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Abstract—The string matching problem is considered as one of 

the most interesting research areas in the computer science field 

because it can be applied in many essential different applications 

such as intrusion detection, search analysis, editors, internet 

search engines, information retrieval and computational biology. 

During the matching process two main factors are used to 

evaluate the performance of the string matching algorithm which 

are the total number of character comparisons and the total 

number of attempts. This study aims to produce an efficient 

hybrid exact string matching algorithm called Sinan Sameer 

Tuned Boyer Moore-Quick Skip Search (SSTBMQS) algorithm 

by blending the best features that were extracted from the two 

selected original algorithms which are Tuned Boyer-Moore and 

Quick-Skip Search. The SSTBMQS hybrid algorithm was tested 

on different benchmark datasets with different size and different 

pattern lengths. The sequential version of the proposed hybrid 

algorithm produces better results when compared with its original 

algorithms (TBM and Quick-Skip Search) and when compared 

with Maximum-Shift hybrid algorithm which is considered as one 

of the most recent hybrid algorithm. The proposed hybrid 

algorithm has less number of attempts and less number of 

character comparisons. 
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I. INTRODUCTION 

String matching, which involves locating all occurrences of 
a particular pattern in a large text, is considered one of the 
primary problems in computer science. Basically, the string 
matching algorithm accepts two inputs, namely, a short string 
called a pattern and a long string called a text. The pattern 
string is usually compared with the text string to determine if 
the former is a substring of the latter [1], [2]. Although many 
algorithms and strategies have been developed to solve this 
problem, scientists still attempt to develop far more efficient 
methods. String matching algorithms are extensively employed 
in different computer applications, such as information 
retrieval, DNA sequence, Web search engines, and artificial 
intelligence [3]. 

In the last two decades, string matching algorithms have 
elicited considerable attention, particularly when applied in 
various computer applications, such as text processing, DNA 
analysis, antivirus software, and anti-spam software. Such 
amount of attention may be attributed to the rapid growth of 
technology [4]. Current improvements in existing technologies 
pose numerous challenges to string matching algorithms [5]. 
String matching algorithms are of two types: exact and 
approximate string matching [4]. This research focuses on on-
line exact string matching algorithms. 

String matching algorithms are the basic components of 
existing applications, such as text processing, intrusion 
detection, search analysis, information retrieval, and 
computational biology [6]. All these applications involve a 
large amount of data because of the advancement in 
technology; moreover, all these applications involve different 
types of alphabets. Therefore, researchers continue to reiterate 
the need for significant string matching algorithms that can 
address different types of alphabets and large amounts of data 
[7]. 

Hybrid string matching approach was introduced to 
overcome the limitation of existing exact string matching 
algorithms. The former involves merging two or more 
algorithms. The Quick-Skip Search hybrid algorithm and 
Tuned Boyer-Moore algorithm are suitable for identifying all 
appearances of a pattern in a large text. However, both 
algorithms have limitations. The Quick-Skip Search hybrid 
algorithm consists of Skip Search and Quick Search 
algorithms. The latter exhibits good efficiency when large 
alphabets with a small pattern are utilized in the comparison 
operation, whereas the former exhibits good performance when 
small alphabets and a long pattern are employed [8]. 

However, the Skip Search algorithm consumes much time 
when a short DNA pattern and protein database are employed 
[7]. By contrast, the Tuned Boyer-Moore algorithm consumes 
much time when a long pattern of DNA alphabet is employed 
[7]. This algorithm has two disadvantages. First, it does not 
examine m−text characters to specify a starting search point as 
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the first step. Second, in the case of mismatch or entire pattern 
match, the shifting distance depends on a fixed shift value 
obtained in the preprocessing phase; this fixed shift value does 
not change until the text window reaches the end of the text. 
One of the advantages of this algorithm is that it checks the 
rightmost character in the text window as the first step before 
character comparison is implemented. 

By contrast, the quick-skip search algorithm does not check 
the rightmost character in the text window as the first step 
before character comparison is implemented. The advantage of 
this algorithm is that it examines m − text characters to specify 
a starting search point as the first step; in the case of mismatch 
or entire pattern match, the shifting distance value depends on 
the Skip Search bucket and Quick Search bad character table. 
The larger shift value is adopted. 

Owing to the contradictory behavior of the two algorithms, 
the important issue for this research is “how to harness the 
significant advantages of the positive features of the two 
algorithms, overcome their performance weaknesses, and solve 
the string matching problem effectively during sequential and 
parallel stages for any alphabet type and any pattern length?” 

The remaining of the paper is structured as: Section 2 
presents the look at of several hybrid algorithms. Section 3 the 
design principle of the proposed hybrid algorithm is discussed 
in detail. Moreover, an example is outlined in Section 4 to trace 
the hybrid algorithm. Section 5 discusses the experimental 
results of the hybrid algorithm when compared with its original 
algorithms and when compared with Maximum-Shift hybrid 
algorithm. In Section 6 summarizes the conclusion and 
suggests a future work that can be performed to improve the 
hybrid algorithm. 

II. PREVIOUS WORKS 

Numerous studies on the string matching problem have 
been conducted continuously over the years to develop new 
efficient algorithms. These efficient algorithms are expected to 
reduce the work performed in each attempt, increase the 
amount of shift, and reduce the number of character 
comparisons during each attempt. Algorithms that acquire the 
positive properties and exclude the negative properties of 
original algorithms are called hybrid algorithms. The next 
subsections discuss some of these hybrid string matching 
algorithms. 

SSABS algorithm [9] explained the advantage of 
combining two well-known exact string matching algorithms, 
namely, Quick Search and Raita. The new hybrid string 
matching algorithm exploits the fact that the dependency 
between neighboring characters is stronger than that between 
other characters. Therefore, putting off the comparisons of the 
neighboring characters would be better, which forms the 
fundamental idea of the new proposed algorithm. During the 
searching phase, which is similar to the Raita algorithm’s 
searching phase, the rightmost character in the pattern is 
compared with the corresponding character in the text to 
determine if they match. The leftmost character in the pattern is 
then compared with the matched position character in the text. 
If they match, then the remaining characters are compared 
from right to left until a match or mismatch is observed in all 

m−2 characters. The shifting value to the sliding window after 
complete match or mismatch is determined based on the Quick 
Search bad character table. 

Berry Ravindran-Fast Search (BRFS) algorithm, Yong [10] 
presented a new hybrid algorithm called BRFS by combining 
BR and Fast Search (FS) algorithms. Similar to most exact 
string matching algorithms, BRFS consists of preprocessing 
and searching phases. The preprocessing phase is constructed 
by computing the maximum shift value from BM good suffix 
shift (bmGs) and BR bad character (brBc) table. The searching 
phase depends on the searching method of the Fast Search 
algorithm, which performs comparison from right to left. After 
a complete match or mismatch, the sliding window shifts to the 
right side depending on the shift value provided by the 
preprocessing phase. The BRFS algorithm exhibits good 
performance in cases that involve small alphabets and long 
patterns. Hence, this algorithm is appropriate for use in 
applications related to biological sequence search. 

Berry Ravindran-Skip Search (BRSS) Algorithm Berry 
Ravindran-Skip Search (BRSS) algorithm [11] is a 
combination of Berry Ravindran and Skip Search (SS) 
algorithms. The preprocessing phase consists of building the 
bucket list for the SS algorithm and the (brBc) table. The 
process to calculate the shift value in the preprocessing phase 
aims to have highest shift value to shift pattern throughout the 
searching phase. The combination of the two algorithms 
improves the other’s weaknesses. The BR algorithm provides 
optimum shift values through the use of two successive 
characters positioned after the rightmost character of the text 
window. However, the BR algorithm does not examine m-text 
characters to specify a starting search point as a first step. By 
contrast, the SS algorithm begins by examining m-text 
characters during the searching phase to assign the starting 
search point in the text characters prior to the matching 
process. The drawback of the SS algorithm comes from using 
all the locations of the examining character in the bucket list 
table in case of a match or mismatch. The BRSS hybrid 
algorithm shows the benefit of combining the two algorithms 
by reducing the total work performed in each attempt and the 
overall computational time. 

Quick-Skip Search Hybrid Algorithm [12] developed 
another hybrid algorithm based on the Quick Search (QS) 
algorithm. The combination of Quick Search and Skip Search 
algorithms allows each algorithm to complement the other. The 
resultant algorithm is called Quick-Skip Search hybrid 
algorithm. Similar to the two original algorithms, the 
effectiveness of the resultant hybrid algorithm can be found in 
the preprocessing and searching phases. The preprocessing 
phase of the Quick-Skip Search hybrid algorithm consists of 
building two shifting value tables, namely, the bad character 
table for the Quick Search algorithm and the bucket list for the 
Skip Search algorithm. The searching phase of the hybrid 
algorithm depends on the original algorithms searching phase 
with some update related to matching operation (the searching 
process is performed in different orders). Throughout the 
searching phase, the decision on how much distance is required 
to shift the sliding window if a mismatch or a complete match 
is found between the pattern and text characters depends on 
selecting a large shift value from the Quick Search and Skip 
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Search shift values. The algorithm is effective for any alphabet 
type and pattern length. 

Quick Search, Zuh-Takaoka and Boyer Moore-Horspool 
(Maximum-Shift) Algorithm [13] proposed a hybrid string 
matching algorithm called Maximum-Shift hybrid algorithm. 
This new hybrid algorithm is a combination of three existing 
algorithms, namely, QS, ZT, and Horspool. The Maximum-
Shift hybrid algorithm consists of three phases: preprocessing, 
maximum shift, and searching phases. The pre-processing 
phase, which preprocesses the input pattern to be useful during 
the matching process, consists of building the shifting value 
tables of the QS bad character table and the (ztBc) table. 

The two inputs to the maximum shift phase are the QS and 
ZT shift values. The output from this phase is considered the 
maximum shift value between these two inputs to shift the 
pattern to a longer distance and subsequently reduce the 
number of attempts and the total number of character 
comparisons. The searching phase depends on QS and 
modified Horspool algorithms. The searching phase of the 
Maximum-Shift hybrid algorithm follows the searching phase 
orders of the QS algorithm with some updates related to the 
matching process. 

During the searching phase, the hybrid algorithm searches 
the text string from left to right and utilizes the idea of the 
Horspool algorithm with a slight modification by comparing 
the two rightmost characters of the pattern with the text 
window characters as an initial step before searching the 
remaining characters P[m −2] from left to right. The algorithm 
produces better results compared with the three original 
algorithms and also when compared with another two hybrid 
algorithms (BR and Smith) in terms of minimizing the number 
of attempts and character comparisons [13]. 

The author [14] in 2017 proposed a new hybrid algorithm 
its name ABSBMH, which is a result of combining the good 
features of the two well know algorithms the modified 
Horspool and SSABS hybrid algorithms, which are a single 
and hybrid algorithm respectively. In the preprocessing phase 
the ABSBMH hybrid algorithm generates the Quick Search 
bad character table (qsBc) as the SSABS algorithm do which is 
beneficial to calculate the shifting distance during the searching 
phase. In the searching phase the ABSBMH algorithm 
depending on the SSABS and modified Horspool searching 
phase algorithms, the ABSBMH algorithm inspects not only 
the rightmost character in the text window, but it checks the 
last two characters in the text window with its corresponding 
position in the pattern characters to inspect if it matches or 
mismatch, if it matches the algorithm start search the 
remaining characters from left to right. 

III. THE PROPOSED ALGORITHM 

The contribution of this research is discussed in this 
section, that is, a solution to the string matching problem that 
involves proposing a sequential hybrid algorithm that blends 
two existing algorithms to develop an efficient sequential 
hybrid algorithm. 

The proposed hybrid algorithm, SSTBMQS algorithm, is 
the key point of this study. This algorithm comprises two 
phases: the preprocessing and searching phases. In the 

preprocessing phase, the pattern characters are preprocessed to 
collect information to be used in the searching phase to 
decrease the number of characters compared and the number of 
attempts. The preprocessing and searching phases, which 
consist of seven steps for the proposed hybrid algorithm, are 
summarized in the next subsections, as shown in Fig. 1. 

 
Fig. 1. Flowchart for SSTBMQS hybrid algorithm overview. 

A. Preprocessing Phase 

To construct the preprocessing phase for SSTBMQS 
algorithm, the preprocessing phase for the Quick-Skip Search 
hybrid algorithm and the Tuned Boyer-Moore algorithm must 
be built first. The Quick-Skip Search hybrid algorithm 
preprocessing phase consists of building the QS bad character 
table and the SS bucket separately. The two preprocessing 
phases were not combined into one preprocessing phase 
because of the reverse behavior of the preprocessing phase for 
the QS and SS algorithms. Bad character table of QS stores all 
the rightmost indexes for each character in the pattern. The SS 
bucket contains all the leftmost indexes for each character in 
the pattern. Moreover, the bad character table for the Tuned 
Boyer-Moore algorithm consists of all the first rightmost 
appearances for each character in the pattern after scanning and 
indexing the pattern from right to left, starting with the 
rightmost character in the pattern, which always has the index 
0. As a result, the preprocessing phase of SSTBMQS algorithm 
builds the preprocessing phase from each original algorithm.  
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B. Searching Phase 

The searching phase of SSTBMQS algorithm depends on 
the technique used in the original algorithms, such as searching 
using different orders, with some development during the 
matching operation. During the matching operation, if a 
mismatch or an entire pattern string match occurs, the 
algorithm shifts the pattern according to the shift value from 
the original Quick-Skip Search hybrid algorithm. Basically, the 
searching phase of the hybrid algorithm follows these seven 
steps: 

Step 1: Similar to the original Quick-Skip Search hybrid 
algorithm, this stage starts by examining the m −text characters 
to specify a possible starting search point S. The starting search 
point has a    position in the text characters, where both j and 

the pattern length (m) have the same size. Initially, after 
selecting the    position in the text characters, At this point, the 

SSTBMQS algorithm starts performing the alignment 
operation between the text characters and the pattern characters 
in such a way that permits the alignment of the character at the 
   position with its corresponding location in the bucket list. 

Also, as an initial step the SSTBMQS algorithm computes the 
shift value of the Quick-Skip Search hybrid algorithm, which 
contains the shift value for the Skip Search phase and Quick 
Search phase, because the underlying structure of SSTBMQS 
algorithm has two searching phases (Skip Search and Quick 
Search). 

The SSTBMQS algorithm examines both shift values and 
uses the searching phase, which has the maximum shift value. 
When the alignment between the text characters and the pattern 
characters is performed, the character located at the    position 

does not appear in the pattern characters. Thus, the algorithm 
continually shifts the pattern characters to the following 
   position in the text character. This operation skips numerous 

unnecessary attempts, consequently minimizing the total 
number of character comparisons and avoiding the alignment 
of the leftmost character of the pattern with the leftmost 
character of the text at the beginning of the searching phase. 

Step 2: The SSTBMQS algorithm calculates the    value, 
where d is the difference between the   position and the 

   position.   is the position of the inspection character, where 

f is the location of the last character in the m−text characters. 
The    position is determined in the next step. The    value is 

calculated depending on two circumstances: 

1) If the character at position    occurs in the last position 

in the bucket,    is calculated from Equation (1) after being 

subtracted from the last character index, which is equal to the 

pattern length minus one (m − 1) from the last    position in the 

bucket. Then, the algorithm moves directly to Step 3. 
   = (m−1)−(The last    position in the bucket)                    (1) 

2) Whenever the character at position    is not at the last 

position in the bucket, the    value is calculated using 

Equation (2) after subtracting the last character index, which is 

equal to the pattern length minus one (m − 1) from the current 

   position of the bucket. 
   = (m−1) − (The current    position of the bucket)            (2) 

This process continues to execute until all positions of the 
character at    position in the bucket are processed. The 

algorithm moves to the Step 3. 

Step 3: This step comes after determining the    value in 
Step 2. In this step, the algorithm determines the location of  
  , where f is the location of the last character in the m−text 

characters, which is often called the inspection character. To 
determine the location of    , the SSTBMQS algorithm adds 

the    value to the current position of    in the text characters, 

as shown in Equation (3). 

  = (The current position of    in the text characters)+       (3) 

Step 4: The SSTBMQS algorithm verified whether a match 
is possible between the pattern and the text characters by 
checking the inspection character (which occurs at   in the 

text). If the value of this character after referring to the 
(bmBc[a]) table is equal to (0) (that is, the last character in the 
pattern matches its corresponding character at the    position in 

the text), where the value (0) in the (bmBc[a]) table is given 
only for the rightmost character in the pattern, The most 
significant property of the Tuned Boyer-Moore algorithm is the 
unique zero value given to the rightmost character in the 
pattern. Therefore, the value of the rightmost character in the 
(bmBc) table is always (0). The algorithm moves to Step 5. 
Otherwise, the algorithm goes to Step 6. By performing this 
process, the algorithm verifies whether a match is possible 
between the rightmost character in the pattern and its 
corresponding character at the    position in the text without 

opening the text window and without performing a comparison 
operation. The latter is considered the most costly portion of a 
string matching algorithm, that is, when the algorithm verifies 
whether the character in the pattern occurs in the text window 
[15]. This process will reduce the number of character 
comparisons, as well as the number of attempts. 

Step 5: This step is accomplished if the inspection 
character at    equals (0) from the (bmBc[a]) table. Thus, a 

match between the pattern and the text characters is possible. 
At this step, comparisons occur between the pattern and text 
characters by opening a text window that is equal to pattern 
length (m). The first comparison operation is performed from 
the leftmost character in the pattern to the corresponding 
character position in the text window to the right side. If a 
mismatch or a complete pattern match occurs, the SSTBMQS 
algorithm moves to the following step. 

Step 6: In this step, the SSTBMQS algorithm computes the 
shift values for both the SS and QS algorithms. SSTBMQS 
hybrid algorithm computes the SS shift value in different ways 
depending on two circumstances: 

1) When the SSTBMQS algorithm checks the character at 

the    position and determines that the character appears in the 

last location of the bucket, the SS value is computed using (4) 

after the first bucket location of the character that appears in 

the next    position is distinguished in the text characters. This 

position is considered the following start search point. 
SS_shift  =  m + current    position (from bucket)  –  the next 

   position                                                                           (4) 
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2) When the    position does not appear in the last location 

of the bucket, the SS shift value is computed by using a 

subtracting operation performed between the following 

location value from the current location value of this character 

in the bucket. 
SSTBMQS algorithm is used to compute the QS shift value 

depending on the character that follows the rightmost character 
of the text window. This character is used as an index that 
refers to the shift value stored in the QS bad character table, 
which represents the value of the rightmost occurrence of this 
character in the pattern. 

SSTBMQS algorithm has two searching phases (Skip 
Search and Quick Search). At this point, SSTBMQS algorithm 
computes the shift values of the Skip Search and Quick Search 
phases. SSTBMQS algorithm examines both shift values and 
uses the searching phase, which has the maximum shift value. 
In other words, if the SS shift value is larger than or equal to 
the QS shift value, SSTBMQS algorithm depends on the Skip 
Search phase and goes to Step 2, as shown in Fig. 2. 
Otherwise, if the QS shift value is larger, then the SSTBMQS 
algorithm goes to Step 7. 

 

Fig. 2. Flowchart for Skip Search Phase Role in the SSTBMQS algorithm. 

Step 7: This step is employed when SSTBMQS algorithm 
depends on the Quick Search phase. The Quick Search phase 
computes the    position depending on two circumstances. 

1) When the value of the character is positioned next to the 

rightmost character of the text window is lower than or 

equivalent to pattern length (m), the new    position computes 

the current    position in the text character to become 

equivalent to that positioned immediately next to the window, 

which is considered to be the new beginning search point. 

Then, the algorithm moves to Step 2, as presented in the 

following condition. 

If (QS_Shift > SS_Shift) & (QS_Shift ≤ m) 

Then 

New    Position = First Position after the Window 

2) When the Quick Search phase checks the shift value of 

the character that follows the rightmost character of the text 

window and it is larger than pattern length (m), the new 

   position is computed by summing the current    position in 

the text and is made equal to the character position 

immediately next to the text window plus the value of pattern 

length (m) as presented in the following condition. 

If (QS_Shift > SS_Shift) & (QS_Shift > m) 

Then 

New    Position = First Position after the Window + m 

However, after the new    position is computed, if the 

character positioned at the new    position does not appear in 

the pattern characters, SSTBMQS algorithm continually shifts 
the pattern to the following potential beginning search point, 
and SSTBMQS algorithm goes into Step 2. Fig. 3 shows the 
functionality of the Quick Search phase throughout the 
searching phase of SSTBMQS algorithm. All of the steps of 
the searching phase are repeated until the window is placed 
beyond (n − m + 1). 
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Fig. 3.  Flowchart for Quick Search Phase Role in the SSTBMQS algorithm. 

IV. SSTBMQS ALGORITHM TRACING EXAMPLE 

This section demonstrates an example of tracing by using 
SSTBMQS algorithm. The example shows the steps of the 
preprocessing and searching phases of SSTBMQS algorithm. 
Two strings are used as input: text and a pattern, as displayed 
in Fig. 4. 

 

Fig. 4. Algorithm Inputs. 

The preprocessing phase of SSTBMQS algorithm is built 
by constructing the pre-processing phase for the two original 
algorithms: The Quick-Skip Search hybrid algorithm and the 
TBM algorithm. The Quick-Skip Search hybrid algorithm is 
used to build the SS buckets and the QS bad character table, 

whereas the TBM algorithm is used to build the (bmBc[a]) bad 
character table for the input pattern, as shown in Fig. 5. 

 

Fig. 5. Preprocessing phase. 

The searching phase starts by choosing the start search 
point, which is at location    in the text, as shown in Fig. 6. 

 
Fig. 6. First Alignment. 

In the first alignment, the chosen beginning point (T) does 
not exist in the pattern. SSTBMQS algorithm checks the 
following potential starting point (A), as mentioned in Step 1 
of Section III. In the second alignment (see Fig. 7), the shift 
value is calculated by subtracting the next position value from 
the current position value of the character (A) that appears in 
the SS bucket, as explained in the second circumstance in 
Step 6 in Section III. 

 

Fig. 7. Second Alignment. 

Shift = Skip Shift = 6 - 3 = 3 

SSTBMQS algorithm checks the character at position    in 

the (bmBc[M] 6= 0), which is found to be unequal to 0. By 
performing this process, SSTBMQS algorithm avoids opening 
a text window and reduces the number of attempts, as well as 
the number of character comparisons, as explained in Step 4 in 
Section III. SSTBMQS algorithm then computes the shift value 
of the SS shift value = 3, where the QS shift value = 2 from the 
QS bad character table. SSTBMQS algorithm depends on the 
SS shift value, as explained in Step 6 in Section III. 
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Fig. 8. Third Alignment. 

Shift = Quick Search bad character table = 6 

The third alignment shows a situation in which SSTBMQS 
algorithm depends on the QS shift value, which is equal to the 
position of the character (G) in the pattern (see Fig. 8). After 
checking the character (A) at position    in (bmBc[A] 6= 0), as 

mentioned previously in Step 4 in Section III, the new 
   position becomes equivalent to the position of the character 

(G) in the text characters, as explained in the first circumstance 
of Step 7 in Section III. 

 
Fig. 9. Fourth Alignment. 

Shift = Skip Shift = 8 + 2 - 6 = 4 

The value of the character (A) in the TBM bad character 
table is equal to (1). Thus, a match between the pattern and the 
text characters is impossible (see Fig. 9). The SSTBMQS 
algorithm computes shift value depending on the shift value 
from the SS bucket. The (G) character at position    appears in 

the last position of the bucket. SSTBMQS algorithm computes 
the shift value by adding the value of the (G) character in the 
SS bucket to the pattern length (m). Then, the summation is 
subtracted from the first value of the character at position 
   from the bucket, as explained in the first circumstance of 

Step 6 in Section III. 

 

Fig. 10.  Fifth Alignment and First Attemp. 

Shift = Quick Search bad character table = 9 

In the fifth alignment the character (C) at position    equals 

(0) in the (bmBc[c] = 0) bad character table. Thus, matching 
can possibly occur between pattern and text characters. 
SSTBMQS algorithm opens a text window and starts 
comparing characters from left to right, considering the first 
attempt, as shown in Fig. 10. After a mismatch occurs, 

SSTBMQS algorithm computes both SS and QS shift values. 
The QS shift value becomes larger than the SS shift value. By 
computing for the shift value of the character (D), which is 
equal to (9) in the QS bad character table, the QS shift value 
becomes larger than the pattern length (m). Thus, the new 
   position becomes equal to the summation of the current 

(qsBc[D]) and the pattern length (m), as explained in the 
second circumstance of Step 7 in Section III. 

 

Fig. 11.  Sixth Alignment and Second Attempt. 

Shift = Skip Shift = 7 - 4 = 3 

The sixth alignment shows a situation in which the pattern 
aligns its character (C) at position    that is, at the same time, 

the     position. After examining the (bmBc[C]=0), SSTBMQS 

algorithm opens a text window and starts comparing characters 
from left to right, considering the second attempt (see Fig. 11). 
SSTBMQS algorithm depends on the SS shift value by 
subtracting the next position value from the current position 
value of the character (C) in the SS bucket, as explained in the 
second circumstance of Step 6 in Section III. 

 
Fig. 12. Seventh Alignment and Third Attempt. 

In the seventh alignment, SSTBMQS algorithm first 
examines the value of the character (C) at the    position in the 

TBM bad character table (bmBc[C] = 0) and finds it to be 
equal to (0). Then, SSTBMQS algorithm starts comparing the 
characters from left to right until all characters’ match, 
considering the third attempt as explained in Fig. 12. 

Number of attempts = 3 

Number of characters’ comparison = 10 

V. RESULTS AND DISCUSSION 

This section presents the experimental design adopted in 
this study for the sequential version of SSTBMQS algorithm. 
The execution of the sequential program, performance and 
evaluation are discussed. 

A. Experimental Databases 

DNA sequence, protein sequence, and English text datasets 
are used in this work to evaluate the results of the sequential 
version of SSTBMQS algorithm with the two original 
algorithms. Such datasets are chosen because they are defined 
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as a benchmark standard that demonstrates the typical 
utilization of string matching applications. They also vary in 
alphabet size; thus, a variety of algorithm behavior with 
different alphabet sizes can be evaluated. The data size chosen 
for testing the sequential behavior of SSTBMQS algorithm 
with the two original algorithms is 100 MB. 

a) DNA Sequence 

DNA sequence is created from a long string that holds 
hereditary information arranged in a sequence of four 
nucleotides represented by four uppercase letters. Usually, 
adenine is indicated by (A), thymine is indicated by (T), 
guanine is indicated by (G), and cytosine is indicated by (C) [∑ 
= (A, C, G, T) and σ = 4]. To examine the algorithm behavior 
in a small alphabet size, DNA sequence is considered in this 
study. Database is downloaded from Gutenberg Project [16]. 

b) Protein Sequence 

Protein sequence is composed of 20 amino acids indicated 
by uppercase characters [∑ = (A, C, D, E, F, G, H, I, K, L, M, 
N, P, Q, R, S, T, V, W, Y) and σ = 20]. Protein sequence has 
an essential responsibility in biochemistry science, especially 
in protein structure and functionality. 

c)  English Text 

English text data type comprises over 100 various alphabet 
types split into English language (lowercase and uppercase), 
numbers, and samples. The large size of this alphabet data type 
allows testing the algorithm behavior in such a large dataset. 
This data type is gathered from the Gutenberg Project [16]. 

B. Performance and Evaluation 

The major goal of this research is to offer an effective 
algorithm to be utilized basically with different string matching 
applications. Two common factors are typically considered to 
evaluate the performance of a string matching algorithm with 
different applications [17]. The two factors are presented 
below. 

a) Total Number of Character Comparisons 

This factor refers to the summation of exact comparison 
that occurs between the pattern and characters of text window. 
The algorithm with a significantly less number of character 
comparisons is identified as a powerful algorithm with better 
performance. 

b) Total Number of Attempt 

This factor denotes the distance that a pattern needs to skip 
along the entire assigned text. When the amount of attempts is 
significantly less, the overall performance of an algorithm is 
better. These two factors are used as a basis to evaluate the 
efficiency of the sequential version of SSTBMQS algorithm 
and to specify its overall performance with various datasets 
implemented. 

C. Sequential Program Execution 

The sequential program of SSTBMQS hybrid algorithm 
with the two sequential original string matching algorithms 
(i.e., TBM and Quick-Skip Search) is examined on each kind 
of dataset outlined in part (A) of Section V.  The three 
algorithms are run using a personal computer with 2.4 GHZ 
Inter®Core™with 7 cores and 8 GB RAM. The operating 

system used is Microsoft Windows 8 Single language, which is 
a 64-bits operating system. Microsoft visual studio 2010 is 
utilized to write down the codes. The compiler used to build 
and run the codes is visual C++ compiler. 

This section elucidates the evaluation results acquired from 
executing the sequential programs of SSTBMQS algorithm 
when compared with TBM and Quick-Skip Search hybrid 
algorithms. As indicated in Table 1, TBM is a single algorithm 
used in developing SSTBMQS algorithm of this study. Quick-
Skip Search and Maximum-Shift are both hybrid algorithms. 

Quick-Skip Search is used in developing SSTBMQS 
algorithm. Maximum-Shift consists of QS, BMH, and ZT 
algorithms. The results of Maximum-Shift are compared with 
those of SSTBMQS algorithm and the two chosen string 
matching algorithms. This hybrid algorithm is chosen for 
comparison because it is considered as one of the latest hybrid 
algorithm in the literature. The QS algorithm that is included in 
developing Quick-Skip Search hybrid algorithm is also used to 
develop the Maximum-Shift hybrid algorithm. All the 
algorithms indicated above are elucidated in Section II of this 
research. 

These algorithms are evaluated according to the total 
numbers of character comparisons and number of attempts. As 
mentioned previously in part (A) of Section V, various kinds of 
datasets are employed, which are DNA sequence, protein 
sequence, and English text. The patterns are selected randomly 
from the words inside each dataset and have various lengths 
that range from 8 to 100 [10], where 8 and 10 are short 
patterns; 20, 30, 40, 50, 60, 70, 80, 90, and 100 are long 
patterns [13]. Each pattern length is searched five times, and 
the average is obtained. The Maximum-Shift hybrid algorithm 
results are generated from [13] (Table 1). 

TABLE. I. RELATIONSHIP AMONG TBM, QUICK-SKIP SEARCH, 
MAXIMUM-SHIFT, AND THE PROPOSED ALGORITHM 

Algorithms Algorithm Type 
Underlying 

Structure 

Relationship 

with 

the Proposed 

Algorithm 

Tuned 

Boyer-Moore 
(TBM) 

Single algorithm TBM 

Used in the 
preprocessing 

and 

searching phases 

Quick-Skip 

Search 
algorithm 

Hybrid 

algorithm 
QS+Skip Search 

Used in the 
preprocessing 

and 

searching phases 

Maximum-Shift 

(Max-Shift) 

Hybrid 

algorithm 
QS+BMH+ZT 

Used the QS in 

the 

preprocessing 
phase 

D. Analyzing Number of Character Comparisons 

Based on the empirical results presented in Fig. 13 to 15, 
DNA alphabet delivers a great number of character 
comparisons, especially when the size of pattern length is 
short. This behavior is due to the structure nature of the DNA 
alphabet itself, which considers a small alphabet size. The 
DNA alphabet structure consists of four characters, thereby 
leading to a small shift distance of pattern during the searching 
operation of pattern string into text string. The use of a small 
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size of alphabet in implementing algorithms causes 
considerable exact matching between inspected pattern string 
and text window, particularly when utilizing short pattern 
lengths. Subsequently, the amount of character comparisons is 
influenced by the size of the alphabet used. 

For all algorithms with all dataset types, the results show 
that when pattern lengths increase, the total number of 
character comparisons decreases significantly. This behavior is 
due to the increasing amount of shift distance provided by the 
algorithms when a mismatch occurs. Based on this observation, 
the DNA dataset is excluded, especially for TBM algorithm. 
The performance of TBM algorithm in DNA dataset shows an 
unstable behavior, which is due to a fixed shift value provided 
by this algorithm that leads to a small shift of pattern after a 
mismatch occurs. Furthermore, DNA dataset generates small 
numbers in TBM bad character table, which leads to a small 
shift of pattern during an unrolled operation in each attempt. 
This condition can be considered another reason for the 
unstable behavior provided by TBM algorithm that tends to 
increase the total number of character comparisons. 

In protein and English datasets, the performance of Quick-
Skip Search hybrid algorithm surpasses that of Maximum-Shift 
hybrid algorithm when a short pattern length is used. This 
result is ascribed to that the Maximum-Shift hybrid algorithm 
starts the searching phase without checking    starting point. 

The probability of    position character taking place in pattern 

characters is low when using medium and large alphabet sizes 
for protein and English datasets, respectively. The results of 
protein and English datasets also show that the Maximum-Shift 
hybrid algorithm beats the Quick-Skip Search hybrid algorithm 
in 30 to 100 pattern lengths. 

This behavior is due to employing both QS and ZT 
preprocessing phases to obtain a maximum shift distance to 
shift a pattern when a mismatch or a complete match occurs. 
The largest shift value can be obtained from the QS algorithm 
preprocessing phase, which is equal to the pattern length plus 
one, when the character following the rightmost character of 
text window is not occurring in the pattern characters. 
However, ZT preprocessing phase depends on two consecutive 
rightmost characters in the text window to calculate the shift 
distance value. Using these methods avoids many unnecessary 
potential numbers of character comparisons during the 
matching process of Maximum-Shift hybrid algorithm. 

Quick-Skip Search hybrid algorithm utilizes QS algorithm 
preprocessing phase with Skip buckets to determine the next 
position of pattern string in text string. Maximum-Shift hybrid 
algorithm strongly beats Quick-Skip Search hybrid algorithm 
when 30 to 100 pattern lengths are used. The Quick-Skip 
Search hybrid algorithm uses the Skip buckets with the QS 
algorithm in the preprocessing phase. The disadvantage of the 
Skip Search algorithm is used all the positions of the character 
at position    in the bucket list in case of match or mismatch 

occurs. On the contrary, the Maximum-Shift hybrid algorithm 
uses the preprocessing phase of ZT algorithm, which is viewed 
as a highly effective algorithm with small alphabet size data 
type. 

SSTBMQS algorithm outperforms all other algorithms by 
producing a less number of character comparisons for all 
pattern lengths and data types. Such a good performance is due 
to three reasons. First, the algorithm employs Quick-Skip 
Search preprocessing phase to determine the next position of a 
pattern in text string after a mismatch occurs. Second, the 
algorithm starts the searching phase by checking the 
occurrence of character at Tj position in pattern characters, 
which is considered a starting search point before actual 
comparison. Third, the algorithm employs modified TBM 
matching operation characteristic by checking the character at 
  position before starting a comparison operation. 

The results of the SSTBMQS algorithm are better than 
those of the two original algorithms and Maximum-Shift 
hybrid algorithm in all pattern lengths and data types. The good 
performance of the SSTBMQS algorithm implies that the 
integration of the two original algorithms provides a new 
hybrid algorithm with better performance. 

 
Fig. 13. Number of Character Comparisons in DNA Sequence Data. 

 
Fig. 14.  Number of Character Comparisons in Protein Sequence Data. 

 
Fig. 15.  Number of Character Comparisons in English Text Data. 
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E. Analyzing Number of Attempts 

The empirical results presented in Fig. 16 to 18, show the 
behavior of TBM, Quick-Skip Search, Maximum-Shift, and 
SSTBMQS algorithms when using with DNA sequence, 
protein sequence, and English text data types. The results show 
that all the algorithms have a stable behavior in medium and 
large sizes for protein and English alphabets, respectively. 
Generally, the total number of attempts is decreased when 
pattern lengths increase. In short, pattern lengths and the 
Quick-Skip Search hybrid algorithm outperform the 
Maximum-Shift hybrid algorithm. This result is due to the 
characteristic of the Quick-Skip Search hybrid algorithm, that 
is, it starts the searching phase by checking the probability of 
occurrences of the character at    position in the pattern 

characters. This probability decreases when alphabet size 
increases. Hence, the Quick-Skip Search hybrid algorithm 
surpasses the Maximum-Shift hybrid algorithm in a short 
pattern length with protein and English alphabets. 

The Maximum-Shift hybrid algorithm does not start the 
searching phase by checking    position to specify the starting 

search point. DNA alphabet is accordingly excluded because of 
its small size, which consists of only four characters, and the 
ordering of the characters in the pattern itself, which increases 
the probability of occurrences of the character at    position in 

the pattern. Thus, a small shift distance to the pattern is 
generated across the text string. The Maximum-Shift hybrid 
algorithm generally outperforms the Quick-Skip Search hybrid 
algorithm in long pattern, especially from 30 to 100 pattern 
lengths. This result is due to using ZT preprocessing function, 
which uses two rightmost characters at the text window to 
compute the shift distance and is considered as a powerful 
function with small alphabets. 

The TBM algorithm shows a stable behavior in protein and 
English alphabets by decreasing the total number of attempts, 
which is related to the alphabet size of the dataset being used. 
DNA dataset is excluded because of the size of DNA alphabet, 
which increases the probability of finding inspection character, 
which is the position of the rightmost character in text window 
that is equal to zero in the TBM bad character table. This 
behavior will lead to many exact matching processes between 
the pattern and text characters, which contributes in increasing 
the total number of attempts. 

The results of the SSTBMQS algorithm indicate that it 
outperforms all other algorithms in all pattern lengths and with 
any alphabet sizes. This good behavior is related to its good 
properties acquired from integrating the two original 
algorithms. The hybrid algorithm starts the searching phase by 
checking the occurrence of the character at    position in the 

pattern characters. When the size of the alphabet used is large, 
the probability of the character occurrence at    position is low. 

The Quick-Skip Search preprocessing function is used to 
compute a maximum shift distance to shift the pattern long 
distance when a mismatch or a complete pattern match occurs. 

Before performing matching operations, the character at 
   position is checked that is the position of the rightmost 

character at the text window. If the character at    position 

equals to zero in the TBM bad character table, then the 

SSTBMQS algorithm starts a character comparison. If the 
character at    position is not equal to zero value, then the 

SSTBMQS algorithm skips opening text window and starts 
character comparison. This technique contributes in reducing 
the total number of attempts. Therefore, SSTBMQS algorithm 
utilizes the significant advantages and excludes the 
disadvantages of the two original algorithms by producing a 
minimal number of attempts. 

 
Fig. 16.  Number of Attempts in DNA Sequence. 

 

Fig. 17.  Number of Attempts in Protein Data Type. 

 

Fig. 18.  Number of Attempts in English Text Data Type. 

VI. CONCLUSION AND FUTURE WORK 

This section presents the conclusion from achieving the 
objective of this study, that is, integrating two existing 
algorithms (i.e., TBM and Quick-Skip Search) to produce an 
efficient hybrid string matching algorithm called SSTBMQS. 
Particularly, this study aims to extract the good properties from 
the two original algorithms. The SSTBMQS algorithm uses the 
shift values produced from the preprocessing phase of the 
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Quick-Skip Search hybrid algorithm to compute the next 
expected position of the pattern during the searching phase.  

In the searching phase, the SSTBMQS algorithm examines 
m−text characters to specify a starting search point before the 
actual character comparisons. This process avoids performing 
many unnecessary attempts, which reduces the total number of 
attempts. The SSTBMQS algorithm also utilizes modified 
TBM matching operation during the searching phase by 
checking the character at    position in the TBM bad character 

table before performing character comparisons and starting an 
attempt. Consequently, the total numbers of character 
compassions and attempts are significantly reduced. 

Two parameters are used to evaluate the performance of the 
sequential version of the SSTBMQS algorithm, which are the 
total numbers of character comparisons and attempts. In 
Section V, the SSTBMQS algorithm is compared with three 
algorithms, namely, TBM and Quick-Skip Search as original 
algorithms and Maximum-Shift as hybrid string matching 
algorithm. Comparisons are performed in different datasets 
(DNA sequence, Protein sequence, and English text) with 
different pattern lengths. The SSTBMQS algorithm 
outperforms all other algorithms by producing fewer total 
numbers of attempts and character comparisons. In future 
work, the running time of SSTBMQS algorithm should be 
enhanced by parallelizing it on the GPU using CUDA library. 
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