
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

151 | P a g e

www.ijacsa.thesai.org

Association between JPL Coding Standard Violations

and Software Faults: An Exploratory Study

Bashar Q. Ahmed

Computer Science Department

Taiz University

Taiz, Yemen

Mahmoud O. Elish

Computer Science Department

Gulf University for Science and Technology

Mishref, Kuwait

Abstract—Since the software community has realised the

importance of adopting coding standards during the

development process for improved software quality, many coding

standards have been proposed and used during the software

development. The main objective of this paper is to explore the

association between Java Programming Language (JPL) coding

standard and fault density of classes in object-oriented software.

For this purpose, a set of metrics that quantify the violations of

coding standards has been proposed. An exploratory study was

then conducted in which data were collected from six open source

software systems. The study involved principal component

analysis, bivariate correlation analysis, and univariate regression

analysis. The principle component analysis has shown that many

of the proposed metrics fall into the first two components which

in turn reflects the importance and diversity of these metrics.

Furthermore, associations between some metrics and fault

density have been observed across all systems, and thus indicate

that these metrics can be useful predictors for improved early

estimation of faulty density of object-oriented classes.

Keywords—Coding standard; Software faults; Software quality;

Exploratory study

I. INTRODUCTION

Coding standards and programming styles form a set of
pre-defined formal rules which are internally shared among
software project team members, and enforced by software
projects managers by applying static analysis during the source
code writing [1]. The rules of these standards are typically
based on expert’s opinions, and reflect different concerns that
affect different aspects of source code writing with the aim of
improving many quality attributes of the underlying software
system [2].

The usage of coding standards and tools for enforcing their
rules is becoming a popular trend in software development
especially during the writing of code lists [3]. Coding
standard’s rules can be targeted towards different software
quality attributes and hence are believed to improve quality [2].
However, there is no empirical evidence on the relationship
between coding standard’s rules violations at the class level of
object-oriented software and the presence of faults and their
density.

This research paper mainly aims to find an answer to the
following question: Does the violation of coding standard’s
rules have a relationship with the existence of faults in
software products? The paper focuses on the class-level of
object-oriented software and adopts the Java Programming

Language (JPL) coding standard [4] for the purpose of
conducting the exploratory study. A set of metrics that quantify
the violations of coding standards has been proposed.

The rest of the paper is organised as: Section 2 reviews
related work. Section 3 describes JPL coding standard. Section
4 describes the coding standards’ violation-based metrics.
Section 5 describes the conducted exploratory study and
reports its findings. Finally, Section 6 provides concluding
remarks.

II. RELATED WORK

Boogerd and Moonen [3] applied the MISRA-C:2004 [5]
coding standard to measure the quality of source code of two
commercial projects before and after bug fixes during the
development of two embedded C applications. They propose
simple metric called violations density which is the number of
violations divided by the number of lines of code of the
corresponding unit (project, module, and file). They considered
89 coding rules belonging to different coding categories. As a
result, they found that only 10 rules from the considered 89
rules are significant predictors for fault locations. Those 10
rules were found to be positively correlated with fault
proneness.

In another work, Boogred and Moonen [2] applied the
MISRA-C:2004 [5] coding standard against all the revisions of
two commercial software projects. To build a body of
empirical knowledge to understand the relationship between
coding standard’s violations and faults density, they used two
metrics called violations density metric (the number of
violations per version divided by the number of KLOC for that
version) and fault density metric (the number of faults per
version divided by the number of KLOC for that version) at the
system level. Their study considered only 72 rules out of 141
rules of MISRA-C:2004 standard. As a result of their study,
they found that there is a positive correlation between
violations density and faults density only for 12 rules.

Basalaj and Beuken [6] used a coding standard’s violations
metric as a measure of internal quality of software source code.
Their study measured the number of coding guidelines
violations in 18 closed source products written in C and C++ of
two software production companies. Among the 900 rules of
high-integrity C++ [7], MISRA-C:2004 [5], they found a
positive correlation between coding rules’ violations and faults
only for 12 rules out of the mentioned 900 rules. In addition to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

152 | P a g e

www.ijacsa.thesai.org

faults they also found that the compliance to a coding standard
has a positive impact on the portability of software products.

In their study, Kawamoto and Mizuno [8] evaluated the
relationship between the length of identifiers and the existence
of software faults in a software module. To investigate such
relation, they built a model to determine faulty-module using a
machine learning technique from the number of occurrences of
the identifiers. Their study tested two metrics Oc(L) which is
the number of the occurrences of identifiers with length L in a
module (they considered the length of the identifier as one of
the characteristics of identifier’s naming rules) and TN which
is the total number of identifiers found in a module against two
open source projects. As a result for their experimentation, they
showed that there is a certain relationship between the length of
identifier and the existence of software faults and they also
specified the best length the identifiers should have.

There are server limitations with previous studies. Most of
them have focused on the highest code granularity level which
is the software system as a whole in terms of its releases. This
makes it difficult to identify which portion of the software
system needs to be reviewed or refactored. Moreover, even in
those studies that have used the coding standards violations-
based metrics at the class level, the researchers used them in a
limited way. For example, Elish and Offutt [9] conducted a
controlled small-scale experiment that tries to determine to
which extent the open source Java programmers adhere to a
small set of coding practices. Similarly, Kawamoto and
Mizuno [8] used as coding standards violations-based metrics,
only one metric called the number of occurrences of identifiers
with length L in a class which collect the violations for only
one rule related to the naming conventions. Another limitation
of previous studies is that the target set of systems under study
was small which in turn restrict the generalisation of the
obtained results. Although Basalaj and Beuken [6] used 18
closed source products in their study. They used only one
metric which is the number of coding standard’s violations per
software product in terms of versions, which in turn makes the
prediction models unsatisfactory.

III. JPL CODING STANDARD

Since the software community realises the importance of
adopting coding standards during the software development
process, many coding standards have been proposed and used
during the software development. Some of these coding
standards are general and applicable for several programming
languages, while others are dedicated for specific language.
Furthermore, some standards are well known and widely used
by the software community like Sun Java coding standard 1999
[10] presented by Sun Micro-Systems (the first owner of Java
language), while others are self-imposed and developed by
special software production companies. Some standards are
targeted towards several software quality attributes, while
others are targeted at certain quality attribute. Among the
proposed and published coding standards, this research
selected the Java Programming Language (JPL) coding
standard [4] due to many reasons: (1) The primary purpose of
JPL standard is reducing faults which is the addressed quality
attribute by this study. (2) It is one of the most recent published
standards. (3) It is published by a reliable and reputable

institution. (4) It is supported by the available static analysers.
(5) It is dedicated for Java programming language which is the
underlying programming language of this study.

JPL coding standard comprises a set of 53 rules expressing
bad programming practices and bugs patterns that mostly have
to be avoided during writing code lists. These rules are
categorised into 11 categories reflecting the usage of Java
language constructs. It is worth here to mention that the
developers of this standard do not prioritise the rules.
Furthermore, they recommend using these rules as guidelines
and they mentioned that some rules have exceptions and should
not be followed to the extreme.

Although there has been developed a dedicated rule
checker called semmle static analyser which implements the
rules of JPL standard. This research experiments used
FindBugs, PMD and CheckStyle rules checkers due to these
reasons: (1) Those static analysers are well known and widely
used by Java community. (2) Those static analysers are
recommended by the authors of JPL standard as alternatives for
semmle static analyser. (3) The semmle static analyser is a
commercial tool.

JPL standard’s rules are presented in Table 1 with their
inspection possibility by the static analysers used in this study.
Since the aim is to empirically study the relationship between
coding standard’s rules violations and faults at the granular
level of classes, this study ignores the JPL standard’s rules that
are targeted towards higher levels such as packages or systems
as a whole. Such ignored rules are marked with a single
asterisk (*) symbol in Table 1. Some other rules are ignored
due to the lack of support for such rules by the used static
analysers. Those rules are marked with double asterisks (**) in
Table 1. This means that among the 53 rules of the underlying
standard, 43 rules are checked, which means almost 82%
coverage of the JPL standard.

IV. CODING STANDARD’S VIOLATIONS-BASED METRICS

Coding standards violations-based metrics are suite of
metrics computed using the data collected from the software
source code artefacts by means of some tools called static
analysers. Among the functionalities provided by such tools is
coding rules violations detection. Those tools inspect the
source code looking for the violations of coding standard’s
rules.

The coding standard’s violations-based metrics can be
defined at the standard’s level, category’s level or at the rule’s
level. These metrics can also be gathered at different
granularity levels such as line’s level, method’s level, class’s
level, package’s level or system’s level. In this research, we
defined and gathered these metrics at the class level.
Reviewing the research works that have been done in the
literature, it was found that almost all previous research works
used metrics based on the total number of violations and
violations density. Those metrics used in the literature suffer
from many limitations such as, the lack of distinguishing
between violations diversity at the standard level, the lack of
distinguishing between violations diversity at the category
level, the lack of distinguishing between categories of
violations and the lack of distinguishing between violations
severity.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

153 | P a g e

www.ijacsa.thesai.org

TABLE I. JPL STANDARD’S RULES WITH THEIR INSPECTION POSSIBILITY BY THE STATIC ANALYSERS

JPL Category JPL Rule

P
M

D

C
h

e
c
k

S
ty

le

F
in

d
B

u
g

s

Process

“R01: compile with checks turned on.” *

“R02: apply static analysis.” *

“R03: document public elements.”

“R04: write unit tests.” *

Names
“R05: use the standard naming conventions.” √ √ √

“R06: do not override field or class names.” √ √

Packages, Classes and

Interfaces

“R07: make imports explicit.” √ √

“R08: do not have cyclic package and class dependencies.” *

“R09: obey the contract for equals().” √ √

“R10: define both equals() and hashCode().” √ √ √

“R11: define equals when adding fields.” √

“R12: define equals with parameter type Object.” √ √

“R13: do not use finalisers.” √ √

“R14: do not implement the Cloneable interface.” √ √

“R15: do not call non-final methods in constructors.” √ √

“R16: select composition over inheritance.” **

Fields

“R17: make fields private.” √

“R18: do not use static mutable fields.” √ √

“R19: declare immutable fields final.” √

“R20: initialize fields before use.” √

Methods

“R21: use assertions.” √

“R22: use annotations.” √ √

“R23: restrict method overloading.”**

“R24: do not assign to parameters.” √ √ √

“R25: do not return null arrays or collections.” √ √

“R26: do not call System.exit.” √ √

Declarations and

Statements

“R27: have one concept per line.” √ √

“R28: use braces in control structures.” √ √

“R29: do not have empty blocks.” √ √ √

“R30: use breaks in switch statements.” √ √ √

“R31: end switch statements with default.” √ √ √

“R32: terminate if-else-if with else.” **

Expressions

“R33: restrict side effects in expressions.” √

“R34: use named constants for non-trivial literals.” √ √

“R35: make operator precedence explicit.” √

“R36: do not use reference equality.” √ √ √

“R37: use only short-circuits logic operators.” √

“R38: do not use octal values.” √

“R39: do not use floating point equality. √ √

“R40: use one result type in conditional expressions.” √

“R41: do not use string concatenation operator in loops.” √

Exceptions
“R42: do not drop exceptions.” √

“R43: do not abruptly exit a finally block.” √

Types

“R44: use generics.” √

“R45: use interfaces as types when available.” √ √

“R46: use primitive types.” √

“R47: do not remove literals from collections.” **

“R48: restrict numeric conversions.” √ √

Concurrency

“R49: program against data races.” √

“R50: program against deadlocks.” √

“R51: do not rely on the scheduler for synchronization.” **

“R52: wait and notify safely.” √ √

Complexity “R53: reduce code complexity.” √ √

The results of the static analysers’ inspection are violations
reports for the coding rules whose equivalent or correspondent
tools’ rules are turned on. The violations report contains
information about the coding rule’s being violated in the
inspected module such as the module name, the violated rule,
and the code line number in which the rule is violated. The

violations report for each class is inserted into the violations
database. At this point, the metrics values can be calculated and
retrieved from the database by means of SQL queries. The
following proposed metrics are derived according to the coding
rules’ categorisation presented and adopted by the JPL coding
standard.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

154 | P a g e

www.ijacsa.thesai.org

a) M1: The percentage of standard’s rules being

violated per class (PSRV).

b) M2: The percentage of standard’s rules being

violated normalised by the class code size (PSRVD).

c) M3: The percentage of category’s rules being

violated in a class.

 M3.1: The percentage of names category’s rules being
violated in a class (PNCRV).

 M3.2: The percentage of packages, classes and
interfaces category’s rules being violated in a class
(PPCICRV).

 M3.3: The percentage of fields category’s rules being
violated in a class (PFCRV).

 M3.4: The percentage of methods category’s rules
being violated in a class (PMCRV).

 M3.5: The percentage of declarations and statements
category’s rules being violated in a class (PDSCRV).

 M3.6: The percentage of expressions category’s rules
being violated in a class (PExpCRV).

 M3.7: The percentage of exceptions category’s rules
being violated in a class (PExcCRV).

 M3.8: The percentage of types category’s rules being
violated in a class (PTCRV).

 M3.9: The percentage of concurrency category’s rules
being violated in a class (PConCRV).

 M3.10: The percentage of complexity category’s rules
being violated in a class (PComCRV).

d) M4: The percentage of category’s rules being

violated in a class, normalised by the class code size.

 M4.1: The percentage of names category’s rules being
violated in a class normalised by the class code size
(PNCRVD).

 M4.2: The percentage of packages, classes and
interfaces category’s rules being violated in a class
normalised by the class code size (PPCICRVD).

 M4.3: The percentage of fields category’s rules being
violated in a class normalised by the class code size
(PFCRVD).

 M4.4: The percentage of methods category’s rules
being violated in a class normalised by the class code
size (PMCRVD).

 M4.5: The percentage of declarations and statements
category’s rules being violated in a class normalised by
the class code size (PDSCRVD).

 M4.6: The percentage of expressions category’s rules
being violated in a class normalised by the class code
size (PExpCRVD).

 M4.7: The percentage of exceptions category’s rules
being violated in a class normalised by the class code
size (PExcCRVD).

 M4.8: The percentage of types category’s rules being
violated in a class normalised by the class code size
(PTCRVD).

 M4.9: The percentage of concurrency category’s rules
being violated in a class normalised by the class code
size (PConCRVD).

 M4.10: The percentage of complexity category’s rules
being violated in a class normalised by the class code
size (PComCRVD).

e) M5: The percentage of standard’s categories being

violated in a class (PSCV).

f) M6: The percentage of standard’s categories being

violated in a class normalised by the class code size (PSCVD).

V. EXPLORATORY STUDY

This section describes the conducted exploratory study and
reports its findings.

A. Evaluated Systems

The coding standards violations-based metrics were
collected from six open source software systems: (1) Ant-1.7.0,
(2) Apache-Camel-1.6.0, (3) Poi-3.0, (4) Synapse-1.2, (5)
Velocity-1.6.1, and (6) Xalan-2.6.0. All systems are long-lived,
of reasonable size in terms of the number of classes, and from
different application domains. Working on long-lived systems
prevents results from being biased by the potential data
fluctuations experienced during short period of time [11].
Additionally, selecting a bigger set of systems from different
domains makes the obtained findings more generalisable.
Furthermore, investigating reasonable-size systems in terms of
the number of classes increases the number of data points
which is considered a good feature for statistical analysis [12].
Some descriptive statistics about the evaluated systems are
reported in Table 2. As shown in the table, each system has
different code size, different numbers of classes and faults, and
percentages of faulty classes.

TABLE II. DESCRIPTIVE STATISTICS OF THE EVALUATED SYSTEMS

System

Name

System

Code Size

(LOC)

Fault

Count

Number of

Classes

Number

(Percentage) of

Faulty Classes

Synapse-

1.2
19554 145 256 86 (33.98%)

Velocity-
1.6.1

25241 190 229 78 (34.06%)

Poi-

3.0
51402 500 439 281 (63.43%)

Xalan-
2.6.0

151485 625 885 411 (46.44%)

Camel-

1.6.0
56444 500 933 188 (20.15%)

Ant-
1.7.0

87741 338 745 166 (22.28%)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

155 | P a g e

www.ijacsa.thesai.org

B. Data Collection

To calculate the coding standards violations-based metrics,
three static analysis tools called (1) FindBugs 2.0.3, (2) PMD
5.0.2, and (3) CheckStyle 5.6.1 were used. These tools are
popular and widely used for inspecting Java source code. They
are powerful, yet intuitive and easy to use. These tools can be
used in three different ways: (1) as a command line, (2) an
Eclipse plugin or (3) an Ant target element with almost any
operating system platform. FindBugs and PMD provide an
extra feature in which users can export the violations reports
into an XML or Excel files for further processing. However, to
the best of our knowledge, CheckStyle lacks such feature
which in turn imposes manual processing for its generated
reports.

Furthermore, all of these three tools provide some sort of
severity for their rules or checks. Unfortunately, some conflicts
are found between the prioritisation of equivalent rules of these
tools. These conflictions in severity of tools’ rules was the
reason behind discarding rules’ severity to be one of this
research objectives in which the JPL standard’s rules will be
prioritised from the point of view of fault density. These tools
also enable users to configure their inspection according to the
adopted coding standard, bugs patterns or bad practices they
looking for.

Since the underlying coding standard of this study was JPL
coding standard for Java programming language, the
experiments’ settings enabled totally 176 rules from different
categories of rules for each tool. From the totally enabled rules,
the tools’ portions was 55, 73, 48 rules for FindBugs, PMD and
CheckStyle, respectively. Another important point that
deserves to be mentioned here is, although each tool has its
own categorisation for its rules, this research ignored these
categorisations and adopted the categorisation provided by the
JPL coding standard.

For the coding standards violations-based metrics to be
collected, the analysis and report were focused on the tools
being used from the Eclipse plugin. The plugin for each tool
comes with its own perspective. Since both CheckStyle and
PMD works only on source code (not byte code), the Java open
source projects were imported into the eclipse to be analysed
by CheckStyle and PMD. The generated violations reports by
both tools were then inserted into the coding rules violations
database using the developed tool for further analysis.
Regarding FindBugs, instead of importing the source code
from of the systems under study, the executable forms (.Jar) of
the systems were imported into the Eclipse to be analysed by
FindBugs because it works only on the Byte code (not source
code). The generated violations report was then inserted into
the coding rules violations database for the purpose of doing
further analysis. Having all generated coding standard
violations data in the database, the coding standards violations-
based metrics can be retrieved as SQL queries for each class of
each open source project. At this point, the coding standards
violations-based metrics data were then plugged into MS Excel
sheets for further analysis.

The faults data for each class of the systems under study
was collected from the PROMISE software engineering
repository [13]. Additionally, the class code size data extracted

by the understand tool was used to calculate the faults density
in each class of the target set of systems. The density data for
each class was then combined with the coding standard
violations-based metrics data and plugged into CSV file
format. Each class in the CSV file represents a data point or
observation.

C. Results and Analysis

The obtained results from this conducted exploratory study
are reported and analysed next.

1) Principal Component Analysis
Principal component analysis (PCA) refers to the process

by which principal components (PCs) are computed for the
subsequent use of these components in understanding the data
[14]. In other words, PCA is a standard technique to derive a
small number of linear combinations (principal components) of
a set of variables that retain as much of the information in the
original variables as possible. If a group of variables in a data
set are strongly correlated, these variables are likely to measure
the same underlying dimension. The sum of the squares of the
coefficients of the standardised variables in one linear
combination is equal to one. In order to identify these
variables, and interpret the PCs, the rotated components are
considered. As the dimensions are independent, orthogonal
rotation is used. There are various strategies to perform such
rotation. This research used the Varimax rotation, which is the
most frequently used strategy in literature [15].

The PCA results are presented in Table 3, which indicate
that the dimensions captured by the coding standard violations-
based metrics can be classified into the below mentioned
dimensions: standard’s rules and categories, naming rules,
classes and interfaces rules, fields rules, methods rules, types
rules, declarations and statements rules, expressions rules,
exceptions rules, concurrency rules, and complexity rules.
These dimensions reflect the standard rules’ categories which
the metrics are derived from.

The results in Table 3 show some overlapping among these
dimensions. For example, some metrics were expected to fall
into a certain dimension; however, they fall into other
dimensions. The general observation is that metrics which were
found to be significant are falling in the first two components
in almost all case studies which in turn reflect the importance
of these metrics. For instance, the metrics PSRV and PSCV in
all case studies fall into the first or the second component.
Additionally, it is clear from Table 3, that except for the first
two components, each component corresponds to one
dimension. For example, in Camel case study system, the PC3,
PC4, PC5, PC6, PC7 and PC8 correspond to expression rules
dimension, exceptions rules dimension, fields rules dimension,
methods rules dimension, declarations and statements rules
dimension, packages and classes rules dimension, types rules
dimension, and complexity rules dimension, respectively.

2) Bivariate Correlation Analysis
To explore the relationship between each metric in the

coding standard violations-based suite and the fault density,
Spearman correlation analysis technique was performed. First,
the Spearman correlation coefficient was calculated between
each metric and the variable capturing the density of faults

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

156 | P a g e

www.ijacsa.thesai.org

which defined as the number of faults in a class divided by the
class code size in terms of KLOC (excluding comments and
blank lines). For each system from the target set of systems

under study, the correlation values were obtained from the data
of all system’s classes.

TABLE III. PCA OF CODING STANDARD’S VIOLATIONS-BASED METRICS

System PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11

Ant

PSRV PSRVD PConCRV PPCICRV PMCRV PExcCRV PTCRV PDSCRV PComCRV PExpCRVD PFCRVD

PNCRV PNCRVD PConCRVD PPCICRVD PMCRVD PExcCRVD PTCRVD PDSCRVD PComCRVD

PFCRV PSCVD

PExpCRV

PSCV

Velocity

PSRV PSRVD PTCRV PMCRV PExcCRV PPCICRV PExpCRV PDSCRV

PNCRV PNCRVD PTCRVD PMCRVD PExcCRVD PPCICRVD PExpCRVD PDSCRVD

PFCRV PFCRVD

PComCRV PComCRVD

PSCV PSCVD

Synapse

PSRVD PSRV PFCRVD PExcCRV PMCRV PDSCRV PExpCRV PPCICRV PComCRV

PNCRVD PNCRV PTCRV PExcCRVD PMCRVD PDSCRVD PExpCRVD PPCICRVD PComCRVD

PSCVD PFCRV PTCRVD

 PSCV

Poi

PSRVD PSRV PDSCRV PPCICRV PMCRV PExcCRV PExpCRV PComCRV PTCRV

PNCRVD PNCRV PDSCRVD PPCICRVD PMCRVD PExcCRVD PExpCRVD PComCRVD PTCRVD

PSCVD PFCRV

 PFCRVD

 PSCV

Xalan

PSRV PSRVD PExcCRV PConCRV PPCICRV PTCRV PDSCRVD PFCRV PMCRVD PNCRV

PMCRV PExpCRVD PExcCRVD PConCRVD PPCICRVD PTCRVD PComCRVD PFCRVD PNCRVD

PDSCRV PSCVD

PExpCRV

PComCRV

PSCV

Camel

PSRVD PSRV PExpCRV PExcCRV PFCRV PMCRV PDSCRV PPCICRV PTCRV PComCRV

PNCRVD PNCRV PExpCRVD PExcCRVD PFCRVD PMCRVD PDSCRVD PPCICRVD PTCRVD PComCRVD

PSCVD PSCV

The results of correlation coefficients and p-values using
Spearman’s technique are presented in Table 4. For each
metric, the significance of correlation was tested at 0.05 level
of significance. The values that are rendered in boldface
highlights significant correlation coefficients at 0.05 level as
shown in Table 4. It is clear to observe that PSRV, PNCRV,
PExpCRV and PSCV were found to be significantly correlated
with the fault density of classes across all the systems under
study. Regarding the rest of metrics, the correlation analysis
results show that PSCVD was found to be significantly
correlated with fault density in all systems except Camel
system. In addition, the correlation analysis results also show
that PFCRV, PComCRV, PPCICRVD, PDSCRV, PDSCRVD,
PNCRVD, PFCRVD, PPCICRV, PExcCRV, PExcCRVD,
PTCRV, PTCRVD and PComCRVD were found to be
significantly correlated with fault density in two, three or four
systems from the target set of systems under study.
Furthermore, the correlation analysis results show that
PMCRV and PMCRVD were found to be significantly
correlated with fault density only in Ant system. Figure 1 ranks
the metrics based on the number of systems in which they are
significantly correlated with fault density.

The differences in the significance of correlation across the
systems under study can be explained as: The class code size in
terms of lines of code (LOC without comments and blank
lines) is a dominant factor which has a great impact on the
number of introduced violations for coding standard’s rules in
addition to the diversity of such introduced violations. So the
differences in size across system’s classes might have an
impact on the values of coding standard violations-based
metrics which in turn, affect the correlation significance

between the metrics under study and the fault density of
classes.

Fig. 1. Metrics are ranked based on the number of systems in which they are

significantly correlated with fault density.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

157 | P a g e

www.ijacsa.thesai.org

TABLE IV. SPEARMAN CORRELATION RESULTS

Metric

Synapse Velocity Poi Xalan Camel Ant

Corr.

Coef.
p-value

Corr.

Coef.
p-value

Corr.

Coef.
p-value

Corr.

Coef.
p-value

Corr.

Coef.
p-value

Corr.

Coef.
p-value

PSRV 0.3355 0.0000 0.2024 0.0021 0.2371 0.0000 0.1275 0.0002 0.1620 0.0000 0.3976 0.0000

PSRVD -0.1974 0.0015 -0.1563 0.0180 0.1406 0.0032 -0.1055 0.0018 0.0385 0.2402 -0.2126 0.0000

PNCRV 0.1777 0.0044 0.1903 0.0038 0.1514 0.0015 0.1553 0.0000 0.1095 0.0008 0.3124 0.0000

PNCRVD -0.1551 0.0130 0.0195 0.7693 0.0842 0.0779 0.0088 0.7958 0.0806 0.0137 -0.1407 0.0001

PPCICRV 0.1563 0.0123 0.0341 0.6074 0.0660 0.1675 0.1022 0.0025 0.0354 0.2804 0.2141 0.0000

PPCICRVD 0.1419 0.0232 0.0312 0.6384 0.0238 0.6196 0.0945 0.0051 0.0346 0.2912 0.1968 0.0000

PFCRV 0.2988 0.0000 0.1062 0.1089 0.0412 0.3895 0.0298 0.3790 0.1268 0.0001 0.3075 0.0000

PFCRVD 0.2486 0.0001 0.0649 0.3281 0.0616 0.1973 -0.0060 0.8593 0.1152 0.0004 0.0930 0.0113

PMCRV 0.0869 0.1656 0.0510 0.4423 -0.0125 0.7932 0.0395 0.2427 0.0551 0.0924 0.2647 0.0000

PMCRVD 0.0874 0.1631 0.0499 0.4519 -0.0129 0.7870 0.0365 0.2806 0.0548 0.0943 0.2533 0.0000

PDSCRV 0.1047 0.0945 -0.0386 0.5615 0.2773 0.0000 0.1060 0.0017 0.0304 0.3539 0.1899 0.0000

PDSCRVD 0.1013 0.1059 -0.0543 0.4134 0.2975 0.0000 0.0433 0.2007 0.0226 0.4899 0.1215 0.0009

PExpCRV 0.2138 0.0006 0.1321 0.0458 0.2565 0.0000 0.0722 0.0328 0.1319 0.0001 0.3398 0.0000

PExpCRVD 0.1776 0.0044 0.1062 0.1089 0.2929 0.0000 0.0487 0.1499 0.1203 0.0002 0.1741 0.0000

PExcCRV 0.0391 0.5331 0.1248 0.0592 0.0286 0.5507 -0.0647 0.0557 0.0760 0.0202 0.1435 0.0001

PExcCRVD 0.0396 0.5279 0.1250 0.0590 0.0287 0.5489 -0.0637 0.0596 0.0760 0.0202 0.1425 0.0001

PTCRV 0.1785 0.0042 0.0872 0.1887 0.0260 0.5870 0.0475 0.1608 0.0015 0.9639 0.2285 0.0000

PTCRVD 0.1794 0.0040 0.0883 0.1830 0.0239 0.6181 0.0327 0.3337 0.0015 0.9624 0.1836 0.0000

PConCRV 0.0340 0.3151 -0.0195 0.5953

PConCRVD 0.0340 0.3148 -0.0195 0.5953

PComCRV 0.1434 0.0217 0.1795 0.0065 -0.0702 0.1417 0.0228 0.5012 0.1025 0.0017 0.2570 0.0000

PComCRVD -0.0605 0.3346 0.1238 0.0615 -0.0818 0.0869 -0.0852 0.0117 0.0684 0.0367 -0.0233 0.5263

PSCV 0.3221 0.0000 0.2081 0.0015 0.2579 0.0000 0.1339 0.0001 0.1677 0.0000 0.3822 0.0000

PSCVD -0.2185 0.0004 -0.1403 0.0338 0.1277 0.0074 -0.0945 0.0052 0.0261 0.4260 -0.2396 0.0000

TABLE V. UNIVARIATE PREDICTION ACCURACY RESULTS

Metric
Synapse Velocity Poi Xalan Camel Ant

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

PSRV 12.401 23.009 17.340 29.420 13.344 23.008 10.655 19.307 19.309 43.206 4.462 9.512

PSRVD 13.309 23.292 17.296 29.549 12.635 22.619 10.561 19.653 18.885 42.856 4.694 9.562

PNCRV 12.576 22.974 17.175 29.571 13.329 22.995 10.579 19.560 19.273 43.192 4.521 9.510

PNCRVD 12.763 23.063 17.300 29.558 13.150 22.886 10.500 19.357 19.111 43.227 4.764 9.596

PPCICRV 12.458 22.958 17.269 29.423 13.329 22.850 10.469 19.513 19.151 43.190 4.665 9.540

PPCICRVD 12.753 23.427 17.269 29.423 13.357 22.979 10.540 19.587 19.135 43.191 4.720 9.542

PFCRV 12.342 22.995 17.182 29.335 13.176 22.947 10.612 19.394 19.213 43.231 4.643 9.545

PFCRVD 11.278 22.690 17.183 29.452 13.353 23.021 10.565 19.516 18.895 43.204 4.707 9.533

PMCRV 12.584 22.981 17.080 29.416 13.171 22.882 10.533 19.510 19.188 43.170 4.612 9.521

PMCRVD 12.604 23.079 17.270 29.572 13.179 22.884 10.571 19.598 19.166 43.173 4.729 9.563

PDSCRV 12.576 22.944 17.066 29.328 13.240 23.003 10.613 19.409 19.209 43.181 4.664 9.541

PDSCRVD 12.573 22.994 17.269 29.658 12.560 22.847 10.554 19.591 19.129 43.182 4.705 9.536

PExpCRV 12.554 22.965 17.385 29.423 13.319 23.002 10.493 19.378 19.266 43.197 4.538 9.520

PExpCRVD 12.140 23.356 17.296 29.512 12.898 22.922 10.541 19.557 19.186 43.212 4.721 9.553

PExcCRV 12.545 22.931 17.216 29.477 13.284 22.940 10.514 19.543 19.077 43.184 4.669 9.539

PExcCRVD 12.580 22.946 17.177 29.472 13.331 23.029 10.547 19.571 19.077 43.184 4.726 9.584

PTCRV 12.483 23.493 17.212 29.539 13.247 22.974 10.554 19.533 19.145 43.191 4.658 9.537

PTCRVD 11.758 21.845 17.255 29.705 13.228 22.913 10.544 19.589 19.172 43.237 4.713 9.536

PConCRV 10.548 19.565 4.716 9.539

PConCRVD 10.564 19.583 4.716 9.539

PComCRV 12.892 23.023 17.385 29.521 13.125 22.768 10.400 19.151 19.277 43.209 4.615 9.536

PComCRVD 12.547 22.957 17.226 29.610 13.265 22.967 10.521 19.519 18.981 43.226 4.709 9.551

PSCV 12.308 23.021 17.308 29.451 13.406 22.994 10.586 19.296 19.277 43.221 4.494 9.519

PSCVD 13.321 23.237 17.342 29.541 12.581 22.676 10.569 19.756 18.930 42.829 4.677 9.562

Some common results can be observed from the
evaluated systems. For example, the positive correlation
between PSRV, PNCRV, PExpCRV, and PSCV metrics and
the class fault density suggest that the higher values for these
metrics, the more the faults density of the class. Additionally,
it is observed that PConCRV and PConCRVD reported null
p-values and correlation coefficients in Synapse, Velocity,
Poi and Camel systems because of the zero values of all
observations for these two metrics. This implies that either

the classes of these systems do not violate any rules of the
concurrency category or the systems nature is irrelative to
parallelism and concurrency. Regarding Ant and Xalan
systems, the correlation analysis shows that PconCRV and
PConCRVD were found to be insignificantly correlated with
fault density. By inspecting the observations of these two
systems, only two observations in Xalan and one observation
in Ant were found to violate the concurrency category which

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

158 | P a g e

www.ijacsa.thesai.org

can be considered neglectable with contrast to 875 and 741
observations of Xalan and Ant, respectively.

3) Univariate Regression Analysis
Univariate linear regression modelling [14] is a simple

and useful technique for predicting a quantitative response. It
is a straightforward technique for predicting a quantitative
response Y (dependent variable) on the basis of a single
predictor variable (independent variable) X. It is an approach
for modelling the relationship between a scalar dependent
variable Y and one explanatory variable denoted X by fitting
a linear equation to the observed data. This research used
univariate linear regression to model the relationship
between each coding standards violations-based metric
(independent variable) and the faults density (dependent
variable).

The predictive accuracy of the prediction models is
evaluated using the mean absolute error (MAE) and the root
mean squared error (RMSE). These two measures are based
on what so called residual which is the difference between
the predicted and the observed values. The results of the
prediction accuracy were analysed in terms of these two
measures. The lower values of these two measures are
always better than the higher values. Additionally, the values
of RMSE are always higher than MAE. Table 5 presents the
results of the prediction accuracy for all linear regression
models in all systems that were investigated by this study. It
can be observed from Table 5 that the best accuracy results
of the linear regression models were achieved in Ant system
while the worst accuracy results were achieved in Camel
system. It can be observed that all regression models, for
each system, achieved very similar accuracy results.

VI. CONCLUDING REMARKS

This paper has reported an exploratory study that was
conducted to investigate whether or not the violation of
coding standard’s rules has a relationship with the fault
density of classes in object-oriented software systems. The
investigation scope was on the JPL coding standard. A set of
24 metrics were proposed to quantify the violations of coding
standards. Data were collected from six open source software
systems written in Java. Several statistical analysis
techniques were performed on the collected data including
principal components analysis, bivariate correlation analysis,
and univariate regression analysis. The principle component
analysis has shown that many of the proposed coding
standard violations-based metrics fall into the first two
components which in turn reflects the importance and
diversity of these metrics. In addition, associations between

some metrics and fault density have been observed across all
systems, and thus indicate that these metrics can be useful
predictors for improved early estimation of faulty density of
object-oriented classes.

Future works include exploring the associations between
coding standards and other software quality attributes, and
also using the proposed metrics in addition to traditional
product metrics to improve the accuracy of fault predictive
models.

REFERENCES

[1] S. Pfleeger, Software Engineering: The Production of Quality
Software: Macmillan Publishing Company, 1991.

[2] C. Boogerd and L. Moonen, "Assessing the value of coding standards:
An empirical study," in IEEE International Conference on Software
Maintenance, 2008, pp. 277-286.

[3] C. Boogerd and L. Moonen, "Evaluating the relation between coding
standard violations and faultswithin and across software versions," in
6th IEEE International Working Conference on Mining Software
Repositories, 2009, pp. 41-50.

[4] K. Havelund and A. Niessner, "JPL Java Coding Standard," Technical
Report, California Institute of Technology, 2010.

[5] MISRA, "MISRA-C:2004 Guidelines for the Use of the C Language
in Critical Systems," Technical Report, Motor Industry Software
Reliability Association (MISRA), 2004.

[6] W. Basalaj and F. v. d. Beuken, "Correlation Between Coding
Standards Compliance and Software Quality," Technical Report,
Programming Research, 2006.

[7] PRQA, "High Integrity C++ Coding Standard Manual," Technical
Report, Programming Research, 2004.

[8] K. Kawamoto and O. Mizuno, "Predicting Fault-Prone Modules
Using the Length of Identifiers," in 4th International Workshop on
Empirical Software Engineering in Practice, 2012, pp. 30-34.

[9] M. Elish and J. Offutt, "The Adherence of Open Source Java
Programmers to Standard Coding Practices," in 6th IASTED
International Conference on Software Engineering and Applications,
2002, pp. 193-198.

[10] A. Reddy, "Java Coding Style Guide," Technical Report, Sun
Microsystems, Inc., 2000.

[11] A. Koru and H. Liu, "Identifying and characterizing change-prone
classes in two large-scale open-source products," Journal of Systems
and Software, vol. 80, pp. 63-73, 2007.

[12] S. Boslaugh and P. Walters, Statistics in a Nutshell: A Desktop Quick
Reference: O'Reilly Media, 2008.

[13] G. Boetticher, T. Menzies, and T. Ostrand, "PROMISE Repository of
empirical software engineering data,
http://promisedata.org/repository," West Virginia University,
Department of Computer Science, 2007.

[14] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to
Statistical Learning with Applications in R: Springer, Inc., 2013.

[15] G. Dunteman, Principal Component Analysis: SAGE, 1989.

http://en.wikipedia.org/wiki/Dependent_variable
http://en.wikipedia.org/wiki/Dependent_variable
http://en.wikipedia.org/wiki/Explanatory_variable

