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Abstract—Digital imaging is omnipresent today. In many 

areas, digitized images replace their analog ancestors such as 

photographs or X-rays. The world of multimedia makes 

extensive use of image transfer and storage. The volume of these 

files is very high and the need to develop compression algorithms 

to reduce the size of these files has been felt. 

The JPEG committee has developed a new standard in image 

compression that now also has the status of Standard 

International: JPEG 2000. The main advantage of this new 

standard is its adaptability. Whatever the target application, 

whatever resources or available bandwidth, JPEG 2000 will 

adapt optimally. However, this flexibility has a price: the 

JPEG2000 perplexity is far superior to that of JPEG. This 

increased complexity can cause problems in applications with 

real-time constraints. In such cases, the use of a hardware 

implementation is necessary. In this context, the objective of this 

paper is the realization of a JPEG2000 encoder architecture 

satisfying real-time constraints. The proposed architecture will 

be implemented using programmable chips (FPGA) to ensure its 

effectiveness in real time. Optimization of renormalization 

module and byte-out module are described in this paper. Besides, 

the reduction in computational steps effectively minimizes the 

time delay and hence the high operating frequency. 

The design was implemented targeting a Xilinx Virtex 6 and 

an Altera Stratix FPGAs. Experimental results show that the 

proposed hardware architecture achieves real-time compression 

on video sequences on 35 fps at HDTV resolution. 

Keywords—MQ-Coder; High speed architecture; FPGA; 

JPEG2000; VHDL 

I. INTRODUCTION 

The current development of computer networks and the 
dramatic increase in the speed of processors reveal many new 
potentialities for digital imaging. Whether in the medical, 
commercial or military field, new applications are emerging 
each with its specificities. The JPEG Group has developed a 
new, more flexible and better image encoding standard: 
JPEG2000 [1]. It is built around a wide range of image 
compression and display tools. This makes the algorithm 
appealing to many applications, whether for Internet 
broadcasting, medical imaging or digital photography [2]. 

The main JPEG2000 coding steps are shown in Fig. 1. 
Several features are available for encoding, such as 
progressive quality and/or resolution reconstruction, fast 
random access to compressed image data, and the ability to 
encode different regions of the image called regions of interest 
(ROI). 

 

Fig. 1. Overview of JPEG2000 coding process. 

The JPEG2000 standard can be broken down into several 
successive blocks. The original image is cut into tiles after the 
component transformation. All the tiles are then transformed 
into wavelets (transformation with or without loss), 
independently of each other [3]. The wavelets used in the 
JPEG2000 standard are bi-orthogonal, that is to say different 
wavelets are used for decomposition and reconstruction. Two 
types of bi-orthogonal wavelets are used: wavelets of 
Daubechies 9/7 and Le Gall 5/3 [4], [5]. These two wavelets 
are chosen according to the type of compression desired, 
lossless or lossy. Le Gall 5/3 wavelets used to perform a 
reversible transform are used for lossless compression. The 
wavelets of Daubechies 9/7 allowing realizing a reversible 
transform are used only for lossy compression. 

The coefficients of the block-code undergo quantization 
and the quantized coefficients are decomposed into bit planes. 
The quantification minimizes the number of bits necessary for 
coding the supplied coefficients of the preceding block, by 
retaining only the minimum number of bits making it possible 
to obtain a certain quality level [6], [7]. 

Based on the wavelet decomposition technique, JPEG2000 
is very different from previous standards and has many 
advantages that will allow it to be adopted in a wide range of 
applications, or even to be extended to video encoding. In 
contrast, this type of compression requires much more 
computational power than the original JPEG process, which 
makes software implementations irrelevant when very fast 
processing is required. Fig. 2 shows the comparison between 
JPEG and JPEG2000 in terms of performance. We note that 
the performance of JPEG2000 is greater than those of JPEG 
standard. 
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Fig. 2. Comparison between JPEG and JPEG2000 in terms of performance. 

Due to many successive processes, JPEG2000 requires 
more computing power to achieve encoding and decoding 
speeds similar to JPEG. A hardware solution is therefore 
indispensable for fast applications. 

The JPEG2000 image compression standard was created to 
meet the new requirements arising from the diversification of 
applications in the multimedia field. The many features that it 
offers bring a new breath to this sector. However, they have 
led to an increase in the complexity of the algorithm compared 
with existing standards. Faced with this complexity, a 
hardware encoder is the solution that allows satisfying the 
real-time constraints of certain applications. 

This paper presents an FPGA-based accelerator core for 
JPEG2000 encoding. Comparison with various FPGA 
implementations is provided. 

Contributions in this work are listed as follows: 

1) The proposed high speed efficient MQ-coder 

architecture modifies the probability estimation (Qe) 

representation to minimize the memory consumption. The 

modification in probability estimation reduces the bitwise 

representation to 13 bit. 

2) Due to the less memory occupation, the time and power 

required for the hardware-based JPEG2000 compression are 

reduced. Thereby, the operating speed is improved (more 

operating frequency) with the help of proposed MQ encoder 

for real time image processing. 

3) The minimization in bitwise representation in proposed 

architecture of MQ coder reduces the count of memory 

elements to (32 9 13) 416 that leads to the preservation of 

silicon (Si) area further in the compact chip development. 

4) The optimization of Renormalization and Byteout 

modules help speeding up the proposed architecture. 

The remainder of this paper is decomposed into six sections. 

After the introduction, Section 2 details the JPEG2000 MQ 

encoder. Previously proposed hardware architectures for MQ-

coder are described in Section 3. Section 4 describes the 

proposed hardware architecture of MQ coder. In Section 5, 

experiments and results are detailed. Finally, this paper is 

concluded in Section 6. 

II. JPEG2000 MQ-CODER 

The arithmetic coder used in JPEG2000, called the MQ 
encoder, takes as inputs the binary values D and the associated 
contexts CX resulting from the preceding step of binary 
modeling of the coefficients, and this in the order of the 
coding passes. Fig. 3 shows the arithmetic encoder inputs and 
outputs. 

 

Fig. 3. The inputs and outputs of MQ-Coder. 

Rather than representing the intervals associated with the 
probabilities of ―0‖ or ―1‖, it was chosen to represent the data 
using the LPS (Less Probable Symbol) and MPS (More 
Probable Symbol) symbols, respectively representing the 
probabilities occurrence of the minority and majority species. 
Obviously, it is necessary to keep track of the meaning 
attributed to one or the other of the variables ―0‖ or ―1‖ is the 
minority species. 

Thus the current interval is represented by the interval 1, 
which is then divided into two sub-intervals corresponding to 
the minority and majority species. From a representation point 
of view, LPS is always given as a lower interval. Each binary 
decision, represented by a bit, is divided recursively. The 
divisions are made to estimate the probability of Elias: MPS 
and LPS. 

The binary sequence from the MQ is divided into a 
number of packets. Each of them contains the bit-stream 
corresponding to the same component, the same resolution 
level, the same quality layer and the same spatial zone of the 
resolution level. The spatial areas of each resolution level are 
called precincts. Each of the packets is preceded by a header 
containing information allowing identifying very precisely the 
data conveyed by this packet. 

Four different progress orders are defined in JPEG 2000. 
They make it possible, during the decoding, to obtain in 
priority either the data of the same component, or those of the 
same resolution level, or those of the same quality layer, or 
those of the same spatial zone of the image. 

In JPEG2000, the realization of the arithmetic coder is 
performed by means of an index table. The table represents 
the LPS probability estimate (Qe). For each input pair 
(decision, context), we look for the most probable symbol in a 
variable containing the different states. As each state is 
represented in the index table, the context can be associated 
with the index of the table. On its side, the decoder has the 
index replica of the table, which makes it possible to carry out 
the decoding. 
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The Finite state Machine (FSM) with 47 states defines the 
Probability Estimation Table structure clearly. The number of 
calculations to obtain the coding information and the 
utilization of resources are high that degrade the hardware 
performance. The hardware modeling of MQ-coder contains 
the following limitations: 

5) Low clock frequency. 

6) Consumption of LUTs and registers is more. 

7) High hardware resource requirements. 
A large number of context and decision pairs in MQ 

encoder shift the parallel operation into a serial operation; 
such a new architecture is called high-speed MQ encoder 
architecture. The storage of transformed coefficients in code 
block consumes more registers that lead to large flip-flop (FF) 
requirement. Hence, the reduction in code block based on the 
context pair probability estimation reduces the number of 
lookup tables (LUTs) and slice registers that leads to less 
memory consumption. The motivation behind the research 
work proposed in this paper is the reduction in memory, time 
and power consumption by reducing the size of the bitwise 
representation. 

III. RELATED WORKS 

The main advantage of JPEG 2000 was to combine most 
of these qualities, allowing using it in a very wide range of 
applications. This flexibility, coupled with a very high 
compression efficiency, unfortunately has a price. Moreover, 
some applications have real-time aspects which impose very 
high flow constraints. 

An architecture composed of three stages is proposed by 
Mei et al. in [5]. When implemented on an APEX20K FPGA 
board, it operates with 37.27 MHz. Indeed in this architecture, 
if the state MPS occurs then two symbols will be coded 
simultaneously, if not a single symbol will be coded. 

Shi et al. [8] proposed a MQ-coder hardware core that 
allows treating two symbols. Indeed, this architecture is based 
on the following hypothesis: a maximum of two offsets occurs 
when there is a renormalization operation. The architecture 
proposed in [9] is composed by three blocks. The first block is 
responsible for initializing register A at 0x8000, register C at 
0, table MPS (Cx) at 0 and index table in ILT RAM, and 
perform all arithmetic operations. The second block is used to 
shift the registers A and the register C and to decrement the 
counter CT by 1. If CT = 0, the third block will be activated 
and the register B will be emitted as compressed data. The 
proposed architecture was implemented on a Startix FPGA 
and works at a frequency of 83.271 MHz. 

The complexity of the JPEG 2000 algorithm is a problem 
for these real-time applications. In [10], the author indicates 
that in view of current technology, it is not possible for purely 
software implementations to respect the constraints imposed 
by these real-time applications. This is the reason why a 
growing number of companies and researchers are interested 
in (partially) hardware-related achievements of the standard, 
in which the computing resources have been optimized and 
the memory requirements reduced. 

Below we give an overview of the hardware achievements 
to date and the results obtained. 

As part of the PRIAM project, Thales Communications 
has developed an implementation of a JPEG 2000 encoder on 
an MPC74XX processor. This is studied in [11]. The 
MPC74XX processor is based on a PowerPC architecture 
(RISC type processor) to which is added a vector calculation 
unit called AltiVec. This allows multiple data sets to be 
processed in parallel in a single instruction. 

Unlike the other blocks in the decoding chain, the entropy 
coder, due to its non-systematic behavior, is complex to 
optimize by means of vectorial instructions. This achievement 
gives overall very good results, but the entropy coder, 
requiring 400 cycles per 8-bit pixel, is truly the ―bottleneck‖ 
of the system. 

Bonaldi [12] has been working on the creation of a mixed 
software-hardware encoder. The medium used is the ARM-
VIRTEX card of the DICE unit. An input rate of 6.6 Mbps for 
the entropy encoder is especially supported. Moreover, 
everything concerning the formation of the bit-stream is 
carried out in software, on the ARM. This approach of Co-
Design is very judicious and is moreover widely supported by 
the literature. 

The Amphion company offers an ASIC encoder-decoder 
available since 2003 [13]. Amphion announces speeds of 480 
Mbps at encoding and 160 Mbps at decoding. This 
embodiment has interesting characteristics, such as the few 
constraints on the format of the input images, a division of 
tasks between hardware and software and an architecture 
compatible with the AMBA bus, which allows easy 
integration into other systems. 

Analog devices [14] offer the ADV-JP2000. This circuit 
operates at a maximum 20 MHz frequency including a 5/3 
wavelet transform (no 9/7) and an entropy encoder. The circuit 
is not fully compliant with the standard. The ADV-JP2000 
offers two modes of operation: encodes and decodes. In the 
encode mode it accepts a single tile and generates the stream 
of code-blocks conforming to the standard. The ADV-JP2000 
communicates via an asynchronous protocol but also allows 
an interrupt mode. Finally, the circuit supports the DMA 
mode. 

Zhang et al. [15] proposed an architecture composed of 
four stages and three parts (P1, P2, P3). Indeed, P1 is 
implemented in Stage 1 to determine the new value of Qe 
when A < (0x8000). The P2 is called in Stage 2 and Stage 3, 
because the latter updates the Reg A and Reg C and also to 
perform the arithmetic operations and the offset operations. 
Finally, the P3 is used in Stage 4 to realize the bit stuffing 
when the counter CT is equal to 0. The processing frequency 
of this architecture was 110 MHz on an Altera FPGA card. 

IV. PROPOSED ARCHITECHTURE 

The proposed architecture of the encoder is shown by the 
block diagram of Fig. 4. The pairs (C, D) are received by the 
MQ coder as input and a sequence of bytes called ByteOutReg 
are provided as output. This architecture consists of two parts: 
the part of the prediction of the probability of the symbol to be 
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coded composed of 2 RAMs (ICX, MPS) and 4 ROMs 
(NMPS, NLPS, Switch, Qe), and the coding part which is 
composed of a state machine. 

The four ROMs are not updated during coding operation. 
The pairs (CX, D) are first sequentially read. Subsequently, 
the CX context will be transmitted over the bus address of the 
ICX RAM and the MPS RAM. Then the value of I(CX) and 
MPS(CX) will be read. Then the I(CX) index will be delivered 
to the four ROMs. The mps_D will be executed with signal D, 
which causes the LPS_en signal to be generated. If this signal 
is equal to one then the CODELPS state will be carried out 
otherwise the CODEMPS state will take place. 

The updating of the ICX RAM depends essentially on the 
signal Ren_out. Indeed this signal will set to one if the 
renormalization is carried out. However, the MPS RAM will 
update if the LPS_SW signal is equal to one. The Probability 
estimation architecture is shown in Fig. 5. 

 

Fig. 4. MQ-Coder architecture. 

 
Fig. 5. Probability estimation architecture. 

We are then interested in the coding part to manage the 
process of the coding by a machine of finite states by 
substituting the various sub-algorithms by states. The outputs 
depend on the current state and the inputs and react directly to 
changes in inputs. Fourteen states have been set up in order to 
describe the MQ encoder process. Fig. 6 shows the MQ-Coder 

state machine. The states used in this state machine are as 
follows: 

 

Fig. 6. MQ-Coder State machine. 

8) Repos: This state essentially depends on the input 

―go‖, if go = 1 it switches to the state INITENC otherwise it 

remains in the same state. 

9) Initenc: In this state, register Reg_A at (0x8000), 

register Reg_C at 0 and counter CT at 12 are initialized. Then 

the MPS RAM is filled with 0s and the RAM of the indexes 

by the 19 possible values of the context CX. Then you will 

automatically play (Read). The index/probability tables should 

be presented in the memory before coding begins. 

10) Read: In this state, the context is read to deduce the 

value of the corresponding MPS (Cx) according to the table 

initialized in INITENC. We also read Decision D. 

11) CODAGE: If Decision D = MPS (Cx), it switches to 

the CODEMPS state otherwise it goes to the CODELPS state.  

12) CODEMPS: The register Reg_A is adjusted to 

Qe_reg. Then Reg_A is compared to (0x8000). If Reg_A is 

less than (0x8000), the index will be updated according to the 

NMPS table of the context index and the Renorme state will 

be used. If register Reg_A is greater than (0x8000), we add 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 6, 2017 

169 | P a g e  

www.ijacsa.thesai.org 

the probability Qe_reg to the register Reg_C and we will pass 

to the Finis state. 

13) Finis: In this state if the even number (number of pairs 

(CX, D) lu) is equal to 256 then we pass to the flush state, 

otherwise the next state will be Read. 

14) CODELPS: In this state, register Reg_A to Reg_A-

Qe_reg is adjusted. Then, if Reg_A is greater than Qe_reg 

then the register Reg_A takes the value of Qe_reg, otherwise 

we add the probability Qe_reg to the register Reg_C. The 

condition of inversion of the intervals is always checked. If a 

SWITCH is required, the direction of the MPS will be 

reversed. The index will take a new value according to the 

NLPS table and it will change to the Renorme state. 

15) Renorme: The contents of Reg_A and Reg_C will be 

replaced by a simple left shift. This shift repeats until the 

value of Reg_A is raised above (0x8000). The counter CT 

containing the number of shifts of Reg_A and Reg_C will then 

be decremented at each offset. When the counter CT reaches 0 

(CT was initially at 13, i.e., 13 left offsets were made at 

Reg_A and Reg_C), it will pass to byteout1 and if Reg_A is 

still less than (0 x 8000), we will return to the Renorme state 

as soon as we have finished with byteout. The optimization of 

the Renormalization procedure is presented in Fig. 7. 

16) Byteout1: This state can be called in two states either 

in the Renorme state when the shift counter CT becomes equal 

to zero, or also at the end of the coding when the registers 

flush. The optimization of the Byteout procedure is presented 

in Fig. 8. 

17) FLUSH: This is the state we reach towards the end of 

the encoding (in our case if nbpair = 256). The FLUSH 

procedure contains two calls to Byteout1 and two calls to 

Setbit; hence, the idea of subdividing it into three states: the 

first is flush_1 which ends with a call to byteout1, the second 

is flush_2 (same principle of fulsh_1) and the third is flush_3. 

a) Flush_1: This state contains two sub-states, the first 

is the Setbit, the second is byteout1. First we make a call to 

the state Setbit then we apply an offset to the register Reg_C, 

then we make a call to byteout1 and we end by making a call 

to flush_2. 

i) Setbit: In this state, the Reg_C register shift is 

automatically changed to byteout1, regardless 

of the Reg_C register value (i.e., Reg_C is 

lower or higher than TEMPC). 

b) Fluch_2: This state has the same principle of the 

state flush_1 but this time we pass to state flush_3. 

c) Flush_3: This state contains the end of the flush, 

when the first end marker 0xFF has to be inserted. The next 

state will be rest. 

 
Fig. 7. (a) Original RENORME architecture (b) Optimized RENORME 

architecture. 

Fig. 8. (a) Original BYTEOUT architecture (b) Optimized BYTEOUT architecture.
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V. EXPERIMENTAL RESULTS 

A. Simulation 

Simulation of the proposed design, using VHDL HDL, is 
carried out with Mentor graphic. 

ByteOutReg bytes coincide with those in column B and the 
parameters IDCX, MPS, Qe_reg, Reg_A, Reg_C and Reg_CT 
have evolved appropriately. This result has been well verified 
and we have chosen to take a sequence to visualize it in 
simulation and explain it in parallel. For the sake of clarity in 
Fig. 9, we have chosen to display some signals in the 
simulation flow that are the following: the compressed data 
Byteout_Reg, the index IDCX, the counter Reg_CT, the 
probability Qe_reg and states. Table 1 summarizes the 
simulation results of the MQ encoder: either from decision n° 
28 to decision n° 34. 

B. Synthesis Results 

Implementation of the proposed design was made on 
Xilinx Virtex Family Platforms: XC6SLX75T, XC5LX30T 
and XC4VLX80 devices. We have used the Xilinx ISE tools 
version 14.1 .The synthesis results of the architecture is shown 
in Table 2. The proposed MQ encoder design gives the best 
result, in terms of hardware resources such as (the number of 
LUTs consumed, slices and Flip-Flop) and frequency of 
operation when implemented on a platform Virtex 6. 

Concerning the frequencies obtained, we note that our 
architecture meets the criteria real-time. 

The design has a maximum frequency of 423.2MHz on the 
Virtex 6 (XC6SLX75T) device. 

C. Comparison 

A comparative study with other existing designs in the 
literature has been made. The Virtex 4 XC4VFX140 platform 
is used for this comparison. The performance comparison of 
our design with the architecture proposed in [16] is shown 
Table 3. Our proposed design codes frames in real time at a 
frequency of 244.475 MHz and requires only 455 slices. 

The throughput of some architecture of MQ coders 
compared with our proposed architecture is presented in 
Table 4. It is calculated from the reported symbol consumption 
rate and operating frequency. It is found that our architecture 
encodes frames with a frequency 3.31 and 2.29 times higher 
than that of architecture [16] and [17] respectively. 

Table 5 shows the comparisons of logic area, memory 
requirement, and estimated memory area of several previous 
works [5], [7], [15]-[20]. The total area of the proposed 
architecture is less than that of each previous work. However, 
the hardware cost of the word based architecture is larger than 
the proposed architecture. The proposed design can code 40 
frames per second for high definition TV of 1920p at 254.84 
Mhz on Stratix II. 

Fig. 9. Wave simulation for MQ coder architecture. 
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TABLE. I. EXAMPLE EXTRACTED FROM THE SIMULATION OF THE MQ ENCODER 

Symbole D IDCX Reg_A Reg_C CT Byteout_Reg 

10 1 28 0xE80E 0x000C6D52 7 0x84 

11 0 26 0x9008 0x00636A90 4 0x84 

12 0 27 0xF40E 0x00C70122 3 0x84 

13 0 27 0xE00D 0x00C71523 3 0x84 

14 1 27 0xCC0C 0x00C72924 3 0xC7 

25 0 25 0xA008 0x00014920 8 0xC7 

26 0 25 0x8807 0x00016121 8 0xC7 

TABLE. II. RESULTS OF SYNTHESIS 

Used Platform XC6SLX75T XC5VLX50T XC4VLX80 

Maximum 

Frequency 

(MHz) 
423.2 336,304 264.2 

No. of 4 input 

LUTs 540/343680 523/28800 766/71680 

Total used slices 
251/687360 247/28800 396/35840 

Total FF slices 
177/693 176/659 247/71680 

TABLE. III. PERFORMANCE COMPARISON 

Used FPGA XC4VFX140 

Architecture Proposed Architecture [15] 

Max. Frequency 

(MHz) 
244.475 185.43 

Used slices 455 495 

Used FF slices 292 392 

Used 4 input LUTs 865 893 

Used BRAMs 1 2 

 

TABLE. IV. THE THROUGHPUT OF SOME DESIGNS TESTED ON VIRTEX 4 

X4VFX140 

Used FPGA XC4VFX140 (Virtex4) 

Design 
Number of 

pairs 

Frequency 

(Mhz) 

Throughput 

(MS/s) 

Design [7] 2 50.1 100.2 

Design [21] 1 185.43 185.43 

Design [18] 1.23 53.92 66.38 

Design [19] 2 48.3 96.6 

Proposed 1 244.475 244.475 

VI. CONCLUSION 

This paper discussed the problems in the real-time 
implementation of FPGA-based MQ coder architecture. The 
MQcoder utilization in both encoding and decoding stages 
performs the probability estimation of coefficients and 
optimization of Renorme and Byteout modules. The increase 
in computational overhead required more power and energy 
consumption. This paper provides the reduction in the bitwise 
computation to reduce the number of computational steps. The 
minimization in computational steps decrease the power and 
time delay. The proposed PET architecture reduced the bitwise 
representation from 13 bit to 12 bit that provided the reduction 
in memory elements from 416 to 348 compared to the existing 
MQ-coder architecture. Therefore, the size of PET ROM is 
1376 bits.  An embedded architecture of MQ Coder for 
JPEG2000 is designed and implemented in this paper. The 
implementations carried out during this work allowed us to 
know that the proposed architecture of the MQ encoder 
operates with a frequency of 423.2 MHz on Virtex6 
XC6SLX4 device and that it can code 40 frames per second 
for the high-definition TV application. The proposed architecture 

is easily expandable to 2048×1080 resolution video at 45 fps. It can 
be used in several applications such as Internet broadcasting, 
medical imaging and digital photography. Moreover, the 
processing time was improved by about 13.6% in comparison 
with well-known architectures from literature. 
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TABLE I.  COMPARISON WITH OTHER MQ CODER ARCHITECTURES 

Architecture FAGA family Device used Clk (MHz) No. of LEs Symbol/Clk 
Throughput 

(MS/s) 

[5] APEX20K EP20K600EFC672-3. 37.27 1256 2 74.54 

[7] Stratix N/A 50.10 1596 2 100.2 

[15] Stratix N/A 40.53 12649 2 81.6 

[20] Stratix II EP2S15F484C3 106.2 1321 2 212.4 

[22] APEX20K EP20K1000EFC672-1X. 9.25 14711 1 9.25 

[23] Stratix N/A 27.05 761 1 57.05 

[24] Stratix N/A 106.02 1267 2 210 

[16] Stratix EP2S90F1020I4. 58.56 1488 2 117 

[17] Stratix EP1S10B672C6. 145.9 824 1 145.9 

Proposed Stratix II EP2S15F484C3 254.84 603 1 254.84 
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