
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

240 | P a g e

www.ijacsa.thesai.org

An Analytical Model for Availability Evaluation of

Cloud Service Provisioning System

Fatimah M. Alturkistani

Information System Department

Imam Mohammed bin Saud University

Riyadh, Saudi Arabia

Saad S. Alaboodi

Information System Department

King Saud University

Riyadh, Saudi Arabia

Abstract—Cloud computing is a major technological trend

that continues to evolve and flourish. With the advent of the

cloud, high availability assurance of cloud service has become a

critical issue for cloud service providers and customers. Several

studies have considered the problem of cloud service availability

modeling and analysis. However, the complexity of the cloud

service provisioning system and the deep dependency stack of its

layered architecture make it challenging to evaluate the

availability of cloud services. In this paper, we propose a novel

analytical model of cloud service provisioning systems

availability. Further, we provide a detailed methodology for

evaluating cloud service availability using series/parallel

configurations and operational measures. The results of a case

study using simulated cloud computing infrastructure illustrates

the usability of the proposed model.

Keywords—Cloud computing; availability evaluation; series

and parallel configuration; infrastructure as service

I. INTRODUCTION

Infrastructure as service (IaaS) cloud providers, such as
Amazon Web Service and Microsoft Azure, deliver on-demand
computational resources from large pools of equipment
installed in a cloud service provider’s data centers. The
requests submitted by the cloud customers are provisioned and
released if the cloud has enough available resources.
Conversely, customers expect cloud services to be available
whenever they need them, just like electricity or telephone
connectivity. This expectation requires cloud service providers
to regularly assess their infrastructure for probable failures and
reduce the amount of time needed to recover from such
failures.

Typically, a cloud service provider offers a service level
agreement (SLA) stipulating the service provider’s
performance and quality in several ways. For example, an SLA
may include a metric specifying the availability of the cloud
service. Before committing an SLA to the cloud customers, the
service provider needs to carry out an availability assessment
of the infrastructure on which the cloud service is hosted [1],
[2]. Most of the cloud providers offer approximately 99.99% of
availability in their SLA. However, real data shows that the
actual value of the availability of these providers is much lower
[3], [4].

Hence, to reduce the overall cloud downtime and to provide
a reliable estimate of service availability, cloud service
providers need to assess the availability characteristics of their
data centers in responsible and dependable manner. This

assessment can be done through controlled experiments, large-
scale simulations, and via analytical models [5], [1]. In a
massive system such as cloud computing, conducting repetitive
experiments or simulations is likely to be costly and time-
consuming. Although analytical models can be cost and time-
effective, accurate analytical modeling must deal with a large
number of system states, leading to the state space explosion
problem [6].

The primary contribution of this study is to propose a novel
analytical model for evaluating the availability of cloud service
provisioning systems focusing on IaaS. The proposed model is
architecture-based; it relies on National Institute of Standards
and Technology - Cloud Computing Reference Architecture
(NIST-CCRA), the well-known cloud computing reference
architecture [7]. NIST-CCRA provides an abstraction for cloud
service provisioning system that can be used to model the
logical interaction of failures within the system.

Consequently, availability is evaluated at two levels: the
system-level and the component-level. At the system-level,
reliability block diagrams (RBDs) are used to model the
system’s failures by considering series/parallel arrangements of
the cloud components/subsystems. At component-level,
availability is determined by probabilistic model and
operational measures. Failure and repair data are modeled and
analyzed using probability distributions and statistical
inferences. Then, operational measures are derived and used to
estimate component’s availability.

A simulation approach is used to develop and verify the
proposed analytical model. CloudSim [8] is used to simulate
cloud infrastructure and the underlying components, while
FTCloudSim [9], an extension of CloudSim, is used to simulate
different failure scenarios using the fault injection technique.
Also, BlockSim [10] and Weibull++ [11] are used for
availability analysis and interpretation of results.

The rest of the paper is structured as: Section 2 presents
relevant background information. Section 3 describes the
proposed analytical model, and Section 4 presents conclusions
and suggested future work.

II. BACKGROUND

A. NIST-based Cloud Service Provisioning System

According to NIST-CCRA, there are explicit processes and
activities that cloud service providers need to perform to ensure
reliable cloud service provisioning. Through service

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

241 | P a g e

www.ijacsa.thesai.org

orchestration, a cloud service provider operates the underlying
cloud service infrastructure that supports its customers. The
NIST defines service orchestration as “the composition of
system components to support the cloud provider activities in
arrangement, coordination, and management of computing
resources in order to provide cloud services to cloud
consumers” [11].

Service orchestration has three main components, which
are arranged in layers: 1) the service layer (SL); 2) the resource
abstraction and control layer (RACL); and 3) the physical layer
(PL). The horizontal positioning of these layers reflects the
relationships between them; upper-layer components depend
on adjacent lower-layer components to provide a service. For
instance, the RACL provides virtual cloud resources on top of
the PL and supports the SL.

Likewise, in the SL, services can be modeled as three-
layered components representing three types of services that
have been universally accepted: 1) software as a service
(SaaS); 2) platform as a service (PaaS); and 2) IaaS. A cloud
service provider may define interface points in all three service
models or just a subset. For instance, the platform component
(i.e., PaaS) can be built upon the infrastructure component (i.e.,
IaaS) to support the software component (i.e., SaaS) where
cloud service interfaces are exposed.

Although NIST-CCRA does not represent the system
architecture for a particular cloud system, a specific cloud
service provisioning system such as an IaaS provider or an
IaaS broker can be modeled using NIST-CCRA [12]. Pereira,
et al. [13] used NIST-CCRA to design a cloud-based
architecture by refining the system’s logical architecture. The
suggested method involves 1) the selection of the NIST
architectural component for which the respective coverage in
the system’s logical architecture needs to be analyzed;
2) analysis of the system’s components into logical architecture
including the respective architectural elements (AEs); and
3) the refinement and development of a new logical
architecture in the cloud context by mapping the system’s AEs
to NIST-CCRA AEs.

B. Availability Evaluation in Cloud Computing

Cloud architecture has been studied using various
techniques from reliability theory including RBDs, stochastic
Petri nets (SPNs), fault trees, and Markov chains [13]-[17].
The availability of cloud computing architecture has been
modeled in various ways using RBD techniques. In addition,
analytical modeling has been used to estimate the availability
of cloud system architectures including virtualized simple
architecture and virtualized redundant architecture [18].

By considering the virtualization in the cloud, RBDs can
also be applied to full virtualization, OS virtualization, and
paravirtualization (see Fig. 1).

Fig. 1. Canonical virtualization RBD.

However, the dynamic nature of cloud computing requires
the use of more rigorous modeling such as Markov modeling.
Thus further analysis of availability in the context of system-
level virtualization is needed.

Therefore, Dantas, et al. [19] used a hierarchical
heterogeneous model based on RBD and a Markov reward
model to describe non-redundant and redundant Eucalyptus
architectures. Consequently, closed-form equations are
obtained to compute the availability of those systems according
to the rule of composition of series and parallel components.
With respects to virtualization, availability model of a non-
virtualized and virtualized system is presented using a
hierarchical analytic model in which fault tree is used in the
upper-level and homogeneous continuous-time Markov chains
are used in the lower-level [20].

In another study, Silva, et al. adopted a hybrid modeling
approach to deal with the complexity of the cloud system;
RBDs are used for system-level dependability, whereas
operational measures, such as mean time to failure (MTTF) or
mean time between failure (MTBF), and mean time to repair
(MTTR), are obtained for subsystem and component-level
dependability.

III. MODELLING FORMALISM

A. System Representation and Basic Assumptions

Based on NIST-CCRA, let us consider the following two
cloud implementation scenarios that can be used by a cloud
service provider. In the first scenario, a cloud service provider
may implement a high-level service model (i.e., SaaS) by using
the interface points defined in the lower layers. For example,
SaaS applications can be built on top of PaaS components, and
PaaS components can be built on top of IaaS components. A
real-world example of this is Google’s cloud offerings. They
offer a variety of SaaS products (e.g., Gmail, Google Search,
Google Maps, Google Apps) using PaaS components (Google
App Engine) that are run operationally on Google’s cloud IaaS
(Google’s cloud platform) [7], [21]. As per NIST-CCRA, the
dependency relationships among SaaS, PaaS, and IaaS
components are represented graphically as components stacked
on top of each other (see Fig. 2 (a)). A stack is a clearly defined
structure that implies a series of interconnected systems that

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

242 | P a g e

www.ijacsa.thesai.org

transport data between each other to provide a certain function
or service [22]. Therefore, similar to modeling large-scale
distributed systems [23], [24] and other cloud platforms [19],
[25], [26] the cloud service provisioning system is represented
as a simple series system using an RBD (see Fig. 2 (b)).

Fig. 2. NIST-CCRA service orchestration model.

In the second scenario, a cloud service provider may
choose to provide an SL without the support of the lower-layer
interface points. For example, a SaaS application can be
implemented and hosted directly on top of cloud resources
rather than using an IaaS virtual machine. A real-world
example is salesforce.com, which provides both SaaS and PaaS
products. The SaaS layer is built using the well-defined
interface components from the PaaS. However, in this case, no
IaaS layer is offered. SaaS is run directly on the resource
abstraction layer with no explicit IaaS components. As per
NIST-CCRA, the angling of the components indicates that
each of the service components can stand alone and can be
implemented directly on top of the cloud RACL and PL [7].
Hence, the cloud service provisioning system is represented as
a simple series system using an RBD (see Fig. 2 (c)).

B. Cloud Service Provisioning Availability Model

In this model, the availability of the system is specified
concerning the availability of the various components.
Following a bottom-up approach, the availability at the
component-level is determined using operational measures
(i.e., MTBF and MTTR).

The logical relationship between individual components is
considered to estimate the system-level availability, and it is
expressed graphically using RBD. Table 1 set the definition of
the notations that have been used in the availability modeling.

Let us consider a cloud service provisioning system
denoted by CSP that consists of a set of subsystems
* + in which CSP success depends on the success
of every subsystem . Given the serial configuration as shown
in Fig. 2, the availability of CSP denoted by is written by
[27]

 ∏

 (1)

Where, is the availability of subsystem Recall that in
NIST-CCRA, a cloud service provisioning system consists of
three ordered layers, PL, RCAL, and SL.

Likewise, each subsystem consists of a set of
components * }, where

denotes the component of the subsystem, and denotes
the total number of components in subsystem . Let us assume
that the success of each subsystem depends on the success
of every individual component .

TABLE. I. DEFINITION OF NOTATIONS

Notation Definition

 Cloud service provisioning system’s overall availability value

 Availability of subsystem
 Availability of component

 Component at subsystem

 Total number of components at subsystem

 { }, set of components for

subsystem

A random variable representing the time to failure of the

 component of the subsystem, and
 () Availability of component as a function over time

 () Failure density function for component

 Mean time to failure for component

 Mean time to repair for component

 A random variable representing the time to repair of the

 component at the subsystem, and
 () Repair density function for component

Given this serial configuration, the availability of
subsystem denoted by is given by

 ∏

 (2)

At the component-level, probability distributions are used
for modeling operational data such as time to failure (TTF) and
time to repair (TTR). Failure data can be used to make
statements about the probability model, either in terms of the
probability distribution itself or in terms of its parameters or
some other characteristics.

Availability is the probability of a system/component being
up (i.e., providing the service) at a specific instant of time
[24].

It is often expressed using (3), with many different variants
[28], [29].

 (3)

Where, Uptime refer to a capability to perform the task and
Downtime refer to not being able to perform the task. However,
the classification of availability is somewhat flexible and is
largely based on the types of downtimes used in the
computation and on the relationship with time. This study
focused on inherent availability to determine the component-
level availability. Inherent availability is the steady-state
availability when considering only the corrective maintenance
downtime of the system. Usually, this is the type of availability
that companies use to report the availability of their products
(e.g., computer servers) because they see downtime other than
actual repair time as out of their control and too unpredictable.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

243 | P a g e

www.ijacsa.thesai.org

Inherent availability used some operational measures from
reliability theory: MTTF or MTBF and MTTR [18].

Now, let us assume that components failure data (i.e., TTF
and TTR) is collected and preliminary analysis is performed
using descriptive statistics and statistical inferences. Statistical
inferences aim to draw inferences from the collected data in a
meaningful way concerning some characteristics failure rates,
MTTF, MTTR and related quantities. As probabilistic
assumptions regarding the failure data play an important role in
reliability and availability analysis [30], failure data (or at least
assume the means of the sample data) usually assumed to
follow well-known distributions (e.g., exponential, Weibull,
lognormal).

Let be a mean time to failure of the component

at the subsystem, and , is the

random variable that represents the TTF of that component,
and () is the probability density function of the

component’s failure time, then is defined as the

expected value of the random variable such that [24], [29]

 [] ∫ ()

 (4)

For a repairable component, is used rather than

 and defined similarly.

On the other hand, MTTR is used to measure the amount of
time it takes to get a component running again after a failure
[18]. Let is the random variable that represents the TTR of

the component at the subsystem, and
 , and () is the probability density function of the

component’s repair time, then the component’s can be

defined as [24]

 [] ∫ ()

 (5)

Now, let us consider which represent the

component at subsystem, and , the
availability of component denoted by is given by [18],

[31]

 (6)

C. Modeling Cloud System Availability with Redundant

Components

Redundancy in cloud service provision system (e.g.,
hardware redundancy, software redundancy, and application
redundancy) can also be modeled using RBD. The simplest
example of redundancy could be achieved by combining two
components in a parallel subsystem (i.e., server, storage, and
virtual machine). The subsystem only fails if both components
fail.

Let us consider components in a cloud subsystem with
parallel composition, the subsystem availability can be
computed as follows

 ∏(

) (7)

Where, is the availability of individual component

within the subsystem . Further, the availability of more
complex configuration (e.g., series-parallel configuration) can
be obtained by combining the rules defined for series and
parallel configuration [25].

D. Numerical example

To demonstrate NIST-based availability modeling and
analysis numerically, let us consider the RBD of the IaaS
provisioning system (IPS) depicted in Fig. 3. The objective is
to obtain the average availability of the system after one year
of operation (i.e., 8,760 hours).

The availability of the IPS, denoted by , is the product
of the availabilities of its subsystem such that

 (8)

Where, and represent the availability of the
hardware, virtualized platform, and application subsystems,
respectively.

The availability of the hardware subsystem, denoted by ,
is determined by the availability of its constituent components:
power, network, storage, processor, and memory. Hence, is
written as

 (9)

Where, and represent the

availability of power, network, storage, processor, and
memory, respectively.

Likewise, the availability of virtualized platform is
given by

 (10)

Where, and represent the availability

of the hypervisor, VM, virtualized operating system, and
middleware.

At component-level, let us assume that probability
distributions model of failure data (i.e., TTF and TTR) are used
to estimate the MTBF and MTTR for each component using
(4) and (5), respectively to be shown in Fig. 4. Consequently,
component availability is determined by substituting the values
of MTBF and MTTR for the component in (6). Then, at the
subsystem level, availability is analyzed based on system
RBDs as follow:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

244 | P a g e

www.ijacsa.thesai.org

Fig. 3. IaaS provisioning system RBD.

Fig. 4. MTBF and MTTR for IPS components.

Hardware availability is determined by substituting the
values of its constituent component availabilities in (9), leading
to

 , ()- ⁄

 , ()- ⁄

 , ()- ⁄

 , ()- ⁄

 , ()- ⁄

 , ()-⁄

 , ()⁄ -

 , ()⁄ -

 , ()⁄ -

 , ()⁄ -

=0.975.

Virtualized platform availability is determined by
substituting the values of components availabilities in (10),
leading to

 , ()- ⁄

 , ()- ⁄

 , ()- ⁄

 , ()- ⁄

 , ()-⁄

 , ()⁄ -

 , ()⁄ -

 , ()⁄ -

=0.961.

For application, let us assume that MTBF=329 and
MTTR=5, then application availability is determined by
substituting the values of the MTBF and MTTR of the
application in (6), leading to

 ()⁄

Subsequently, by substituting the values of and ,
in (8), the availability of IPS is given by

Using the RBD model and all the failure and repair
characteristics, the IPS is simulated for 30,000 hours of
operation (using BlockSim). After running the simulation for
30,000 hours, the relevant metrics are obtained. The point
availability after one year of operation (i.e.,) is
estimated to be 93.6000%, whereas the mean availability after
one year of operation is estimated to be 92.3134% (see Fig. 5),
which corresponds to the analytical result obtained for mean
system availability (i.e.,). The subsystems mean
availabilities are estimated to be 98.47% for application,
79.50% for hardware, and 69.19% for virtualized platform;
these results correspond with those obtained using the
analytical method (see Fig. 6).

Modeling and analyzing the IPS availability often carries
significant value in boosting the efforts to improve availability,
performing a trade-off analysis in system design or suggesting
the most efficient way to operate and maintain the system.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

245 | P a g e

www.ijacsa.thesai.org

Fig. 5. Simulation results of IPS mean system availability.

Fig. 6. Bubble plot of IPS subsystems mean availability with respects to

mean time to first failure (MTTFF) and uptime.

IV. TESTING AND VALIDATION

A. Approach

Because obtaining real-life failure data is extremely
difficult as a result of the sensitive nature of these data, a
simulation approach is used to test and validate the proposed
model (Fig. 7). First, CloudSim is used to create a
computerized duplication of real cloud infrastructure that is
suitable for modeling probabilistic systems. Host, virtual
machine (VM), and cloudlet are considered to be the
infrastructure components that constituted the cloud service
provisioning system.

For the experimental simulation, one data center is
considered with different numbers of hosts using a 16-port fat-
tree data center network and a corresponding number of VMs.
Simultaneously, a Linux environment with x86 architecture is
used as the operating environment and Xen as the virtual
machine manager (VMM).

By investigating the architectural model of the cloud
service provisioning system in CloudSim, the availability of

IaaS requires an available host, VM, and cloudlet. Thus, the
simulated IaaS cloud system can be modeled in a simple series
system. Second, based on the previous study conducted by
Zhou, et al. [8], multiple host failures are injected into the
simulated system. Likewise, by considering some failure
scenarios described by Nita, et al. [31], VM and cloudlet
failures are introduced, and then failure and repair data are
collected for availability analysis. Next, for the purpose of
component availability modeling, Weibull++ is used to model
component failure and repair data (i.e., TTF and TTR). A
goodness-of-fit test is used to determine the corresponding
distribution and estimate its parameters.

BlockSim is then used to model the cloud infrastructure
availability at the system-level using an RBD. The cloud
infrastructure system is modeled as a simple series diagram,
which referred to as the base model (see Fig. 8). Failure and
repair distributions are fed into BlockSim, and Monte Carlo
simulations are done for 300,000-time units. Moreover, three
more models representing different scenarios are created for
comparison with the base model, and the model was showing
the greatest availability is selected.

Fig. 7. Testing and validation approach.

B. Results and Discussion

The simulations show that failure data at the component-
level (host, VM, and cloudlet) were successfully fitted to a
Weibull distribution. The parameters of each distribution were
estimated using regression analysis. For instance, Fig. 9 shows
the Weibull probability plot for host failure data. In the
probability plot, the shape parameter (beta) is estimated based
on the fitted-line slope. The scale parameter (eta) is the time at
which a specific percentage of the population has failed. The
correlation coefficient (rho) is a measure of how well the linear
regression model fits the data. Furthermore, VM repair data
were the best fit with the lognormal distribution and a two-
sided confidence level of 90% (see Fig. 10). In contrast, both
the host and cloudlet have constant values for repair that are
10,800 hours and 300 hours, respectively.

Fig. 8. Base model RBD.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

246 | P a g e

www.ijacsa.thesai.org

Fig. 9. Host failure data Weibull probability plot.

Fig. 10. VM repair data lognormal probability plot.

The failure and repair data distributions with associated
parameters were used to feed several simulation models that
were built using BlockSim and configured in four different
models.

A base model was built in simple series and configured
using the data provided by Weibull++. Table 2 shows the base
model block configurations detailing the inputs for each block
(i.e., host, VM, and cloudlet) on the availability model and the
corrective task.

At the simulation end time (300,000-time units), the base
model achieved an availability of 0.590767. Hence, to improve
the system availability (i.e., to fulfill the customer's
requirements), a sensitivity analysis is performed to study the
impact of the repair rate and standby configuration (i.e.,
redundancy technique) on the overall system availability.

In the second model, host repair time was improved in the
base model to determine its impact on overall system
availability. The results showed that at the simulation end time
(300,000-time units), availability is increased to 0.722.

In the third model, the base model was improved by using
standby configurations. The base model was rebuilt with a
standby container that included three base model systems; one

system was active, and two were on standby (see Fig. 11). It is
assumed that the switching reliability is 100%. The standby
simulation results showed an improvement in overall system
availability.

For instance, at the simulation end time (300,000-time
units), system availability was 0.977. Also, a fourth model was
created by applying a standby configuration to the second
model in which the host repair time is improved. The results
showed an improvement in overall system availability. At the
simulation end time (300,000-time units), availability had
increased to 0.996313. Fig. 12 shows the mean availability of
the four models.

TABLE. II. BASE MODEL CONFIGURATIONS

Fig. 11. Base model with standbys RBD.

Fig. 12. Mean availability overlay plot for all models.

Configuration Attribute Host VM Cloudlet

Reliability

Model

Distribution 2P-Weibull 2P-Weibull 2P-Weibull

Beta 1.37 1.43 1.46

Eta 17281 17136 16260

Corrective

Task

Distribution Constant Lognormal Constant

Parameter 1 10800
3.7
(log mean)

300

Parameter 2 NA
0.72

(log-std)
NA

Restoration
As good as
new

As good as
new

As good as
new

Task result
Bring item

down

Bring item

down

Bring item

down

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

247 | P a g e

www.ijacsa.thesai.org

V. CONCLUSIONS AND FUTURE WORK

This paper’s primary contribution is a proposed model for
evaluating the availability of cloud service provisioning
systems. The model relies on NIST-CCRA, the well-known
cloud computing reference architecture, to define cloud
subsystems/components and the logical relationships among
them. Using mature modeling techniques from reliability
theory that can provide the operational measures that are so
desirable today, we were able to quantify component-level
availability. Furthermore, by considering series/parallel
arrangements of the cloud system components, RBD was used
to model system-level availability. The proposed model has
some limitations imposed by the characteristics of RBDs. In
future research, a dynamic RBD [30] will be adopted to
consider the dynamic behavior of a cloud system. Other cloud
scenarios such as cloud federation will also be modeled in
future studies.

REFERENCES

[1] F. Longo, R. Ghosh, V. K. Naik, and K. S. Trivedi, “Availability
Analysis of IaaS Cloud Using Analytic Models,” Achieve. Fed. Self-
Manageable Cloud Infrastructures Theory Pract. IGI Glob., pp. 134–
136, 2012.

[2] A. Undheim, A. Chilwan, and P. Heegaard, “Differentiated Availability
in Cloud Computing SLAs,” 2011 IEEE/ACM 12th Int. Conf. Grid
Comput., pp. 129–136, Sep. 2011.

[3] A. Croll, Cloud performance from the end user perspective. 2011.

[4] G. P. Gibilisco, “Model-Based Availability Evaluation of Multi-Cloud
Applications,” University of Illinois at Chicago, 2013.

[5] F. Longo, R. Ghosh, V. K. Naik, K. S. Trivedi, and I. B. M. T. J.
Watson, “A Scalable Availability Model for Infrastructure-as-a-Service
Cloud,” in Dependable Systems & Networks (DSN), 2011 IEEE/IFIP
41st International Conference on. IEEE, 2011.

[6] R. Ghosh, F. Longo, F. Frattini, S. Russo, and K. S. Trivedi, “Scalable
Analytics for IaaS Cloud Availability,” IEEE Trans. CLOUD Comput.
VOL.2, vol. 2, no. X, pp. 1–14, 2014.

[7] V. Lo Faso, “Understanding NIST ’ s Cloud Computing Reference
Architecture : Part II Understanding NIST ’ s Cloud Computing
Reference Architecture : Part II,” Global Knowledge, 2014. .

[8] R. N. Calheiros, R. Ranjan, A. Beloglazov, and A. F. De Rose,
“CloudSim : a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,”
Software. Pract. Exp. 41.1, no. August 2010, pp. 23–50, 2011.

[9] A. Zhou, S. Wang, Q. Sun, H. Zou, and F. Yang, “FTCloudSim: A
Simulation Tool for Cloud Service Reliability Enhancement
Mechanisms,” Proc. Demo Poster Track ACM/IFIP/USENIX Int.
Middleware. Conf., p. 2:1--2:2, 2013.

[10] “BlockSim: System Reliability and Maintainability Analysis Software
Tool,” ReliaSoft Corporation. .

[11] ReliaSoft Corporation, “Weibull++: Life Data Analysis (Weibull
Analysis) Software Tool,” 2017. [Online]. Available:
http://weibull.reliasoft.com.

[12] J. Teixeira, C. E. Salgado, and R. J. Machado, “Modeling an IaaS
Broker Based on Two Cloud Computing Reference Models,” 2016 IEEE
Int. Conf. Cloud Eng. Work., pp. 166–171, 2016.

[13] M. Ribas, A. S. Lima, N. Souza, T. Engenharia, and S. Paulo,

“Assessing Cloud Computing SaaS adoption for Enterprise Applications
using a Petri net MCDM framework,” Netw. Oper. Manag. Symp.
(NOMS), IEEE., 2014.

[14] G. Callou, P. Maciel, D. Tutsch, and J. Araújo, “A Petri Net-Based
Approach to the Quantification of Data Center Dependability,” Petri
Nets - Manuf. Comput. Sci., pp. 313–336, 2012.

[15] R. Jhawar, V. Piuri, and I. Universit, “Fault Tolerance Management in
IaaS Clouds,” 2012 IEEE First AESS Eur. Conf. Satell. Telecommun.,
pp. 1–6, 2012.

[16] D. S. Kim, F. Machida, and K. S. Trivedi, “Availability Modeling and
Analysis of a Virtualized System,” 2009 15th IEEE Pacific Rim Int.
Symp. Dependable Comput., pp. 365–371, Nov. 2009.

[17] B. Silva, P. Maciel, E. Tavares, and A. Zimmermann, “Dependability
Models for Designing Disaster Tolerant Cloud Computing Systems,” in
Dependable Systems and Networks (DSN), 43rd Annual IEEE/IFIP
International Conference on. IEEE, 2013.

[18] R. Bauer, E., Adams, Reliability and Availability of Cloud Computing.
2012.

[19] J. Dantas, R. Matos, J. Araujo, and P. Maciel, “Models for
Dependability Analysis of Cloud Computing Architectures for
Eucalyptus Platform,” Int. Trans. Syst. Sci. Appl., vol. 8, no. December,
pp. 13–25, 2012.

[20] D. S. Kim, F. Machida, and K. S. Trivedi, “Availability modeling and
analysis of a virtualized system,” 2009 15th IEEE Pacific Rim Int.
Symp. Dependable Comput. PRDC 2009, pp. 365–371, 2009.

[21] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm, “What’s inside
the cloud? An architectural map of the cloud landscape,” Proc. 2009
ICSE Work. Softw. Eng. Challenges Cloud Comput. CLOUD 2009, pp.
23–31, 2009.

[22] S. Kristopher, “Living in the Cloud Stack – Understanding SaaS, PaaS,
and IaaS APIs,” Nordic APIs, 2016. .

[23] K. Weyns and M. Höst, “Case Study on Risk Analysis for Critical
Systems with Reliability Block Diagrams,” in 10th International IT
Systems for Crisis Response and Management (ISCRAM) Conference.
ISCRAM, 2013, no. May, pp. 693–702.

[24] Gabriele Manno, “Reliability modelling of complex systems: an
adaptive transition system approach to match accuracy and efficiency,”
University of Catania, 2012.

[25] B. Wei, C. Lin, and X. Kong, “Dependability Modeling and Analysis for
the Virtual Data Center of Cloud Computing,” 2011 IEEE Int. Conf.
High Perform. Comput. Commun., pp. 784–789, Sep. 2011.

[26] T. Thanakornworakij, R. F. Nassar, and C. Leangsuksun, "A Reliability
Model for Cloud Computing for High-Performance Computing
Applications," in European Conference on Parallel Processing. Springer
Berlin Heidelberg, 2013, pp. 474–483.

[27] G. Callou, P. Maciel, D. Tutsch, and J. Araújo, “A Petri Net-Based
Approach to the Quantification of Data Center Dependability,” Petri
Nets-Manufacturing Comput. Sci. InTech, 2012.

[28] T. Humble, Availability, Reliability, Maintainability, and Capability.
Triplex Chapter of the Vibrations Institute. Humble, TX: Barringer and
Associated Inc, 1997.

[29] A. Alkasem and H. Liu, “Research Article A Survey of Fault-tolerance
in Cloud Computing : Concepts and Practice,” Sch. Comput. Sci.
Technol. , Harbin Inst. Technol. China, vol. 11, no. 12, pp. 1365–1377,
2015.

[30] ReliaSoft, “Reliability Basics: Availability and the Different Ways to
Calculate It.” .

[31] V. K. Katukoori, “Standardizing Availability Definition,” Univ. New
Orleans, New orleans, La., USA, p. 21, 2007.

