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Abstract—This paper investigated solving Fractional 

Programming Problems under Uncertainty (FPPU) using Sperm 

Motility Algorithm. Sperm Motility Algorithm (SMA) is a novel 

metaheuristic algorithm inspired by fertilization process in 

human, was proposed for solving optimization problems by 

Osama and Hezam [1]. The uncertainty in the Fractional 

Programming Problem (FPP) could be found in the objective 

function coefficients and/or the coefficients of the constraints. 

The uncertainty in the coefficients can be characterised by two 

methods. The first method is fuzzy logic-based alpha-cut analysis 

in which uncertain parameters are treated as fuzzy numbers 

leading to Fuzzy Fractional Programming Problems (FFPP). The 

second is Monte Carlo simulation (MCS) in which parameters 

are treated as random variables bound to a given probability 

distribution leading to Probabilistic Fractional Programming 

Problems (PFPP). The two different methods are used to revise 

the trustiness in the transformation to the deterministic domain. 

A comparative study of the obtained result using SMA with 

genetic algorithm and the two SI algorithms on a selected 

benchmark examples is carried out. A detailed comparison is 

induced giving a ranked recommendation for algorithms and 

methods proper for solving FPPU. 

Keywords—Sperm Motility Algorithm; Fractional 

Programming; Uncertainty; Fuzzy Programming; Monte Carlo 

Method 

I. INTRODUCTION 

In real life decision-making situations, the decision makers 
often face problems in making decision from linear/non-linear 
fractional programming problems (FPPs); the objectives are 
generally conflicted, non-commensurable and fuzzy in nature 
and many considerations of the vague nature of uncertainty 
should be taken in the formulation of the problem. Naturally 
the objective functions and constraints are uncertainty in their 
nature and involve many fuzzy or stochastic parameters. In 
most of the practical situations the possible value of the 
parameters involved in the objective could not be defined 
precisely due to the lack of available data. The concept of 
fuzzy sets seems to be most appropriate to deal with such 
imprecise data. There are many different algorithms to solve 
fuzzy fractional programming problem. Many of these 
approaches are based upon traditional optimization or classical 
methods. That is, it is still inefficient and lack universality, 
especially for non-linear and non-differentiable fractional 
objective functions. However, intelligent optimization 
techniques, such as evolutionary computation have a growing 

interest as a problem solver in the field of optimization and 
computer science. Rezaee, A. [2] proposed an interactive 
particle swarm optimization for general fuzzy non-linear goal 
programming. XU, X.L., et al. [3] modified particle swarm 
optimization algorithm to solve intuitionistic fuzzy integer 
programming. They convert the fuzzy integer programming 
into integer programming by membership function and 
resolved it by improving particle swarm optimization. Yi, L., 
et al. [4] proposed and analysed fuzzy form of the bi-level 
programming by using the interactive method and by 
imposing the improved PSO algorithm. They firstly convert 
the basic bi-level programming problem into its intuitionistic 
fuzzy form, which is intuitionistic fuzzy bi-level 
programming.  The membership and non-membership 
function could drive the integer fuzzy bi-level programming to 
the global optimum result. An interactive computational 
method is proposed for obtaining the global optimal solution 
of integer fuzzy bi-level programming. The method adopts the 
improved PSO algorithm, by imposing a mechanism to 
improve the diversity and expand the search space of the 
particle. Hezam, I.M. et al. [5]–[9] introduced solution for 
different types of fractional programming problem using 
metaheuristic algorithms. Abebe, A. et al. [10]  presented a 
comparison between Monte Carlo simulation (MCS) and 
fuzzy logic-based α-level cut analysis. They tested both 
techniques on a model of groundwater contamination transport 
where the decay rate of the contaminant is considered to be 
uncertain.  Cantoni, M. et al. [11] presented an approach to the 
optimal plant design under conflicting safety and economic 
constraints, based on the coupling of a Monte Carlo evaluation 
of plant operation with a genetic algorithms-maximization 
procedure. Buckley, et al. [12] presented Monte Carlo 
methods in fuzzy optimization using two methods to handle 
the uncertainty, (1) Kerre’s Method, and (2) Chen’s Method.  
Yeh, W.C. et al. [13] proposed Particle Swarm Optimization 
(PSO) based on Monte Carlo simulation (MCS), to solve 
complex network reliability optimization problems. Sar and 
Kahraman [14] used the fuzzy MCS method to determine the 
best investment strategy on new product selection for an 
organization in the condition when the fuzzy net present value 
is not the only point of concern for decision making. Fan, YR. 
et al.  [15] developed a generalised fuzzy linear programming 
method for dealing with uncertainties expressed as fuzzy sets. 
The feasibility of fuzzy solutions of the generalised fuzzy 
linear programming problem was investigated. A stepwise 
interactive algorithm based on the idea of the design of the 
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experiment is then introduced to solve the generalised fuzzy 
linear programming problem. A comparison between the 
solutions obtained through the stepwise interactive algorithm 
and Monte Carlo method is finally conducted to demonstrate 
the robustness of the stepwise interactive algorithm method. 

The purpose of the current work is to solve fractional 
programming problems using Sperm Motility Algorithm under 
uncertainty. While the uncertainty is characterised using two 
different methods; the α-level set fuzzy number based method 
and the Monte Carlo method. Throughout the literature 
review, FPP under uncertainty have never been solved by 
metaheuristic algorithms. The Monte Carlo method is used 
also for the first time in handling the uncertainty in the 
coefficients of the FPP. 

The remainder of this paper is organised as: Section 2 
introduce the problem statement and solution concepts. Monte 
Carlo method is reviewed in Section 3. In Section 4, an 
overview of Sperm Motility Algorithm (SMA) is introduced. 
In Section 5, the proposed algorithms for FPPU is discussed. 
In Section 6, numerical examples with discussion are 
introduced. Finally, Section 7 is the concluding part of the 
paper. 

II. PROBLEM STATEMENTS AND SOLUTION CONCEPTS 

In this paper, the general mathematical model of the FPPU 
is as follows: 
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where,        , , ,i i k jf x g x h x and m x , are supposed 

to be continuous functions, with fuzzy coefficients. S is 
compact. 

~ represents the presence of fuzzy numbers within the 
matrices or vectors. It’s obvious that the uncertainty appears in 
the coefficients of the objective function and/or the 
coefficients of constraints. 

A. Definition 1 

[16] A real fuzzy number J  is a continuous fuzzy subset 

from the real line R whose triangular membership function 
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J  is defined by a continuous mapping from R to the 

closed interval [0,1], as shown in Figure 1, where, 
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Fig. 1. Membership Function of Fuzzy Number J. 

where, m is a given value, a1 and a2 denote the lower and 
upper bounds. Sometimes, it is more convenient to use the 
notation explicitly highlighting the membership function 
parameters. In this case, we obtain  
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In what follows, the definition of the α-level set or α-cut of 

the fuzzy number J is introduced. 

B. Definition 2 

[16] The α-level set of the fuzzy parameters J  in problem 

(1) is defined as the ordinary set   ( ̃) for which the degree of 

membership function exceeds the level, α,  α 0,1 , where:  

  ( ̃)  {   |  ̃( )   } 

For certain values   
  to be in the unit interval, the problem 

(FPPU) (1) can be reformulated as in the following non-fuzzy 
optimization model (α-FPP): 
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Problem (α-FPP) (2) can be rewritten as: 

 

 1

1

min/ max ( ,..., )

p
i

n
ii

f x
z x x

g x


                      (4) 

 

 

 

, 0

0, 1,..., ;

0, 1,..., ;

, 1,.., .

0, 1,.., .

k

n
j

l u
i i i

i

l u

subject to x S x

h x k K

S x R m x j J

x x x i n

g x i n

j j j

 

  
 
 

    
 

    

 

 

                                                                     

where  ,l uj j   are lower and upper bounds on j, where 

the j α means the value of j at α
0
,  α 0,1 . 

III. MONTE CARLO METHOD  

The MCS technique is an especially useful means of 
analyzing situations involving risk to obtain approximate 
answers when a physical experiment or the use of analytical 
approaches is either too burdensome or not feasible [14]. 
Monte Carlo methods vary but tend to follow a particular 
pattern. Using the MC method starts with defining a domain 
of possible inputs, then the inputs are generated randomly 
from a probability distribution over the domain.  In this work, 
we used uniform distribution in order to perform fast 
deterministic computation on the inputs and aggregate the 
results. The shape of the membership function used in the α-
cut fuzzy method is the same as the shape of the probability 
density function used in the MCSs.  

IV. OVERVIEW OF SMA 

Sperm Motility Algorithm [1] is an evolutionary algorithm 
inspired by the fertilization process in human. During the 
search process, there are mainly several principle rules. (1) All 
sperms are attracted toward ovum of their species 
chemoattractant. (2) Attractiveness is proportional to 
chemoattractant concentration and these both increase 
whenever the sperm is close to the ovum. (3) The best healthy 
or highest quality of sperm -type A- will be carried over to the 
next generations; other less quality sperms -types B, C and D 
are neglected with a probability    [   ]. (4) One sperm 
penetrates the ovum, and this rule can be modified to suit the 

multi-objective optimization as there can be  more than one 
egg (such as fraternal twins). (5) More than 250 million 
sperms swim randomly with the velocity vi at position xi 
forward to the ovum, where motility can be described by the 
Stokes equations. 

The mathematical modelling of sperm motility is 
considered by Stokes equation: 

  (
  

  
     )                           (5) 

           

where, p is the pressure, including the gravitational 
potential. µ is kinematic viscosity and f is the force density.  v 
is the velocity vector field in the domain Ω. For a micro 
swimmer such as a sperm, Re is approximately 0.01. That 
means Stokes equation a linearised form of the Navier–Stokes 
equations in the limit of small Reynolds number, and the 
inertial terms in the NS equation can be omitted to obtain the 
simpler Stokes equation:  

                                       (6) 

            

The velocity solution corresponding to this fundamental 
singularity is given by: 
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where the    (   ) is known as the Stokeslet, or Oseen-

Burgers tensor, δ is Dirac delta distribution centered at ζ. The 
flow is due to a force Fj concentrated at the point ζ, and 
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The position is updated as follow: 
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Non-linear spatial chemoattractant concentration gradient 
field is as follow: 

  ( )    ( )    (‖ 
    ( )‖)

             (9) 

 where, c(t) is the concentration, x(t) is the position, c1 and 
b are the proportion coefficient and the power of the major 
term position, respectively. c0 represent the remaining terms. 
   is the current best solution found among all solutions at the 
current generation/iteration. 

The basic steps of the SMA can be summarised as the 
pseudo code shown below: 

 

 

 

https://en.wikipedia.org/wiki/Deterministic_algorithm
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
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Algorithm 1: The original Sperm Motility Algorithm 

Begin 

Define objective function  ( )   (          )
  

initialise N sperm population size 

generate initial position x0 and velocity v0 and initial concentration c0   of N 

sperm of N sperm 
define all SMA parameters (c0, β, μ…etc.). 

while (t< Maximum Generation) or (stopping criterion); 

       for i=1: N do 
               calculate velocity vi  from data at t = ti; equation (7); 

               update position xi  for sperm i  from equation (8);   

               evaluate each sperm individual according to its position. 
              if new solution is better, update it in the population; 

               calculate ci from equation (9). 

              if          then neglect [Abandon a fraction (Pa) of worse sperm]; 
           Check constraints satisfactions. 

       end for 
Sort the population/sperm from best to worst and find the current best. 

end while 

Post-processing the results and visualization. 

End 

The constraints are handled using the same rules in [1]. 

V. PROPOSED PROCEDURES FOR FPPU 

In this section, we suggest two procedures to solve FPPU. 
The suggested procedures can be summarised as follows: 

Procedure I: Sperm Motility Algorithm for FFPP based on 
the   Level Set: 

Step1: Start with initial level set  j 
 

randomly 

chosen from the interval [0, 1]. 

Step 2: Determine the points  1 2, ,a m a  corresponding to 

the coefficient numbers in the objective function and the 

constraints to elicit membership functions  j
j . 

Step 3: Determine the lower and upper bounds for all 
coefficient numbers at each α- level cut.  

Step 4: Choose certain values for all ,l uj j j    

corresponding to the α - level cut  0,1   . 

Step 5: Convert the given problem (1) into its non-fuzzy 
form (α-FPP) problem (4). 

Step6: Use SMA to solve problem (4). The obtained 
solution is a near optimal solution for the original FPPU 
model. 

Step 7: Set    step , 0,1 .       

Step 8: Go to step (1) with a new α until the interval [0,1] 
is fully exhausted. Then, stop. 

Procedure II: Sperm Motility Algorithm for PFPP based on 

Monte Carlo Method: 

Step 1: Define the objective function and the constraints. 

Step 2: Determine the vector interval for all uncertainty 
coefficient in the objective functions and/or the constraints. 

Step 3: Employ Monte Carlo method to generate random 
numbers from the uniform distribution. 

Step 4: Use SMA to solve the deterministic problem. 

Step 5: Termination checking. Repeat Steps 3 and 4 until 
definite termination conditions are met. 

VI. ILLUSTRATIVE EXAMPLES WITH DISCUSSION 

Benchmark examples were collected from literature to 
demonstrate the efficiency and robustness of the proposed 
algorithms in solving FPPU. The numerical results of the four 
used algorithms are compared among the two methods used 
for handling the uncertainty illustrated in Tables 1 to 6. The 
algorithms have been implemented by MATLAB R2011 on 
core (TM) i3 to 2.27 GHz processor. 
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Set [0,1]   with the following membership 

functions to convert the above fuzzy problem (FFPP) into its 
non-fuzzy version refer to problem (2). 

Let also the fuzzy parameters J  given by the following 

fuzzy numbers listed in the table below: 

α-level set         5     

1,2,3  [1, 3] [1.5, 2.5] 2 

1,3,5  [1, 5] [2, 4] 3 

3,4,5  [3, 4] [3.5, 4.5] 4 

Choose the certain values for all ,l uj j j    

corresponding to the α- level cut, α=α * = [0, 1]. Now, the 
fuzzy problem (FFPP) is converted to the non-fuzzy version (α 
−FPP) as in the following form: 
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After applying the SMA algorithm to solve problems 0

1f


, 

0.5

1f


, and 1

1f


,
 the obtained solution is the near optimal 

solution of the original FFPP. 
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TABLE I. COMPARISON RESULTS OF THE SMA, PSO, FA AND GA ON F1 BASED ON FUZZY Α - LEVEL CUT 
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TABLE II. SOLUTION RESULTS USING SMA, PSO, FA, AND GA ON F1 CHARACTERISED BY MONTE CARLO METHOD 
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z=0.13575 

0.295 

 

(4.9414, 2.999) 

z=0.135779 
0.3046 

 
Fig. 2. 2d plot for the convergence time of SMA, PSO, FA, and GA 

 
Fig. 3. 2d plot for the optimal value of SMA, PSO, FA, and GA
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Fig. 4. Convergence time comparison between α- cut level vs. Monte Carlo method 

 
Fig. 5. Comparison results obtained objective function f1 value based on α level cut and Monte Carlo method 

 
Fig. 6. α- cut level vs. MC solution result for the SMA, PSO, FA, and GA

B. Example 2 

2

2,5,8 1,3,5
: min

2,5,8 1,2,4 1,1.5,2

0,0.5,1 1,2,3 ;

0,0.5,1 1,3,5 ;

x y
f z

x y

subject to x

x




 

 

 
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TABLE III. COMPARISON RESULTS OF THE SMA, PSO, FA, AND GA ON F2 BASED ON FUZZY    - LEVEL CUT 

Fun. / 
Tec. 

N
u

m
. 

o
f 

It
er

at
io

n
 

 

PSO FA SMA GA 

Optimal value 

T
im

e 

(S
ec

.)
 

Optimal value 

T
im

e 

(S
ec

.)
 

Optimal value 

T
im

e 

(S
ec

.)
 

Optimal value 

T
im

e 

(S
ec

.)
 

    
30 

 
40 

 
50 

 
60 

(0,0) 
  z=0 
(0,0)  
  z=0 
(0,0)  
  z=0 
(0,0)   
 z=0 

2.036 
 

2.697 
 

3.321 
 

3.91 

(0,0) 
z=0 

(0,0) 
z=0 

(0,0) 
z=0 

(0,0) 
z=0 

0.321 
 

0.44 
 

0.492 
 

0.556 

(0,0) 
  z=0 
(0,0)  
  z=0 
(0,0)  
  z=0 
(0,0)   
 z=0 

0.052 
 

0.091 
 

0.116 
 

0.126 

(0,0) 
   z=0 

(0.0002,0)   
z=0.00005 

(0,0)   
 z=0 
(0,0)  
  z=0 

0.33 
 

0.34 
 

0.39 
 

0.49 

    5 
30 

 
40 

 
50 

 
60 

(0.25,0.25) 
z=0.55 

(0.25,0.25) 
z=0.55 

(0.25,0.25) 
z=0.55 

(0.25,0.25) 
z=0.55 

2.154 
 

2.885 
 

3.288 
 

4.259 

(0.25,0.25)  
z=0.55 

(0.25,0.25)  
z=0.55 

(0.25,0.25)  
z=0.55 

(0.25,0.25)  
z=0.55 

0.28 
 

0.33 
 

0.47 
 

0.62 

(0.25,0.25) 
z=0.55 

(0.25,0.25) 
z=0.55 

(0.25,0.25) 
z=0.55 

(0.25,0.25) 
z=0.55 

0.087 
 

0.089 
 

0.095 
 

0.113 

(0.25,0.25) 
z=0.55 

(0.25003,0.25) 
z=0.43 

(0.25,0.25) 
z=0.55 

(0.25003,0.2502)   
z=0.43 

0.283 
 

0.343 
 

0.349 
 

0.386 

    
30 

 
40 

 
50 

 
60 

(0.5,0.5)  
  z=0.8 

(0.5,0.5)   
 z=0.8 

(0.5,0.5)   
 z=0.8 

(0.5,0.5)  
  z=0.8 

1.96 
 

2.53 
 

3.32 
 

3.9 

(0.5,0.5)  
  z=0.8 

(0.5,0.5)   
 z=0.8 

(0.5,0.5)   
 z=0.8 

(0.5,0.5)  
  z=0.8 

0.264 
 

0.343 
 

0.498 
 

0.549 

(0.5,0.5)  
  z=0.8 

(0.5,0.5)   
 z=0.8 

(0.5,0.5)   
 z=0.8 

(0.5,0.5)  
  z=0.8 

0.06 
 

0.11 
 

0.15 
 

0.19 

(0.5,0.5) 
z=0.8 

(0.5005,0.5)  
z=0.8001 
(0.5,0.5) 

z=0.8 
(0.5,0.5) 

z=0.8 

0.285 
 

0.29 
 

0.32 
 

0.35 

TABLE IV. SOLUTION RESULTS USING SMA, PSO, FA, AND GA ON F2 CHARACTERISED BY MONTE CARLO METHOD 

 PSO FA SMA GA 

 Optimal value 
Time 
(Sec.) 

Optimal value 
Time 
(Sec.) 

Optimal value 
Time 
(Sec.) 

Optimal value 
Time 
(Sec.) 

fmean 
(0. 496, 0. 472) 

z=0.70678 
6.533 

(0. 496, 0. 472) 
z=0.70678 

1.128 
(0. 496, 0. 472) 

z=0.70678 
0.25 

 
(0. 496, 0. 472) 

z=0.70678 
0.2979 

fmin 
(0.008, 0.0017) 
z=0.0191036 

7.55 
(0.008, 0.0017) 
z=0.0191036 

1.02 
 

(0.008, 0.0017) 
z=0.0191036 

0.252 
 

(0.008, 0.0017) 
z=0.0191036 

0.3233 

fmax 
(0.985, 0.998) 

z=0.92125 
6.77 

(0.985, 0.998) 
z=0.92125 

0.98 
 

(0.985, 0.998) 
z=0.92125 

0.27 
 

(0.985, 0.998) 
z=0.92125 

0.294 

C. Example 3 

 
 

2 2

3 2 2

0,1,2 sin 1,3,5
: min

1,2,3 log

1,2,3 , 4,5,6 ;

x y
f z

x y

subject to x y

 




 

 

TABLE V. 
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TABLE VI. SOLUTION RESULTS USING SMA, PSO, FA, AND GA ON F3 CHARACTERISED BY MONTE CARLO METHOD 

 PSO FA SMA GA 

 Optimal value  
Time  
(Sec.) 

Optimal value  
Time  
(Sec.) 

Optimal value  
Time  
(Sec.) 

Optimal value  
Time  
(Sec.) 

fmean 
(4.83, 4.9799)  
  z=0. 2587 

15.1 
(3.999, 4.885) 
z=0.2713 

0.985 
(4.84, 4.9799) 
z=0.25984 

0.325 
 

(4.777, 494) 
z=0.2595 

0.29 
 

fmin 
(3.988, 4.045) 
 z=0.3207 

5.7 
(3.99, 4.045) 
z=0.321 

1.14 
 

(3.997, 4.045) 
z=0.321 

0.314 
 

(3.995, 4.044) 
z= 0.3206 

0.287 

fmax 
(5.9977, 5. 6) 
z=0.2377 

25.2 
(3.999, 5. 49) 
z=0.259 

0.95 
 

(5.84, 5.99) 
z=0.2338 

0.253 
 

(5.59, 5.735) 
z=0.238811 

0.295 

TABLE VII. COMPARISON RESULTS OF THE SMA, PSO, FA, AND GA ON F3 BASED ON FUZZY Α - LEVEL CUT 

Fun. / 

Tec. 

N
u

m
. 

o
f 

It
er

at
io

n
 

 

PSO FA SMA GA 

Optimal value 

T
im

e 
 

(S
ec

.)
 

Optimal value  

T
im

e 
 

(S
ec

.)
 

Optimal value 

T
im

e 
 

(S
ec

.)
 

Optimal value 

T
im

e 
 

(S
ec

.)
 

    
30 

 

40 

 

50 

 

60 

(4,4)   

 z=0.288539 

(4,4)   

 z=0.288539 

(4,4)   

 z=0.288539 

(4,4)   

 z=0.288539 

1.65 

 

2.41 

 

2.73 

 

3.99 

(4,4) 

   z=0.288539 

(4,4)  

  z=0.288539 

(4,4)  

  z=0.288539 

(4,4)  

  z=0.288539 

0.224 

 

0.311 

 

0.448 

 

0.489 

(4,4)   

z=0.288539 

(4,4)   

z=0.288539 

(4,4)   

z=0.288539 

(4,4)   

z=0.288539 

0.076 

 

0.089 

 

0.11 

 

0.136 

(3.999,3.996)   

z=0.2886 

(3.999,3.999)   

z=0.2885 

(3.999,3.999)   

z=0.28854 

(3.999,3.996)   

z=0.2885 

0.247 

 

0.3 

 

0.31 

 

0.44 

 
   5 30 

 

40 

 

50 

 

60 

(4.3133,4.46)   

z=0.2757 

(4.5,3.05)   

z=0.2956 

(4.32,4.5)   

z=0.27323 

(3.51,4.48)   

z=0.288 

4.17 

 

5.71 

 

6.81 

 

8.11 

(3.32,4.34)   

z=0.294 

(3.8,4.2)   

z=0.2921 

(3.98,4.2)   

z=0.285 

(3.5,4.5)  

  z=0. 2245 

0.284 

 

0.32 

 

0.41 

 

0.496 

(4.26,4.47)   

z=0.2781 

(4.32,4.5)   

z=0.273127 

(4.32,4.5)   

z=0.273076 

(4.325,4.5)   

z=0.27307 

0.078 

 

0.09 

 

0.1 

 

0.122 

(4.29,4.47)   

z=0.274 

(4.32,4.49)   

z=0.27317 

(3.5,4.497)   

z=0.287 

(4.3248,4.499)   

z=0.273075 

0.2795 

 

0.29 

 

0.3776 

 

0.51 

    
30 

 

40 

 

50 

 

60 

(4.2,5)   

 z=0.2685 

(4.5,4.7)   

z=0.26662 

(4.8,5)  

  z=0.258 

(4.8,4.9)   

z=0.259 

6.09 

 

8.36 

 

10.7 

 

12.9 

(3.45,4.44)   

z=0.2896 

(3.8,4.7)   

z=0.2762 

(3.66,4.61)   

z=0.2821 

(3.3,5)   

z=0.27933 

0.234 

 

0.316 

 

0.415 

 

0.538 

(4.84,5)   

z=0.257729 

(4.84,5)   

z=0.257729 

(4.84,5)   

z=0.257729 

(4.84,5)   

z=0.257729 

0.07 

 

0.08 

 

0.122 

 

0.13 

(4.84,.999)   

z=0.257718 

(4.8,4.966)   

z=0.25866 

(4.93,4.43)   

z=0.26445 

(4.954,4.43)   

z=0.264 

0.282 

 

0.318 

 

0.33 

 

0.35 

From the solution results of the three selected benchmark 
examples, some observation could be noticed. The comparison 
is carried among these possible solution strategies using four 
algorithms along with two uncertainty characterizing 
methods. Figure 2 shows the advantages of the SMA 
algorithm among the rest three algorithm, where PSO come 
last convergence time. The comparison was held using the 
same uncertainty characterizing methods. Figure 3 shows the 
advantages of the SMA algorithm among the rest three 
algorithm, it found that as the alpha-cut value increases, the 
optimal value is improving. The comparison was held using 
the same uncertainty characterizing methods. Figure 4 is a 
comparison based on the same solution algorithm but this time 
using two uncertainty characterizing methods which shows a 

superiority for the α-level cut fuzzy logic over the Monte 
Carlo method with respect to computational time. Figure 5  
shows the solution results using fuzzy logic where all the four 
used algorithms gave almost the same near optimal solution 
expected at     . Figure 6 show a slight difference in the 
objective function value using α-cut vs.  Monte Carlo method. 

VII. CONCLUSIONS 

Sperm motility algorithm was used to solve Fractional 
Programming Problems under uncertainty (FPPU) and 
comparing with three algorithms (GA, FA, and PSO) managed 
to converge to a near optimal solution. Two different methods 
were used to characterise the uncertainty in the coefficients of 
the objective function and/or the constraints. The two used 
methods (fuzzy α level cut and Monte Carlo method) were 
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used alternatively along with the four metaheuristic algorithms 
generating eight different solution strategies. 

 A set of comparison was carried out among these different 
solution strategies respecting the solution of three benchmark 
examples. The comparative study among the solutions gave a 
clear indication for the superiority of SMA in converge time. 
Then comes GA, FA and PSO, respectively as indicated from 
the results. The SMA algorithm is firstly ranked again in terms 
of the obtained near optimal solution. However, a slight 
difference in the optimal solution could be noticed especially 
in non-linear functions. The α- level cut fuzzy number based 
method obtained a better optimised solution result with a 
notable saving in computational time. 
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