
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

237 | P a g e

www.ijacsa.thesai.org

Fault Attacks Resistant Architecture for KECCAK

Hash Function

Fatma Kahri, Hassen Mestiri, Belgacem Bouallegue, Mohsen Machhout

Electronics and Micro-Electronics Laboratory (E.µ.E.L), Faculty of Sciences of Monastir,

University of Monastir, Tunisia

Abstract—The KECCAK cryptographic algorithms widely

used in embedded circuits to ensure a high level of security to any

systems which require hashing as the integrity checking and

random number generation. One of the most efficient

cryptanalysis techniques against KECCAK implementation is the

fault injection attacks. Until now, only a few fault detection

schemes for KECCAK have been presented. In this paper, in

order to provide a high level of security against fault attacks, an

efficient error detection scheme based on scrambling technique

has been proposed. To evaluate the robust of the proposed

detection scheme against faults attacks, we perform fault

injection simulations and we show that the fault coverage is

about 99,996%. We have described the proposed detection

scheme and through the Field-Programmable Gate Array

analysis, results show that the proposed scheme can be easily

implemented with low complexity and can efficiently protect

KECCAK against fault attacks. Moreover, the Field-

Programmable Gate Array implementation results show that the

proposed KECCAK fault detection scheme realises a

compromise between implementation cost and KECCAK

robustness against fault attacks.

Keywords—Cryptographic; KECCAK SHA-3; Fault detection;

Embedded systems; FPGA implementation

I. INTRODUCTION

In August 2015, the cryptographic hash algorithm SHA-3
was finalised by the National Institute of Standard and
Technology (NIST), when the KECCAK algorithm was
adopted. Currently, the KECCAK algorithm replaced the
Secure Hash Algorithm (SHA-2) which has been in use since
2009 [1-2].

Currently, various hardware implementation architectures
and optimisations of KECCAK algorithm have been proposed
for different applications and their performances have been
evaluated by using ASIC and FPGA [3-7].

Improving the performance of the KECCAK circuits is a
critical problem when the circuits are used in embedded
systems. Cryptographic algorithm KECCAK is currently used
in a very large variety of scenarios as the financial transactions,
which has high security requirements. Moreover, the necessity
to secure the KECCAK algorithm against various attacks as
fault injection attacks [8-9]

KECCAK hash function is used for data integrity in
conjunction with digital signature schemes. Also, for several
reasons a message is typically hashed first. Then, the hash-
value, as a representative of the message, is signed in place of
the original message [10-11].

Yet, the malicious injected and the natural faults decrease
the KECCAK robustness in may cause secure data leakage in
non-secure implementation. The injected faults are caused by
ambient environment, power consumption, computation time
or electromagnetic radiation; the cryptographic systems are
sensitive to these errors. We noted that the random errors are
presenting false results which make these systems unreliable.
Also we can inject faults temporarily in the cryptographic
system in reason to retrieve the secret key or state. Many error
detection schemes have been implemented to make a robust
hardware design and to secure cryptographic systems against
faults injection attacks [12-21].

In [12] Bayat-Sarmadi et al. proposed a new fault detection
scheme for the KECCAK hash function. This is based on
rotated by a random number before each round operation, and
shifted back after KECCAK operations without changing the
results. Then, they implement another copy of the hardware
KECCAK algorithm to perform a comparison between the two
copies results. Moreover, they perform fault attacks
simulations and they show that the detection capability of close
to 100% is derived.

Luo et al. presented in [20] a new detection scheme based
on parity checking in reason to protect the operations
KECCAK. This scheme consists of comparing the parity inputs
with the parity outputs of each operation. The simulation
security results show that the scheme leads to high security
against fault attacks.

In this paper, we proposed a new fault detection scheme for
obtaining an efficient KECCAK implementation with a high
level of security against faults attacks. This scheme based on
the scrambling technique to secure KECCAK algorithm.

The paper is organised as: Section 2 describes the
background knowledge. In Section 3 we present the KECCAK
design. Section 4 presents the KECCAK fault detection
scheme. Section 5 deals with the detection capability
evaluation of the proposed architecture. In Section 6, the FPGA
implementation results and performances are discussed and
compared. Finally, in Section 7, we conclude the paper.

II. PRELIMINARIES

A. Algorithm KECCAK

The KECCAC algorithm is based on the sponge
construction. The KECCAK hash function is the permutation f.
This is applied to a fixed length state of b, with b = r + c; c is a
capacity, r is a bit rate. The higher security and speed level

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

238 | P a g e

www.ijacsa.thesai.org

correspond to higher values of c and r respectively. The hash
procedure is as follow: first, to get a fixed size message, the
input message is padded. Then, five internals steps are applied
for each round. Finally, the squeezing phase occurs. The
sponge function is composed of two phases: Absorbing and
squeezing phases. Figure 1 shows the Sponge Function.

Fig. 1. Sponge Function

The state is composed of an array of 5×5 lanes. w is a

length of lane, when w {1, 2, 4, 8, 16, 32, 64}, and (b = 25w).
The sponge construction is applied to KECCAK-f, so we
applied the padding to the message input for obtaining the
KECCAK-f [r,c]. With c is capacity and r is bitrate. All the
operations on the indices are done modulo 5. A signify the
complete permutation state array, and A[x,y] show a particular
lane in that state. The intermediate variables are B[x,y], C[x]
and D[x]. RC[i] present the round constants. While the
constants R[x,y] are the rotation offsets. The binary cyclic shift
operation is indicated by Rot (w,r). The bit is shifted by
position i to position i + r (modulo the lane size). The constants
R[x,y] are the cyclic shift offsets and are specified in Table 1.

TABLE I. CONSTANTS R[X,Y] OF KECCAK ALGORITHM

 X=3 X=4 X=0 X=1 X=2

Y=2 25 39 3 10 43

Y=1 55 20 36 44 6

Y=0 28 27 0 1 62

Y=4 56 14 18 2 61

Y=3 21 8 41 45 15

Table 2 shows the constants rounds RC[i]. These values are
specified in hexadecimal notation for lane size 64. The hash
function KECCAK-f consists of 24 rounds, there are identical.

The process for each round has had five steps: Theta (),

Rho (ρ), Pi (π), Chi (χ) and Iota (). They feature simple logical
operations and permutations of the state bits. Should be noted

that the initial state is all zero and in each round, the introduced
data is mixed with the current state.

TABLE II. VALUE OF RC[I] CONSTANT

RC[0] 0x0000000000000001 RC[12] 0x000000008000808B

RC[1] 0x0000000000008082 RC[13] 0x800000000000008B

RC[2] 0x800000000000808A RC[14] 0x8000000000008089

RC[3] 0x8000000080008000 RC[15] 0x8000000000008002

RC[4] 0x000000000000808B RC[16] 0x800000000000808B

RC[5] 0x0000000080000001 RC[17] 0x8000000000000080

RC[6] 0x8000000080008081 RC[18] 0x000000000000800A

RC[7] 0x8000000000008081 RC[19] 0x800000008000000A

RC[8] 0x000000000000008A RC[20] 0x8000000080008081

RC[9] 0x0000000000000088 RC[21] 0x8000000000008080

RC[10] 0x0000000000008082 RC[22] 0x0000000080000001

RC[11] 0x000000080000000A RC[23] 0x8000000800008008

 step:

C[x]=A[x,0] A[x,1] A[x,2] A[x,3] A[x,4]

D[x]=C[x-1] rot(C[x+1],1)

A[x,y]=A[x,y] D[x]

   





 (1)

 and  steps:

B[y,2 x+3 y]=rot(A[x,y],r[x,y]) (2)

 step:

A[x,y]=B[x,y] ((notB[x+1,y]) and B[x+2,y])

(3)

1 Step:

A[0,0]=A[0,0] RC (4)

B. Fault Injection Attacks

Among the techniques that can break the cryptographic
algorithms, we find the fault injection attacks. This technique is
to inject one or several faults during the hash process and to
use the erroneous output to extract the secret information.

III. KECCAK IMPLEMENTATION

A. Implementation details of KECCAK

Figure 2 shows the block diagram of proposed KECCAK
architecture. This architecture takes 1600-bit for the inputs
data. Then it performs the padding operation and the hash
process. The output data is 512-bit.

The architecture of KECCAK consists of four modules: (1)
the Input/Output Interface, (2) the Control Unit, (3) the Padder
Unit, and (4) the KECCAK Round.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

239 | P a g e

www.ijacsa.thesai.org

Fig. 2. Block Diagram KECCAK

 Input/Output Interface is the input blocks. The input
data is 1600-bit length while the output is 512-bit wide.
So the Input/output interface has to buffer the
information data.

 Control Unit is used to ensuring the synchronisation
between all modules.

 Padder Unit implements the padding operation and the
inversions per byte procedure and has an output of
1600-bit which is the sponge function of KECCAK.
Then a 2-to-1 multiplexer drives the output data from
padder to the primary KECCAK components.

 KECCAK Round is the main component of proposed
design. It requires 25 clock cycles to produce the 512-
bit message digests where each clock cycle requires the
previous round, as well as the constant value RC at the
start of the each round.

The KECCAK round is composed of five components
(Figure 3):

 Theta component : this operation is performed in three
steps: the first step, it takes the input message bits and

computes the addition modulo 2 between the lanes at
each matrix column. The results are five xored columns.
The second step, those columns are left rotated by one
bit and xored again with the results of previous
operations. Finally step, the results of the second step

are driven to a finally XOR stage with the component 
input lanes.

 Rho component ρ: this operation performs rotations left
each lane where the rotation number per lane is
obtained from the remainder of the division between the
fixed values and the length of the lanes.

 Pi component π: the Pi component is a simple operation
was used instead of logic operations to modify the
position between the lanes according to the
specifications. In addition, logic operations (AND,
XOR and NOT) between the lanes are used by the
component. These functions are applied to entire rows
of lanes for each row.

 Chi component : there are five rows of five lanes, the
Chi component implement 25 NOT, 25 AND and 25
XOR of 64-bit logic gates.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

240 | P a g e

www.ijacsa.thesai.org

 IOTA component : the final component realises an
addition modulo 2 between the round constant value
and the first lane (1599-1536).

Fig. 3. The Structure of KACCAK Round

B. FPGA Implementation of KECCAK Architecture

In this subsection, we present the hardware FPGA
implementation of the proposed KECCAK architecture. The
hardware description was performed via the VHDL language,
simulated by ModelSim simulator and synthesised using ISE
XILINX 14.1. The FPGA platform used is the Virtex-5.

Table 3 illustrated the occupied slices number; throughput
(Gigabits per second), frequency (MegaHertz) and the
efficiency (Gigabits per second per slices).

The data throughput and efficiency are calculated by
equation 5 and equation 6 respectively.

bit frequency
Throughput

clock cycles


 (5)

Throughput
Efficiency

Area
 (6)

Table 3 shows that the proposed KECCAK architecture
necessitates 1356 slices for 296.5 MHz working frequency and
11.86 Gbps throughput.

TABLE III. FPGA KECCAK IMPLEMENTATION: COMPARISON

Design
Area

(Slice)
Frequency

(MHz)
Throughput

(Gbps)
Efficiency

(Mbps/slices)

[22] 1414 271 12.3 8.68

[23] 2640 122 5.2 -

Proposed 1356 296.5 11,86 8.95

In addition, Table 3 presents a comparison between the
proposed KECCAK designs and other previous works.
Compared to [22] and [23], the proposed architecture has the
lowest area and the highest working frequency. From hardware
performances viewpoint, the proposed architecture requires
1356 slices for 296.5 MHz working frequency while the
KECCAK design in [23] requires 2640 slices with 122 MHz
working frequency. Although the design in [22] increases the
throughput compared to our work, the proposed design is more
efficient from area and frequency viewpoint. Therefore, our
design realises a trade-off between the implementation
hardware performances.

IV. PROPOSED FAULT DETECTION SCHEME FOR THE

KECCAK

In this section, we present the proposed scheme to protect
the hardware KECCAK implantation against the fault injection
attacks.

Duplicated the KECCAK hardware design means that the
hash process data is duplicated. Therefore, two KECCAK
round execute simultaneously. It is simple to scramble the
KECCAK slices between two KECCAK rounds by using the
hardware duplication technique.

We applied the scrambling technique at the end of each
KECCAK operation. In other words, we applied this technique
at the end of Theta, Rho, Pi, Chi and Iota.

Then, if a fault is injected into one data hash path, it causes
faulty data process on the other data hash path.

The advantage of the proposed architecture is that this
method avoids the fault injection attacks and does not modify
the exact KECCAK Round process in the absence of attacks.

In this work, in order to increase the robustness against the
fault attacks, we applied the scrambling at the bit level which
means that each bit of the first data hash path is scrambling
with the corresponding bit in the second data hash path

The proposed methodology is presented in Figure 4.

The slice KECCAK half (in data path 1) are scrambled with
the KECCAK slice (in data path 2). The bit level scrambling
technique causes a robust KECCAK design. In addition, in
terms of hardware implementation, it is effortless to implement
this technique. Also, it does not augment the implementation
complexity level.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

241 | P a g e

www.ijacsa.thesai.org

Fig. 4. Technique of scrambling in KECCAK operation

V. FAULT DETECTION ANALYSIS

Many experiences of faults injection attacks were
performed using the VHDL language to verify the robustness
of the KECCAK architecture against the fault injection attacks.
We considered two types of faults:

 Single-bit faults mean that one bit in the data hash path
is changed.

 Multiple-bit faults mean that more than one bit in the
data hash path is changed.

 The single-bit and the multiple-bit faults are injected into
all KECCAK operations where the erroneous bits number for
the multiple-bit faults varies from 1 to 16. For this purpose, we
developed a simulation fault model as shown in Figure 5.

The KECCAK detection scheme is tested using 17 tests
different by fault multiplicity where each fault pattern is
composed of 1000000 faulty vectors. The vector's length is 64
bits. The simulation faults attacks results are shown in Figure
6.

Fig. 5. Simulation model for fault attacks

KECCAK DATA PATH 1

0,0 0,1 0,2 0,3 0,4 0,0 0,1 0,2 0,3 0,4

1,0 1,1 1,2 1,3 1,4 1,0 1,1 1,2 1,3 1,4

2,0 2,1 2,2 2,3 2,4 2,0 2,1 2,2 2,3 2,4

3,0 3,1 3,2 3,3 3,4 3,0 3,1 3,2 3,3 3,4

4,0 4,1 4,2 4,3 4,4 4,0 4,1 4,2 4,3 4,4

0,0 0,1 0,2 0,3 0,4 0,0 0,1 0,2 0,3 0,4

1,0 1,1 1,2 1,3 1,4 1,0 1,1 1,2 1,3 1,4

2,0 2,1 2,2 2,3 2,4 2,0 2,1 2,2 2,3 2,4

3,0 3,1 3,2 3,3 3,4 3,0 3,1 3,2 3,3 3,4

4,0 4,1 4,2 4,3 4,4 4,0 4,1 4,2 4,3 4,4

KECCAK DATA PATH 2

1-bit error in

each vector

R
an

d
o

m
 erro

rs

Input

Output

1.000.000

error blocks

Random-bit error

in each vector

 Theta ()

Rho ()

Pi ()

Chi ()

Iota ()

KECCAK operation

& scrambling slices

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

242 | P a g e

www.ijacsa.thesai.org

Fig. 6. Detection capability against fault attacks

As shown in Figure 6, the undetectable faults percentage
decreases considerably when the fault multiplicity augmented.
In the random faulty bit case, the percentage of the
undetectable faults is about 0.004% which means that the
detection capability percentage achieves 99.996%.
Consequently, the proposed KECCAK detection scheme
guarantees a high security level against fault attacks.

VI. FPGA IMPLEMENTATION

In this section, we present the hardware FPGA
implementation of the original KECCAK and the protected
KECCAK designs. The hardware description was performed
via the VHDL language the proposed architectures are
simulated by ModelSim simulator and synthesised using ISE
XILINX 14.1. The FPGA platform used is the Virtex-5.

Table 4 illustrated the occupied slices number; throughput
(Gigabits per second), frequency (MegaHertz), the frequency
and throughput degradations and the area overhead, for the
protected and the unprotected KECCAK implementation.

TABLE IV. KECCAK FPGA HARDWARE IMPLEMENTATION: RESULTS

AND COMPARISON

Design
Area (Slice)
(Overhead)

Frequency (MHz)
(Degradation)

Throu. (Gbps)
(Degradation)

Original

KECCAK
1356 296.5 11,86

Protected
KECCAK

2260
(66.66%)

291.3
(1.75%)

11,65
(1.77%)

As seen in Table 4, the original KECCAK hash function
requires 1356 occupied slices for 296.5 MHz maximal
frequency. However, the proposed protected KECCAK
requires 66.66% more occupied slices and the maximal
frequency decreased by 1.75% than the original KECCAK.
Also, the proposed secured design causes 1.77% throughput

degradation. Thus, our proposed KECCAK design realises a
compromise between implementation cost and KECCAK
robustness against fault attacks.

VII. CONCLUSION

In this work, to improve the KECCAK safety, we proposed
a new KECCAK fault detection scheme based on scrambling
technique. We discuss the robustness of the proposed
KECCAK architecture against fault attacks. We implemented
the architectures: the original and the protected KECCAK on
FPGA Virtex-5. Compared to the original implementation, the
proposed KECCAK achieves 99.996% fault coverage and
causes a very little frequency and throughput degradations. In
the future works, we will try to protect the KECCAK
architecture against the power attacks.

REFERENCES

[1] I. Ahmad and A. Das, “Analysis and detection of errors in
implementation of SHA-512 algorithms on FPGAs”, The Computer
Journal., vol 50(6), pp. 728-738, 2007.

[2] M. Bahramali, J. Jiang, and A. Reyhani-Masoleh, “A fault detection
scheme for the FPGA implementation of SHA-1 and SHA-512 round
computations”, Journal of Electronic Testing, vol. 27, no. 4, pp. 517-
530, 2011.

[3] Morris J. Dworkin, "Sha-3 standard: Permutation-based hash and
extendable-output functions", Federal Inf. Process. Stds. (NIST FIPS) -
202, August 2015.

[4] Fatma Kahri, Hassen Mestiri, Belgacem Bouallegue and Mohsen
Machhout, "High Speed FPGA Implementation of Cryptographic
KECCAK Hash Function Crypto-Processor", Journal of Circuits,
Systems, and Computers, Vol.25(4), 2016.

[5] G. S. Athanasiou, G.-P. Makkas and G. Theodoridis, "High throughput
piplined FPGA implementation of the new SHA-3 cryptographic hash
 algorithm", Int. Symp. Communications, Control and Signal
 Processing, pp. 538-541, May 2014.

[6] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, "The KECCAK
SHA-3 submission", Submission to NIST (Round3),
 http://keccak.noekeon.org/Keccak-submission-3.pdf, 2011.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

243 | P a g e

www.ijacsa.thesai.org

[7] D. Barbara Nicholas and A. Sivasankar, "Design of FPGA based
encryption algorithm using KECCAK hashing functions", International
Journal of Engineering Trends and Technology, pp. 2438-2441, 2013.

[8] R. Karri, K. Wu, P. Mishra, and Y. Kim, “Concurrent error detection
schemes of fault based side-channel cryptanalysis of symmetric block
ciphers”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 21(12), pp.1509-1517, 2002.

[9] S. Bayat-Sarmadi and M. A. Hasan,“On concurrent detection of errors in
 polynomial basis multiplication”, IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 15(4), pp. 413-426, Apr. 2007.

[10] S. Tillich, M. Feldhofer, M. Kirschbaum, T. Plos, J.-M. Schmidt, and A.
 Szekely, “Uniform evaluation of hardware implementations of the
round-two SHA-3 candidates”, in Proc. Conf. SHA-3 Candidate, pp. 1-
16, 2010.

[11] M. Knezevic et al., “Fair and consistent hardware evaluation of fourteen
round two SHA-3 candidates”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 20(5), pp. 827-840, 2012.

[12] S. Bayat-sarmadi, M. Mozaffari-Kermani, and A. Reyhani-Masoleh,
"Effcient and concurrent reliable realization of the secure cryptographic
SHA-3 algorithm", IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 33(7), July 2014.

[13] X. Guo and R. Karri, "Invariance-based concurrent error detection for
Advanced Encryption Standard", In Proc. IEEE Design Automation
Conference (DAC), 2012.

[14] X. Guo and R. Karri, "Recomputing with permuted operands: A
concurrent error detection approach", IEEE Transactions on Computer-
Aided Design of Integrated Circuits & Systems, vol. 32(10), pp. 1595-
1608, 2013.

[15] M. Mozaffari-Kermani and A. Reyhani-Masoleh, "A lightweight high-
performance fault detection scheme for the Advanced Encryption

Standard using composite fields", IEEE Transactions on Very Large
Scale Integration Systems, vol. 19(1), pp. 85-91, 2011.

[16] M. Karpovsky, K. Kulikowski, and A. Taubin, "Differential fault
analysis attack resistant architectures for the Advanced Encryption
Standard", In Smart Card Research and Advanced Applications VI, vol.
153, pp. 177-192, 2004.

[17] R. Karri, K. Wu, P. Mishra, and Y. Kim, "Concurrent error detection of
fault- based side-channel cryptanalysis of 128-bit symmetric block
ciphers," In Proc. IEEE Design Automation Conference, pp. 579-584,
2001.

[18] P. Luo, Y. Fei, L. Zhang, and A. Ding, "Side-channel power analysis of
di_erent protection schemes against fault attacks on AES", In Int. Conf.
 ReConFigurable Computing & FPGAs (ReConFig), 2014.

[19] P. Maistri and R. Leveugle, "Double-data-rate computation as a
countermeasure against fault analysis. IEEE Trans. on Computers", vol.
57(11), pp.1528-1539, 2008.

[20] P. Luo, L. Zhang, Y. Fei, "Concurrent Error Detection for Reliable
SHA-3 Design", IEEE International Great Lakes Symposium on VLSI,
2016.

[21] Hassen Mestiri, Fatma Kahri, Belgacem Bouallegue, Mohsen Machhout,
"A high-speed AES design resistant to fault injection attacks",
Microprocessors and Microsystems Journal, vol. 41, pp.47-55, 2016.

[22] J. Yaser, T. Lo’ai, T. Hala and M. Abidalrahman, “Hardware
performance evaluation of SHA-3 candidate algorithms”, in the Journal
of Information Security, vol. 3(2), pp. 69-76, 2012.

[23] F.D. Pereira, D. M. Ordonez, I. D. Sakai, A. M. de Souza, "Exploiting
Parallelism on Keccak: FPGA and GPU Comparison", in the Parallel
and Cloud Computing, 2013, vol. 2(1), p. 1-6.

