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Abstract—The KECCAK cryptographic algorithms widely 

used in embedded circuits to ensure a high level of security to any 

systems which require hashing as the integrity checking and 

random number generation. One of the most efficient 

cryptanalysis techniques against KECCAK implementation is the 

fault injection attacks. Until now, only a few fault detection 

schemes for KECCAK have been presented. In this paper, in 

order to provide a high level of security against fault attacks, an 

efficient error detection scheme based on scrambling technique 

has been proposed. To evaluate the robust of the proposed 

detection scheme against faults attacks, we perform fault 

injection simulations and we show that the fault coverage is 

about 99,996%. We have described the proposed detection 

scheme and through the Field-Programmable Gate Array 

analysis, results show that the proposed scheme can be easily 

implemented with low complexity and can efficiently protect 

KECCAK against fault attacks. Moreover, the Field-

Programmable Gate Array implementation results show that the 

proposed KECCAK fault detection scheme realises a 

compromise between implementation cost and KECCAK 

robustness against fault attacks. 
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I. INTRODUCTION 

In August 2015, the cryptographic hash algorithm SHA-3 
was finalised by the National Institute of Standard and 
Technology (NIST), when the KECCAK algorithm was 
adopted. Currently, the KECCAK algorithm replaced the 
Secure Hash Algorithm (SHA-2) which has been in use since 
2009 [1-2]. 

Currently, various hardware implementation architectures 
and optimisations of KECCAK algorithm have been proposed 
for different applications and their performances have been 
evaluated by using ASIC and FPGA [3-7]. 

Improving the performance of the KECCAK circuits is a 
critical problem when the circuits are used in embedded 
systems. Cryptographic algorithm KECCAK is currently used 
in a very large variety of scenarios as the financial transactions, 
which has high security requirements. Moreover, the necessity 
to secure the KECCAK algorithm against various attacks as 
fault injection attacks [8-9] 

KECCAK hash function is used for data integrity in 
conjunction with digital signature schemes. Also, for several 
reasons a message is typically hashed first. Then, the hash-
value, as a representative of the message, is signed in place of 
the original message [10-11]. 

Yet, the malicious injected and the natural faults decrease 
the KECCAK robustness in may cause secure data leakage in 
non-secure implementation. The injected faults are caused by 
ambient environment, power consumption, computation time 
or electromagnetic radiation; the cryptographic systems are 
sensitive to these errors. We noted that the random errors are 
presenting false results which make these systems unreliable. 
Also we can inject faults temporarily in the cryptographic 
system in reason to retrieve the secret key or state. Many error 
detection schemes have been implemented to make a robust 
hardware design and to secure cryptographic systems against 
faults injection attacks [12-21]. 

In [12] Bayat-Sarmadi et al. proposed a new fault detection 
scheme for the KECCAK hash function. This is based on 
rotated by a random number before each round operation, and 
shifted back after KECCAK operations without changing the 
results. Then, they implement another copy of the hardware 
KECCAK algorithm to perform a comparison between the two 
copies results. Moreover, they perform fault attacks 
simulations and they show that the detection capability of close 
to 100% is derived. 

Luo et al. presented in [20] a new detection scheme based 
on parity checking in reason to protect the operations 
KECCAK. This scheme consists of comparing the parity inputs 
with the parity outputs of each operation. The simulation 
security results show that the scheme leads to high security 
against fault attacks. 

In this paper, we proposed a new fault detection scheme for 
obtaining an efficient KECCAK implementation with a high 
level of security against faults attacks. This scheme based on 
the scrambling technique to secure KECCAK algorithm. 

The paper is organised as: Section 2 describes the 
background knowledge. In Section 3 we present the KECCAK 
design. Section 4 presents the KECCAK fault detection 
scheme. Section 5 deals with the detection capability 
evaluation of the proposed architecture. In Section 6, the FPGA 
implementation results and performances are discussed and 
compared. Finally, in Section 7, we conclude the paper. 

II. PRELIMINARIES 

A. Algorithm KECCAK 

The KECCAC algorithm is based on the sponge 
construction. The KECCAK hash function is the permutation f. 
This is applied to a fixed length state of b, with b = r + c; c is a 
capacity, r is a bit rate. The higher security and speed level 
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correspond to higher values of c and r respectively. The hash 
procedure is as follow: first, to get a fixed size message, the 
input message is padded. Then, five internals steps are applied 
for each round. Finally, the squeezing phase occurs. The 
sponge function is composed of two phases: Absorbing and 
squeezing phases. Figure 1 shows the Sponge Function. 

 
Fig. 1. Sponge Function 

The state is composed of an array of 5×5 lanes. w is a 

length of lane, when w {1, 2, 4, 8, 16, 32, 64}, and (b = 25w). 
The sponge construction is applied to KECCAK-f, so we 
applied the padding to the message input for obtaining the 
KECCAK-f [r,c]. With c is capacity and r is bitrate. All the 
operations on the indices are done modulo 5. A signify the 
complete permutation state array, and A[x,y] show a particular 
lane in that state. The intermediate variables are B[x,y], C[x] 
and D[x]. RC[i] present the round constants. While the 
constants R[x,y] are the rotation offsets. The binary cyclic shift 
operation is indicated by Rot (w,r). The bit is shifted by 
position i to position i + r (modulo the lane size). The constants 
R[x,y] are the cyclic shift offsets and are specified in Table 1. 

TABLE I.  CONSTANTS R[X,Y] OF KECCAK ALGORITHM 

 X=3 X=4 X=0 X=1 X=2 

Y=2 25 39 3 10 43 

Y=1 55 20 36 44 6 

Y=0 28 27 0 1 62 

Y=4 56 14 18 2 61 

Y=3 21 8 41 45 15 

Table 2 shows the constants rounds RC[i]. These values are 
specified in hexadecimal notation for lane size 64. The hash 
function KECCAK-f consists of 24 rounds, there are identical. 

The process for each round has had five steps: Theta (),     

Rho (ρ), Pi (π), Chi (χ) and Iota (). They feature simple logical 
operations and permutations of the state bits. Should be noted 

that the initial state is all zero and in each round, the introduced 
data is mixed with the current state. 

TABLE II.  VALUE OF RC[I] CONSTANT 

RC[0]   0x0000000000000001 RC[12]   0x000000008000808B 

RC[1]   0x0000000000008082 RC[13]   0x800000000000008B 

RC[2]   0x800000000000808A RC[14]   0x8000000000008089 

RC[3]   0x8000000080008000 RC[15]   0x8000000000008002 

RC[4]   0x000000000000808B RC[16]   0x800000000000808B 

RC[5]   0x0000000080000001 RC[17]   0x8000000000000080 

RC[6]   0x8000000080008081 RC[18]   0x000000000000800A 

RC[7]   0x8000000000008081 RC[19]   0x800000008000000A 

RC[8]   0x000000000000008A RC[20]   0x8000000080008081 

RC[9]   0x0000000000000088 RC[21]   0x8000000000008080 

RC[10]   0x0000000000008082 RC[22]   0x0000000080000001 

RC[11]   0x000000080000000A RC[23]   0x8000000800008008 

 step: 

C[x]=A[x,0] A[x,1] A[x,2] A[x,3] A[x,4]

D[x]=C[x-1] rot(C[x+1],1)

A[x,y]=A[x,y] D[x]

   





      (1) 

 and  steps: 

B[y,2 x+3 y]=rot(A[x,y],r[x,y])                                      (2) 

 step: 

A[x,y]=B[x,y] ((notB[x+1,y]) and B[x+2,y])          

(3) 

1 Step: 

A[0,0]=A[0,0] RC                                                         (4) 

B. Fault Injection Attacks 

Among the techniques that can break the cryptographic 
algorithms, we find the fault injection attacks. This technique is 
to inject one or several faults during the hash process and to 
use the erroneous output to extract the secret information. 

III. KECCAK IMPLEMENTATION 

A. Implementation details of KECCAK 

Figure 2 shows the block diagram of proposed KECCAK 
architecture. This architecture takes 1600-bit for the inputs 
data. Then it performs the padding operation and the hash 
process. The output data is 512-bit. 

The architecture of KECCAK consists of four modules: (1) 
the Input/Output Interface, (2) the Control Unit, (3) the Padder 
Unit, and (4) the KECCAK Round. 
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Fig. 2. Block Diagram KECCAK 

 Input/Output Interface is the input blocks. The input 
data is 1600-bit length while the output is 512-bit wide. 
So the Input/output interface has to buffer the 
information data. 

 Control Unit is used to ensuring the synchronisation 
between all modules. 

 Padder Unit implements the padding operation and the 
inversions per byte procedure and has an output of 
1600-bit which is the sponge function of KECCAK. 
Then a 2-to-1 multiplexer drives the output data from 
padder to the primary KECCAK components. 

 KECCAK Round is the main component of proposed 
design. It requires 25 clock cycles to produce the 512-
bit message digests where each clock cycle requires the 
previous round, as well as the constant value RC at the 
start of the each round. 

The KECCAK round is composed of five components 
(Figure 3): 

 Theta component : this operation is performed in three 
steps: the first step, it takes the input message bits and 

computes the addition modulo 2 between the lanes at 
each matrix column. The results are five xored columns. 
The second step, those columns are left rotated by one 
bit and xored again with the results of previous 
operations. Finally step, the results of the second step 

are driven to a finally XOR stage with the component  
input lanes. 

 Rho component ρ: this operation performs rotations left 
each lane where the rotation number per lane is 
obtained from the remainder of the division between the 
fixed values and the length of the lanes. 

 Pi component π: the Pi component is a simple operation 
was used instead of logic operations to modify the 
position between the lanes according to the 
specifications. In addition, logic operations (AND, 
XOR and NOT) between the lanes are used by the 
component. These functions are applied to entire rows 
of lanes for each row. 

 Chi component : there are five rows of five lanes, the 
Chi component implement 25 NOT, 25 AND and 25 
XOR of 64-bit logic gates. 
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 IOTA component : the final component realises an 
addition modulo 2 between the round constant value 
and the first lane (1599-1536). 

 
Fig. 3. The Structure of KACCAK Round 

B. FPGA Implementation of KECCAK Architecture 

In this subsection, we present the hardware FPGA 
implementation of the proposed KECCAK architecture. The 
hardware description was performed via the VHDL language, 
simulated by ModelSim simulator and synthesised using ISE 
XILINX 14.1. The FPGA platform used is the Virtex-5. 

Table 3 illustrated the occupied slices number; throughput 
(Gigabits per second), frequency (MegaHertz) and the 
efficiency (Gigabits per second per slices). 

The data throughput and efficiency are calculated by 
equation 5 and equation 6 respectively. 

bit frequency
Throughput

clock cycles


                                              (5) 

Throughput
Efficiency

Area
                                                      (6) 

Table 3 shows that the proposed KECCAK architecture 
necessitates 1356 slices for 296.5 MHz working frequency and 
11.86 Gbps throughput. 

TABLE III.  FPGA KECCAK IMPLEMENTATION: COMPARISON 

Design 
Area 

(Slice) 
Frequency 

(MHz) 
Throughput 

(Gbps) 
Efficiency 

(Mbps/slices) 

[22] 1414 271 12.3 8.68 

[23] 2640 122 5.2 - 

Proposed 1356 296.5 11,86 8.95 

In addition, Table 3 presents a comparison between the 
proposed KECCAK designs and other previous works. 
Compared to [22] and [23], the proposed architecture has the 
lowest area and the highest working frequency. From hardware 
performances viewpoint, the proposed architecture requires 
1356 slices for 296.5 MHz working frequency while the 
KECCAK design in [23] requires 2640 slices with 122 MHz 
working frequency. Although the design in [22] increases the 
throughput compared to our work, the proposed design is more 
efficient from area and frequency viewpoint. Therefore, our 
design realises a trade-off between the implementation 
hardware performances. 

IV. PROPOSED FAULT DETECTION SCHEME FOR THE 

KECCAK 

In this section, we present the proposed scheme to protect 
the hardware KECCAK implantation against the fault injection 
attacks. 

Duplicated the KECCAK hardware design means that the 
hash process data is duplicated. Therefore, two KECCAK 
round execute simultaneously. It is simple to scramble the 
KECCAK slices between two KECCAK rounds by using the 
hardware duplication technique. 

We applied the scrambling technique at the end of each 
KECCAK operation. In other words, we applied this technique 
at the end of Theta, Rho, Pi, Chi and Iota. 

Then, if a fault is injected into one data hash path, it causes 
faulty data process on the other data hash path. 

The advantage of the proposed architecture is that this 
method avoids the fault injection attacks and does not modify 
the exact KECCAK Round process in the absence of attacks. 

In this work, in order to increase the robustness against the 
fault attacks, we applied the scrambling at the bit level which 
means that each bit of the first data hash path is scrambling 
with the corresponding bit in the second data hash path 

The proposed methodology is presented in Figure 4. 

The slice KECCAK half (in data path 1) are scrambled with 
the KECCAK slice (in data path 2). The bit level scrambling 
technique causes a robust KECCAK design. In addition, in 
terms of hardware implementation, it is effortless to implement 
this technique. Also, it does not augment the implementation 
complexity level. 
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Fig. 4. Technique of scrambling in KECCAK operation

V. FAULT DETECTION ANALYSIS 

Many experiences of faults injection attacks were 
performed using the VHDL language to verify the robustness 
of the KECCAK architecture against the fault injection attacks. 
We considered two types of faults: 

 Single-bit faults mean that one bit in the data hash path 
is changed. 

 Multiple-bit faults mean that more than one bit in the 
data hash path is changed. 

 The single-bit and the multiple-bit faults are injected into 
all KECCAK operations where the erroneous bits number for 
the multiple-bit faults varies from 1 to 16. For this purpose, we 
developed a simulation fault model as shown in Figure 5. 

The KECCAK detection scheme is tested using 17 tests 
different by fault multiplicity where each fault pattern is 
composed of 1000000 faulty vectors. The vector's length is 64 
bits. The simulation faults attacks results are shown in Figure 
6. 

 

Fig. 5. Simulation model for fault attacks

 

KECCAK DATA PATH 1 

0,0 0,1 0,2 0,3 0,4  0,0 0,1 0,2 0,3 0,4 

1,0 1,1 1,2 1,3 1,4  1,0 1,1 1,2 1,3 1,4 

2,0 2,1 2,2 2,3 2,4  2,0 2,1 2,2 2,3 2,4 

3,0 3,1 3,2 3,3 3,4  3,0 3,1 3,2 3,3 3,4 

4,0 4,1 4,2 4,3 4,4  4,0 4,1 4,2 4,3 4,4 

           

0,0 0,1 0,2 0,3 0,4  0,0 0,1 0,2 0,3 0,4 

1,0 1,1 1,2 1,3 1,4  1,0 1,1 1,2 1,3 1,4 

2,0 2,1 2,2 2,3 2,4  2,0 2,1 2,2 2,3 2,4 

3,0 3,1 3,2 3,3 3,4  3,0 3,1 3,2 3,3 3,4 

4,0 4,1 4,2 4,3 4,4  4,0 4,1 4,2 4,3 4,4 

 

KECCAK DATA PATH 2 
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Fig. 6. Detection capability against fault attacks

As shown in Figure 6, the undetectable faults percentage 
decreases considerably when the fault multiplicity augmented. 
In the random faulty bit case, the percentage of the 
undetectable faults is about 0.004% which means that the 
detection capability percentage achieves 99.996%. 
Consequently, the proposed KECCAK detection scheme 
guarantees a high security level against fault attacks. 

VI. FPGA IMPLEMENTATION 

In this section, we present the hardware FPGA 
implementation of the original KECCAK and the protected 
KECCAK designs. The hardware description was performed 
via the VHDL language the proposed architectures are 
simulated by ModelSim simulator and synthesised using ISE 
XILINX 14.1. The FPGA platform used is the Virtex-5. 

Table 4 illustrated the occupied slices number; throughput 
(Gigabits per second), frequency (MegaHertz), the frequency 
and throughput degradations and the area overhead, for the 
protected and the unprotected KECCAK implementation. 

TABLE IV.  KECCAK FPGA HARDWARE IMPLEMENTATION: RESULTS 

AND COMPARISON 

Design 
Area (Slice) 
(Overhead) 

Frequency (MHz) 
(Degradation) 

Throu. (Gbps) 
(Degradation) 

Original 

KECCAK 
1356 296.5 11,86 

Protected 
KECCAK 

2260 
(66.66%) 

291.3 
(1.75%) 

11,65 
(1.77%) 

As seen in Table 4, the original KECCAK hash function 
requires 1356 occupied slices for 296.5 MHz maximal 
frequency. However, the proposed protected KECCAK 
requires 66.66% more occupied slices and the maximal 
frequency decreased by 1.75% than the original KECCAK. 
Also, the proposed secured design causes 1.77% throughput 

degradation. Thus, our proposed KECCAK design realises a 
compromise between implementation cost and KECCAK 
robustness against fault attacks. 

VII. CONCLUSION 

In this work, to improve the KECCAK safety, we proposed 
a new KECCAK fault detection scheme based on scrambling 
technique. We discuss the robustness of the proposed 
KECCAK architecture against fault attacks. We implemented 
the architectures: the original and the protected KECCAK on 
FPGA Virtex-5. Compared to the original implementation, the 
proposed KECCAK achieves 99.996% fault coverage and 
causes a very little frequency and throughput degradations. In 
the future works, we will try to protect the KECCAK 
architecture against the power attacks. 
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