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Abstract—The paper aims to identify and control the coupled
mass-spring-damper system. A nonlinear discrete polynomial
structure is elaborated. Its parameters are estimated using
Recursive Least Squares (RLS) algorithm. Moreover, a feedback
stabilizing control law based on Kronecker power is designed.
Finally, simulations are presented to illustrate the effectiveness
of the proposed structure.
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I. INTRODUCTION

System identification is an important tool which can be
used to improve control performance [1] [2]. It is the process of
developing a mathematical representation of a physical system
based on observed data with sufficient accuracy.

Identification of complex systems has stilled a major prob-
lem in automatic control because there is no general method
for studying high order processes. Indeed, it has received
considerable attention and several types of models have been
proposed during the last decades [3] [4] [5] [6] [7]. Such
as Volterra model [8] [9], Wiener model [10], Hammerstein
model [11], Nonlinear AutoregRessive with eXogenous in-
put (NARX) model [12], Nonlinear AutoregRessive Moving
Average with eXogenous input (NARMAX) model [13] [14],
etc. However the elaboration of a suitable feedback stabilizing
control using the proposed models remain difficult.

Nonlinear discrete polynomial structure is general enough
to describe many physical systems [15] [16]. It presents the
advantage to permit the use of the kronecker product and power
of matrices and vectors, which allows important algebraic
manipulations [17]. Moreover, it allowed to design a feedback
stabilizing control law [18].

In this work, a suitable nonlinear discrete polynomial struc-
ture was elaborated. Recursive Least Square (RLS) algorithm
is used for parameters estimation. The polynomial model
allowed to design an efficient feedback stabilizing control law.
A CMSD system illustrated the proposed nonlinear parametric
estimation and structures.

This paper is organized as First, the nonlinear identification
procedure is defined. Second, the feedback stabilizing control
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is presented. Third, the proposed identification method is
applied to CMSD system and finally a conclusion is made.

II. SYSTEM IDENTIFICATION

In automatic control applications, a compact and accurate
description of the dynamic behavior of the system under
consideration is needed. Nonlinear models can be constructed
from theoretical modeling on the basis of a priori knowledge
on the nature of the systems. However, these white-box models
are very complex and difficult to derive because they require
detailed specialist knowledge which is practically or totally
unavailable in practical situation [19].

An alternative way of building models is by system iden-
tification. It is the process of improving a mathematical repre-
sentation of a physical systems based on observed input/output
data with sufficient accuracy which can be used to improve
control performance and achieve robust fault tolerant behavior.

The identification procedure is summarized as follows:

e  collection of the inputs and outputs measurements,
e selection of the model,

e choice of the identification algorithm in order to
estimate the parameters that describe the model,

e  validity of the obtained model is evaluated.

There are several types of models that describe complex
systems. Nonlinear discrete polynomial structures is one of
the most performers models. Hence, it can approach with
satisfactory accuracy any analytical nonlinear system and
thus ensure the mathematical description of a wide range of
physical process [18] [20] [15]. Moreover, the description of
polynomial systems can be simplified using the Kronecker
product and power vectors and matrices.

A. Nonlinear discrete polynomial structures

We consider in this paper the discrete nonlinear polynomial
systems described by a state equation of the following form
[16]:

Xpp1 = F (X)) + G(Xi) Uy (D
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where F'(Xj) and G (X)) are a polynomials vectors
functions. They are given by [15]:

F(Xp) =Y A X)) )
i>1
G(Xp) = 3 Bi (In @ X)) 3)
i>0

with Xg = (21,5, Toks.-s Znp)” € BR™ X7 is the
Kronecker power of the vector X}, defined as:

x% =1
X =x"" e X=X 0 X[V @)
fori >1

where ® designates the symbol of the Kronecker product,
A; and B; are respectively (n x n') and (n x mn’)
matrices. I, is the identity matrix of order m. We assume
that the pair ( A1, By) is completely controllable.

Parametric estimation using recursive algorithms is one of
the most important areas in system and signal processing. The
RLS algorithm is one of the most popular ones and widely
used for the parameter estimation because of his capability
to approximate a large class of systems and his simplicity of
implementation [21].

B. RLS algorithm

RLS algorithm allows to estimate the model parameters by
minimizing a measure of the model prediction error given by
[22]:

€k =Yk — Uk )

where ¢ is the prediction of the scalar measured output
Y- It is given by:

gr =04 Y (6)

ék is the vector of estimated parameters and 1)y is the
regression vector containing old inputs and outputs of the
system to be identified.

The RLS algorithm can be written in following form:

0r =0k 14 Pribren

_ Py 1¢uf Peoa
Pr= Py = 5T pe, (N

Ex =Yk — Uk

with Py, is the gain matrix. It is given by:

k —1
Pk:<z¢i1/}zr) ®)

1=n+1
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C. Performance indicators

The performance of the models is assessed using the Mean
Square Error (MSE) and the Variance-Accounted-For (VAF)
indicators [12]:

N
1 2
MSE = = > (ys,x = ys) ©)
k=1
VAF = max {1— ‘M’“_y’“),o} % 100 (10)
var (ys,k)

where ys , and yj are respectively the system and the
model output, N present the number of iterations and var (.)
denotes the variance of a signal.

III. NONLINEAR FEEDBACK STABILIZING CONTROL

In this section, we propose to determine a stabilizing
control law of the system in the following form [18]:

U = H (Xy) (11

where H ( X},) is an analytical vectorial function from R"
into R™ .

It is expressed by generalized Taylor series:

H(Xp) =- > KX} (12)
j=1
where K;, j = 1, ..., r are (m X nl) matrices. Thus,

the controlled system equation can be written as [18]:

Xepr = 3 A X7
i>1
-5 ¥ Bi (In e x}!) K X7
i>0 >0

13)

Our objective is to determine the control function so
that the stability of the null equilibrium (X3 = 0) of the
system. The best solution of such a problem consists in the
determination of the matrices K;, j € N. The matrix K;
is obtained using the Discrete Linear Quadratic Regulator
(DLQR) state feedback design.

DLQR is one of the optimal control techniques. It takes
into account the states of the dynamical system and control
input to make the optimal control decisions. This is simple as
well as robust [23] [24]. The discrete state equation is given
by:

X1 = A1 Xy + BoUy (14)

then, the state feedback control U}, is defined as:
U = — K1 Xy (15)

which leads to:
Xpt1=(A1— Bo K1) Xy, (16)

K 1 is derived from minimization of the cost function:

J(Xy) = % Y (xlex; + U'RrRU;)) (7
i=k

oo
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where () and R are positive semi-definite and positive
definite symmetric constant matrices, respectively. The DLQR
gain vector K ; is given by:

Ki=(R+ BTPBy) 'BTPA, (18)

where P is a positive definite symmetric constant matrix
obtained from the solution of matrix Algebraic Riccati Equa-

tion (ARE):
ATPA, —P+Q (19)
—~ATPBy (R + BIPBy) 'BIPA, =0

However, the matrices K ;, forj > 2, are given by the
following relation [18]:

j—1
Kj Z—BJ (A]—f— ZBI(KI*Z@ In’)) (20)

i=1

where B designates the Moore-Penrose pseudo-inverse
of the matrix By.

IV. ILLUSTRATIVE EXAMPLE: COUPLED
MASS-SPRING-DAMPER SYSTEM

A. CMSD system description

The CMSD system, shown in Figure 1, is composed of
two nonlinear springs, two weights and two dampers. Since
the upper mass my is attached to both springs, there are two
nonlinear springs restoring forces acting upon it: an upward
force f,1 exerted by the elongation, or compression, x; of
the first spring; an upward force f.o from the second spring
resistance to being elongated, or compressed, by the amount

(29 — 7).
O, ‘ \/: k1
|

\

1 <
|
x, v o 1
&, < K
x; $ i

Fig. 1 — Mechanical model of the CMSD system

The second mass mgo only feels the nonlinear restoring
force from the elongation, or compression, of the second
spring. Allowing the system to come and to rest in equilibrium,
we measure the displacement of the center of mass of each
weight from equilibrium, as a function of time, and denote
these measurement by x; and x5 respectively. System param-
eters are presented in Table 1 [25].
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TABLE I — Parameter Description of CMSD System

Parameter Description Value

k(N/m) spring constant ki=2,ka=1
z(m) displacement Ty, T2

m(Kg) mass of the weight my =1, mp =2
5(Ns/m) || damping coefficient | &1 = ﬁ, 52 = %l
“w nonlinear coefficient | p1 = 5, p2 = 35

1) Mathematical model: The continuous nonlinear equa-
tions of the CMSD system are given by:

mid; = —6141 — k13$1 + i — ko (z1 — 12)
+ /’(‘2(1"1 - ‘/'52) + u1 (21)
Mo &g = —02d9 — ko (T2 — 21)

+ pi2 (22 — 331)3 + ug

2) Proposed identification and feedback stabilizing control
using polynomial structures: The proposed nonlinear discrete
polynomial structure that describes perfectly our system is as
follow, the sampling time T, = 0.01 s and the initial conditions
of the state variables
Xp(0) = (07 0 01 0)°, with z1 displacement of
the first mass, €2 5 velocity of the first mass, z2 j, displace-
ment of the second mass and (23 j, velocity of the second mass:

)T

Xk+1:A1Xk+A2 X][€2]+ (Bo+Ble) U Q2

with:
T1,k
Qq Uik
Xk - ’ ) Uk) - ’ )
T2k U2,k
Qa1
ail a2 Qi3 Giq
@21 G22 A23 Q24
A = )
asz1 agz G33 a34
aq1 Q42 Q43 Q44
15 A25 A35 (45
a16 26 436 G446 PO 30
11 V12
. a7 27 A37 47 pO. 10
Ay = 18 A28 A38 (48 ,Bo = gt #
b3y b3y
O4><4 bo bO
aigazg 0 ag 41 P42
07x4
1 1 1 1 2 2 2 2
ad Bi= | 72 P 32
bii bix byz by biy bip biz biy

The performance of the proposed polynomial structure is
assessed using the MSE and the VAF indicators, is presented
in Table 2.
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TABLE II — Performance Indicators

MGSE VAF %
Z1 K 1.583310° 99.8068
Q1 || 5.92691072 | 99.9999
Tok 1.1949107° 93.7454
Qo ke 1.73741071° | 99.9608

To stabilize the CMSD system, we consider the following

nonlinear control law:

Up= — K1 X} — Ky X7
with:
K= (8.2253 10.2009  0.7640
L=\ 09997 0.1870 8.1414
—0.2407  0.0139
—0.1001  0.0322
0.1504  —0.0529
0.0119  —0.0044
—0.1708 —0.0004
—0.0791  0.0034
0.0645 0
. 0 0
and Ky =1 50003  0.0106
—0.0059  0.1479
0.0048  0.0004
0 0
0.0014 —0.0190
0.0007  0.1685
—0.0005  0.0005
0 0

(23)

—0.0844
9.2730

3) Simulation results: For parameters estimation of CMSD
system, we choose the causal signals w1, = % sin(k 7 T,) and
Ug | = Lsin(k 7 T,), as inputs of the CMSD system.

5

The responses of real and estimated state variables x j
and x3 1, as well as, the errors are presented from Figures 2

and 3, respectively.
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Fig. 2 — Displacement of the first mass x1  in the open-loop
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Fig. 3 — Displacement of the second mass x5 j, in the open-loop

Figure 4 shows the control signals u;j; and wug . The
responses of the state variables x; , and z3j of the CMSD
system using nonlinear feedback stabilizing control technique,
equation 23, are depicted in Figure 5.
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Fig. 4 — Control signals uq 5 and ug g
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modeling errors range of x; j and x2 j are from —0.05 to 0.5
and —0.001 to 0.005, respectively. As well as, the indicator
performance values given in Table 2, the elaborate model
applied to the CMSD system can achieve a sufficiently high
modeling accuracy.

The convergence of the nonlinear discrete polynomial
model parameters values obtained using the RLS algorithm is
presented, in Appendix A, Table 3. Indeed, Figure 4 shows that
by applying the proposed structure to design feedback gains
based on Kronecker power, suitable inputs can be produced
for CMSD system that make state variables track equilibrium
point rapidly, as given in Figure 5.

VI. CONCLUSION

A nonlinear discrete polynomial structure has been elabo-
rated. RLS algorithm has been used for the parameters estima-
tion. The polynomial structure allowed to design a feedback
stabilizing control law based on Kronecker power for complex
systems. The proposed structure has been applied successfully
to model and stabilize CMSD system.

Simulation results demonstrate that the identified model
has allowed to elaborate a feedback stabilizing control law,
which had provided a satisfactory performance in stabilizing
the CMSD system at the equilibrium points.

APPENDIX A

TABLE III — Polynomial Structure Parameters Values

Displacement (md

] Iterations k = 1000 k = 2500 k = 3000
a1k 0.8964 0.9889 0.9999
1 a2,k 0.0064 0.0094 0.0100
a1s .k 5.07111075 5.0647 105 5.0668 1075
! I I I a1s k 2.43751077 3.6931107 7 5.1578 1077
E i 5 a 4 ¥ ais,k 6.94191076 6.93711076 7.02471076
Ting-¢ a6,k 3.720710°7 6.91491077 1.0616 106
— a7,k —3.89431076 —3.917810~6 —4.1106107 6
1 I ais .k —4.47321077 —4.64201077 —4.92441077
a0,k —2.01271076 —1.951010"6 —1.883010~6
. az K —0.0116 —0.0128 —0.0136
as K 0.9858 0.9978 0.9988
E ass .k 0.0088 0.0096 0.0099
L . asa .k 5.37041075 9.23411075 1.3632107 4
ass, K 9.93171074 0.0010 0.0010
a6,k 1.351010~ 4 243171074 3.630010~ 4
0 asr k —9.25121074 —9.3906104 —9.815810~ 4
a2s .k —1.09111074 —1.124710"4 —1.188910"4
g T T T T aso .k —1.526510"4 —1.4477104 —1.333710"4
) 5 0 5 D 5 ( asi k 9.95341075 9.95331075 9.95351075
Tre-k asz,k 777581078 1.105010~7 1.285910°7
ass, k 0.9889 0.9987 0.9999
asa .k 0.005 0.008 0.01
Fig. 5 — Closed-loop displacements x1 j and x5 evolution ass, k —4.84521076  —4.842310°6  —4.827710° 6
ase,k —3.53501076  —3.43051076  —3.29501076
as7 k 5.49441076 5.49221076 5.5046 10~ 6
ass .k —7.2677107 —6.197410"7 —5.397510"7
aq1 k 0.0186 0.0190 0.0196
V. DISCUSSION a4k 5.71041075 5.6609 10~ 5 5.56271075
. . . a4s .k —0.0184 —0.0191 —0.0194
The main concern of th@: paper was to determine suitable a:; :k 0.9948 0.9954 0.9958
nonlinear discrete polynomial structure of complex systems, @45k —3.09691074  —3.326910"4  —3.326910™ 4
which allowed to design a feedback stabilizing control law. ase,k  —2.25531074  —2.48611074 —2.83411074
asr K 0.0008 0.0010 0.0011
As can be seen from Figures 2 and 3, the identified ass & 9.8465107 4 1.0059 1075 8.902010°5
outputs tracks the behavior of the real ones perfectly. The @49,k —5.66271074 —5.58981074 —5.392810 4
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Tterations  k = 1000 k = 2500 k = 3000

b 4.97191075 4.97511075 4.97961075

b9 & —1.914510"7 —1.729610"7 —1.48591077

b9, & 0.005 0.008 0.01

b9y & 3.2638 107 4 3.2440107 4 3.2376 10 4

b3 & 7.34501078 4.67621078 2.28801078

b3 & 1.0049 1074 1.0046 10~ 4 1.0042107 4

b3 & —2.20691075 —2.90231075 —3.51361075

b9 0.0190 0.0194 0.0198

bT1 & 1.40011076 1.23921076 1.15191076

bis & 6.31451076 6.41881076 6.57001076

bis n 4.20771077 3.05411077 3.0630107 7

b3y & 1.8451107 4 1.68021074 1.6751107 4

by & 9.2558 1075 8.01391075 772781075

bis n —8.01911075 —6.89811075 —6.33391075

bl 1076 21076 21076

bis k 31077 41077 51077

bii .k 3.81074 4.21074 4.41074

bio & 6.41075 7.21075 8.21075

b3 & —6.171076 —5.631076 —5.641076

b2, —6.171076 —5.631076 —5.471076

b2 5.091078 1.421077 1.441077

b3 & ~11073 —1.181073 -1.31073

b3y -21074 -31074 -41074

b2 & 1.541075 1.861075 1.821075

b3, 4 3.821076 4.31076 4.451076

b3s & 6.861077 8.46 1077 11076

b3 & 61074 7.51074 91074

b2, 0.51074 1.51074 21074
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