements [23]

28 Hardware Constraints [5] 92 Inaccurate Estimation Of Software Effort [23]

29 Lack Of Reusable Components [5] 93 Low Knowledge And Understanding Of Clients

Regarding The Requirements

[24]

30 Lack Of Cost Controls [5] 94 Incorrect Requirements [24]

31 Lack Of Delivery Commitment [5] 95 Lack Of Frozen Requirements [24]

32 Lack Of Requirements Stability [5] 96 Undefined Project Success Criteria [24]

33 Requirements NOT Complete And Clear [5] 97 Conflicting System Requirements [24]

34 Lack Of Testability [5] 98 Conflict Between User Departments [24]

35 Implementation Difficulty [5] 99 Low Number Of Users In And Outside The
Organization

[24]

36 High System Dependencies [5] 100 Instability Of The Client's Business Environment [24]

37 Lack Of Response Or Other Performance Factors [5] 101 Dependency On A Few Key People [24]

38 High Customer Service Impact [5] 102 Lack Of Staff Commitment, Low Morale [24]

39 Data Migration Required [5] 103 Instability And Lack Of Continuity In Project Staffing [24]

40 Lack Of Pilot Approach [5] 104 High Number Of People On Team -

41 Lack Of Alternatives Analysis [5] 105 Low Team Diversity [24]

42 Lack Of Quality Assurance Approach [5] 106 Lack Of Organizational Maturity [24]

43 Lack Of Development Documentation [5] 107 Lack of Project leader's experience [24]

44 No Use Of Defined Engineering Process [5] 108 High Extent Of Changes In The Project [24]

45 Late Identification Of Defects [5] 109 Excessive Schedule Pressure [24]

46 Bad Defect Tracking [5] 110 Inadequate Cost Estimating [24]

47 Lack Of Or Bad Change Control For Work Products [5] 111 Poor Project Planning [24]

48 Problem With Physical Facilities [5] 112 Ineffective Communication [24]

49 Problem With Hardware Platform [5] 113 Improper Definition Of Roles And Responsibilities [24]

50 Tools Unavailability [5] 114 Need To Integrate With Other Systems [24]

51 Bad Project Management Approach / Method [5] 115 Inadequate Configuration Control [24]

52 Lack Of Project Management Experience [5] 116 Low Quality Of Software And Hardware Supplier

Support

[24]

53 Bad Project Management Attitude [6] 117 Excessive Reliance On A Single Development

Environment

[24]

54 Lack Of Project Management Authority [5] 118 High Extent Of Linkage To Other Organizations -

55 Team Member Unavailability [5] 119 Resource Insufficiency [24]

56 Bad Or Low Mix Of Team Skills [5] 120 Intensity Of Conflicts [24]

57 Lack Of Experience With Software Engineering Process [5] 121 Lack Of Control Over Consultants, Vendors ,sub-
contractors

[24]

58 Lack Of Training Of Team [5] 122 Massive User Stress [22]

59 Lack Of Expertise With Application Area (Domain) [5] 123 Lack Of Project Delivery Milestones [22]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

118 | P a g e

www.ijacsa.thesai.org

60 Development Technology NOT Match To Project [5] 124 Over-optimistic Technology Perceives [22]

61 Lack Of Development Technology Experience Of Project

Team

[5] 125 Staff Turnover [22]

62 Immaturity Of Development Technology [5] 126 Backup Issues [22]

63 High Design Complexity [5] 127 Bad Preservation Of Intellectuals [22]

64 Lack Of Support Personnel [5] 128 Inability To Secure Confidential Customer Data -

APPENDIX B: FAILURE MODE QUESTIONS

Questions Questions

How much the users are satisfied with the developed application? How much the users perceived that the system meets the intended functional
requirements?

How much is the overall quality of the developed application? How much system meets user expectations with respect to ease of use?

How well the system was completed within budget? How much system meets user expectations with respect to response time?

How good the system was completed within schedule? How much system meets user expectations with respect to reliability?

How do you rate software defects? How much the application developed is easy to maintain?

