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Abstract—Cloud computing is a major technological trend 

that continues to evolve and flourish. With the advent of the 

cloud, high availability assurance of cloud service has become a 

critical issue for cloud service providers and customers. Several 

studies have considered the problem of cloud service availability 

modeling and analysis. However, the complexity of the cloud 

service provisioning system and the deep dependency stack of its 

layered architecture make it challenging to evaluate the 

availability of cloud services. In this paper, we propose a novel 

analytical model of cloud service provisioning systems 

availability. Further, we provide a detailed methodology for 

evaluating cloud service availability using series/parallel 

configurations and operational measures. The results of a case 

study using simulated cloud computing infrastructure illustrates 

the usability of the proposed model. 
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I. INTRODUCTION 

Infrastructure as service (IaaS) cloud providers, such as 
Amazon Web Service and Microsoft Azure, deliver on-demand 
computational resources from large pools of equipment 
installed in a cloud service provider’s data centers. The 
requests submitted by the cloud customers are provisioned and 
released if the cloud has enough available resources. 
Conversely, customers expect cloud services to be available 
whenever they need them, just like electricity or telephone 
connectivity. This expectation requires cloud service providers 
to regularly assess their infrastructure for probable failures and 
reduce the amount of time needed to recover from such 
failures. 

Typically, a cloud service provider offers a service level 
agreement (SLA) stipulating the service provider’s 
performance and quality in several ways. For example, an SLA 
may include a metric specifying the availability of the cloud 
service. Before committing an SLA to the cloud customers, the 
service provider needs to carry out an availability assessment 
of the infrastructure on which the cloud service is hosted [1], 
[2]. Most of the cloud providers offer approximately 99.99% of 
availability in their SLA. However, real data shows that the 
actual value of the availability of these providers is much lower 
[3], [4]. 

Hence, to reduce the overall cloud downtime and to provide 
a reliable estimate of service availability, cloud service 
providers need to assess the availability characteristics of their 
data centers in responsible and dependable manner. This 

assessment can be done through controlled experiments, large-
scale simulations, and via analytical models [5], [1]. In a 
massive system such as cloud computing, conducting repetitive 
experiments or simulations is likely to be costly and time-
consuming. Although analytical models can be cost and time-
effective, accurate analytical modeling must deal with a large 
number of system states, leading to the state space explosion 
problem [6]. 

The primary contribution of this study is to propose a novel 
analytical model for evaluating the availability of cloud service 
provisioning systems focusing on IaaS. The proposed model is 
architecture-based; it relies on National Institute of Standards 
and Technology - Cloud Computing Reference Architecture 
(NIST-CCRA), the well-known cloud computing reference 
architecture [7]. NIST-CCRA provides an abstraction for cloud 
service provisioning system that can be used to model the 
logical interaction of failures within the system. 

Consequently, availability is evaluated at two levels: the 
system-level and the component-level. At the system-level, 
reliability block diagrams (RBDs) are used to model the 
system’s failures by considering series/parallel arrangements of 
the cloud components/subsystems. At component-level, 
availability is determined by probabilistic model and 
operational measures. Failure and repair data are modeled and 
analyzed using probability distributions and statistical 
inferences. Then, operational measures are derived and used to 
estimate component’s availability. 

A simulation approach is used to develop and verify the 
proposed analytical model. CloudSim [8] is used to simulate 
cloud infrastructure and the underlying components, while 
FTCloudSim [9], an extension of CloudSim, is used to simulate 
different failure scenarios using the fault injection technique. 
Also, BlockSim [10] and Weibull++ [11] are used for 
availability analysis and interpretation of results. 

The rest of the paper is structured as: Section 2 presents 
relevant background information. Section 3 describes the 
proposed analytical model, and Section 4 presents conclusions 
and suggested future work. 

II. BACKGROUND 

A. NIST-based Cloud Service Provisioning System 

According to NIST-CCRA, there are explicit processes and 
activities that cloud service providers need to perform to ensure 
reliable cloud service provisioning. Through service 
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orchestration, a cloud service provider operates the underlying 
cloud service infrastructure that supports its customers. The 
NIST defines service orchestration as “the composition of 
system components to support the cloud provider activities in 
arrangement, coordination, and management of computing 
resources in order to provide cloud services to cloud 
consumers” [11]. 

Service orchestration has three main components, which 
are arranged in layers: 1) the service layer (SL); 2) the resource 
abstraction and control layer (RACL); and 3) the physical layer 
(PL). The horizontal positioning of these layers reflects the 
relationships between them; upper-layer components depend 
on adjacent lower-layer components to provide a service. For 
instance, the RACL provides virtual cloud resources on top of 
the PL and supports the SL. 

Likewise, in the SL, services can be modeled as three-
layered components representing three types of services that 
have been universally accepted: 1) software as a service 
(SaaS); 2) platform as a service (PaaS); and 2) IaaS. A cloud 
service provider may define interface points in all three service 
models or just a subset. For instance, the platform component 
(i.e., PaaS) can be built upon the infrastructure component (i.e., 
IaaS) to support the software component (i.e., SaaS) where 
cloud service interfaces are exposed. 

Although NIST-CCRA does not represent the system 
architecture for a particular cloud system, a specific cloud 
service provisioning system such as an IaaS provider or an 
IaaS broker can be modeled using NIST-CCRA [12]. Pereira, 
et al. [13] used NIST-CCRA to design a cloud-based 
architecture by refining the system’s logical architecture. The 
suggested method involves 1) the selection of the NIST 
architectural component for which the respective coverage in 
the system’s logical architecture needs to be analyzed; 
2) analysis of the system’s components into logical architecture 
including the respective architectural elements (AEs); and 
3) the refinement and development of a new logical 
architecture in the cloud context by mapping the system’s AEs 
to NIST-CCRA AEs. 

B. Availability Evaluation in Cloud Computing 

Cloud architecture has been studied using various 
techniques from reliability theory including RBDs, stochastic 
Petri nets (SPNs), fault trees, and Markov chains [13]-[17]. 
The availability of cloud computing architecture has been 
modeled in various ways using RBD techniques. In addition, 
analytical modeling has been used to estimate the availability 
of cloud system architectures including virtualized simple 
architecture and virtualized redundant architecture [18]. 

By considering the virtualization in the cloud, RBDs can 
also be applied to full virtualization, OS virtualization, and 
paravirtualization (see Fig. 1). 

 
Fig. 1. Canonical virtualization RBD. 

However, the dynamic nature of cloud computing requires 
the use of more rigorous modeling such as Markov modeling. 
Thus further analysis of availability in the context of system-
level virtualization is needed. 

Therefore, Dantas, et al. [19] used a hierarchical 
heterogeneous model based on RBD and a Markov reward 
model to describe non-redundant and redundant Eucalyptus 
architectures. Consequently, closed-form equations are 
obtained to compute the availability of those systems according 
to the rule of composition of series and parallel components. 
With respects to virtualization, availability model of a non-
virtualized and virtualized system is presented using a 
hierarchical analytic model in which fault tree is used in the 
upper-level and homogeneous continuous-time Markov chains 
are used in the lower-level [20]. 

In another study, Silva, et al. adopted a hybrid modeling 
approach to deal with the complexity of the cloud system; 
RBDs are used for system-level dependability, whereas 
operational measures, such as mean time to failure (MTTF) or 
mean time between failure (MTBF), and mean time to repair 
(MTTR), are obtained for subsystem and component-level 
dependability. 

III. MODELLING FORMALISM 

A. System Representation and Basic Assumptions 

Based on NIST-CCRA, let us consider the following two 
cloud implementation scenarios that can be used by a cloud 
service provider. In the first scenario, a cloud service provider 
may implement a high-level service model (i.e., SaaS) by using 
the interface points defined in the lower layers. For example, 
SaaS applications can be built on top of PaaS components, and 
PaaS components can be built on top of IaaS components. A 
real-world example of this is Google’s cloud offerings. They 
offer a variety of SaaS products (e.g., Gmail, Google Search, 
Google Maps, Google Apps) using PaaS components (Google 
App Engine) that are run operationally on Google’s cloud IaaS 
(Google’s cloud platform) [7], [21]. As per NIST-CCRA, the 
dependency relationships among SaaS, PaaS, and IaaS 
components are represented graphically as components stacked 
on top of each other (see Fig. 2 (a)). A stack is a clearly defined 
structure that implies a series of interconnected systems that 
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transport data between each other to provide a certain function 
or service [22]. Therefore, similar to modeling large-scale 
distributed systems [23], [24] and other cloud platforms [19], 
[25], [26] the cloud service provisioning system is represented 
as a simple series system using an RBD (see Fig. 2 (b)). 

 
Fig. 2. NIST-CCRA service orchestration model. 

In the second scenario, a cloud service provider may 
choose to provide an SL without the support of the lower-layer 
interface points. For example, a SaaS application can be 
implemented and hosted directly on top of cloud resources 
rather than using an IaaS virtual machine. A real-world 
example is salesforce.com, which provides both SaaS and PaaS 
products. The SaaS layer is built using the well-defined 
interface components from the PaaS. However, in this case, no 
IaaS layer is offered. SaaS is run directly on the resource 
abstraction layer with no explicit IaaS components. As per 
NIST-CCRA, the angling of the components indicates that 
each of the service components can stand alone and can be 
implemented directly on top of the cloud RACL and PL [7]. 
Hence, the cloud service provisioning system is represented as 
a simple series system using an RBD (see Fig. 2 (c)). 

B. Cloud Service Provisioning Availability Model 

In this model, the availability of the system is specified 
concerning the availability of the various components. 
Following a bottom-up approach, the availability at the 
component-level is determined using operational measures 
(i.e., MTBF and MTTR). 

The logical relationship between individual components is 
considered to estimate the system-level availability, and it is 
expressed graphically using RBD. Table 1 set the definition of 
the notations that have been used in the availability modeling. 

Let us consider a cloud service provisioning system 
denoted by CSP that consists of a set of subsystems   
*           + in which CSP success depends on the success 
of every subsystem   . Given the serial configuration as shown 
in Fig. 2, the availability of CSP denoted by      is written by 
[27] 

      ∏  

 

   

  (1)  

Where,    is the availability of subsystem    Recall that in 
NIST-CCRA, a cloud service provisioning system consists of 
three ordered layers, PL, RCAL, and SL. 

Likewise, each subsystem    consists of a set of 
components    *                      }, where      

denotes the     component of the     subsystem, and    denotes 
the total number of components in subsystem   . Let us assume 
that the success of each subsystem    depends on the success 
of every individual component     . 

TABLE. I. DEFINITION OF NOTATIONS 

Notation Definition 

     Cloud service provisioning system’s overall availability value 

   Availability of subsystem   
     Availability of component      

     Component   at subsystem   

   Total number of components at subsystem   

   
 {                      }, set of components for 

subsystem   

     
A random variable representing the time to failure of the 

   component of the     subsystem,         and           
    ( ) Availability of component     as a function over time 

    ( ) Failure density function for component      

        Mean time to failure for component       

        Mean time to repair for component       

     
 A random variable representing the time to repair of the 

   component at the     subsystem,         and           
    ( ) Repair density function for component       

Given this serial configuration, the availability of 
subsystem    denoted by    is given by 

   ∏    

  

   

  (2)  

At the component-level, probability distributions are used 
for modeling operational data such as time to failure (TTF) and 
time to repair (TTR). Failure data can be used to make 
statements about the probability model, either in terms of the 
probability distribution itself or in terms of its parameters or 
some other characteristics. 

Availability is the probability of a system/component being 
up (i.e., providing the service) at a specific instant of time   
[24]. 

It is often expressed using (3), with many different variants 
[28], [29]. 

   
      

               
      (3)  

Where, Uptime refer to a capability to perform the task and 
Downtime refer to not being able to perform the task. However, 
the classification of availability is somewhat flexible and is 
largely based on the types of downtimes used in the 
computation and on the relationship with time. This study 
focused on inherent availability to determine the component-
level availability. Inherent availability is the steady-state 
availability when considering only the corrective maintenance 
downtime of the system. Usually, this is the type of availability 
that companies use to report the availability of their products 
(e.g., computer servers) because they see downtime other than 
actual repair time as out of their control and too unpredictable. 
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Inherent availability used some operational measures from 
reliability theory: MTTF or MTBF and MTTR [18]. 

Now, let us assume that components failure data (i.e., TTF 
and TTR) is collected and preliminary analysis is performed 
using descriptive statistics and statistical inferences. Statistical 
inferences aim to draw inferences from the collected data in a 
meaningful way concerning some characteristics failure rates, 
MTTF, MTTR and related quantities. As probabilistic 
assumptions regarding the failure data play an important role in 
reliability and availability analysis [30], failure data (or at least 
assume the means of the sample data) usually assumed to 
follow well-known distributions (e.g., exponential, Weibull, 
lognormal). 

Let         be a mean time to failure of the    component 

at the     subsystem,         and          ,      is the 

random variable that represents the TTF of that component, 
and     ( )  is the probability density function of the 

component’s failure time, then         is defined as the 

expected value of the random variable      such that [24], [29] 

         [    ]  ∫       ( )   
 

 

     (4)  

For a repairable component,         is used rather than 

        and defined similarly. 

On the other hand, MTTR is used to measure the amount of 
time it takes to get a component running again after a failure 
[18]. Let      is the random variable that represents the TTR of 

the    component at the     subsystem,         and   
       , and     ( ) is the probability density function of the 

component’s repair time, then the component’s         can be 

defined as [24] 

         [    ]  ∫      ( )  
 

 

       (5)  

Now, let us consider      which represent the      

component at     subsystem,         and          , the 
availability of component      denoted by      is given by [18], 

[31] 

         
       

               
   (6)  

C. Modeling Cloud System Availability with Redundant 

Components 

Redundancy in cloud service provision system (e.g., 
hardware redundancy, software redundancy, and application 
redundancy) can also be modeled using RBD. The simplest 
example of redundancy could be achieved by combining two 
components in a parallel subsystem (i.e., server, storage, and 
virtual machine). The subsystem only fails if both components 
fail. 

Let us consider    components in a cloud subsystem   with 
parallel composition, the subsystem availability    can be 
computed as follows 

      ∏(      

  

   

)         (7)  

Where,      is the availability of     individual component 

within the subsystem  . Further, the availability of more 
complex configuration (e.g., series-parallel configuration) can 
be obtained by combining the rules defined for series and 
parallel configuration [25]. 

D. Numerical example 

To demonstrate NIST-based availability modeling and 
analysis numerically, let us consider the RBD of the IaaS 
provisioning system (IPS) depicted in Fig. 3. The objective is 
to obtain the average availability of the system after one year 
of operation (i.e., 8,760 hours). 

The availability of the IPS, denoted by     , is the product 
of the availabilities of its subsystem   such that 

                 (8)  

Where,        and    represent the availability of the 
hardware, virtualized platform, and application subsystems, 
respectively. 

The availability of the hardware subsystem, denoted by   , 
is determined by the availability of its constituent components: 
power, network, storage, processor, and memory. Hence,    is 
written as 

                                 (9)  

Where,                       and      represent the 

availability of power, network, storage, processor, and 
memory, respectively. 

Likewise, the availability of virtualized platform    is 
given by 

                               (10)  

Where,                  and      represent the availability 

of the hypervisor, VM, virtualized operating system, and 
middleware. 

At component-level, let us assume that probability 
distributions model of failure data (i.e., TTF and TTR) are used 
to estimate the MTBF and MTTR for each component using 
(4) and (5), respectively to be shown in Fig. 4. Consequently, 
component availability is determined by substituting the values 
of MTBF and MTTR for the component in (6). Then, at the 
subsystem level, availability is analyzed based on system 
RBDs as follow: 
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Fig. 3. IaaS provisioning system RBD. 

 
Fig. 4. MTBF and MTTR for IPS components. 

Hardware availability    is determined by substituting the 
values of its constituent component availabilities in (9), leading 
to 

 
    ,       (               )- ⁄

  ,       (               )- ⁄

  ,       (               )- ⁄

  ,       (               )- ⁄

  ,       (               )- ⁄  

 
 ,   (       )-⁄

  ,   (       )⁄ -  

  ,   (       )⁄ -  

  ,  (      )⁄ -  

  ,   (     )⁄ - 

 

 
=0.975.  

Virtualized platform availability    is determined by 
substituting the values of components availabilities in (10), 
leading to 

 
    ,       (               )- ⁄

  ,       (               )- ⁄

  ,       (               )- ⁄

  ,       (               )- ⁄  

 
 ,   (       )-⁄

  ,   (     )⁄ -  

  ,   (       )⁄ -  

  ,   (     )⁄ -   

 

 
=0.961.  

For application, let us assume that MTBF=329 and 
MTTR=5, then application availability    is determined by 
substituting the values of the MTBF and MTTR of the 
application in (6), leading to 

 
       (     )⁄  

        

Subsequently, by substituting the values of         and   , 
in (8), the availability of IPS is given by 
 
                            

        

Using the RBD model and all the failure and repair 
characteristics, the IPS is simulated for 30,000 hours of 
operation (using BlockSim). After running the simulation for 
30,000 hours, the relevant metrics are obtained. The point 
availability after one year of operation (i.e.,        )  is 
estimated to be 93.6000%, whereas the mean availability after 
one year of operation is estimated to be 92.3134% (see Fig. 5), 
which corresponds to the analytical result obtained for mean 
system availability (i.e.,           ). The subsystems mean 
availabilities are estimated to be 98.47% for application, 
79.50% for hardware, and 69.19% for virtualized platform; 
these results correspond with those obtained using the 
analytical method (see Fig. 6). 

Modeling and analyzing the IPS availability often carries 
significant value in boosting the efforts to improve availability, 
performing a trade-off analysis in system design or suggesting 
the most efficient way to operate and maintain the system. 
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Fig. 5. Simulation results of IPS mean system availability. 

 
Fig. 6. Bubble plot of IPS subsystems mean availability with respects to 

mean time to first failure (MTTFF) and uptime. 

IV. TESTING AND VALIDATION 

A. Approach 

Because obtaining real-life failure data is extremely 
difficult as a result of the sensitive nature of these data, a 
simulation approach is used to test and validate the proposed 
model (Fig. 7). First, CloudSim is used to create a 
computerized duplication of real cloud infrastructure that is 
suitable for modeling probabilistic systems. Host, virtual 
machine (VM), and cloudlet are considered to be the 
infrastructure components that constituted the cloud service 
provisioning system. 

For the experimental simulation, one data center is 
considered with different numbers of hosts using a 16-port fat-
tree data center network and a corresponding number of VMs. 
Simultaneously, a Linux environment with x86 architecture is 
used as the operating environment and Xen as the virtual 
machine manager (VMM). 

By investigating the architectural model of the cloud 
service provisioning system in CloudSim, the availability of 

IaaS requires an available host, VM, and cloudlet. Thus, the 
simulated IaaS cloud system can be modeled in a simple series 
system. Second, based on the previous study conducted by 
Zhou, et al. [8], multiple host failures are injected into the 
simulated system. Likewise, by considering some failure 
scenarios described by Nita, et al. [31], VM and cloudlet 
failures are introduced, and then failure and repair data are 
collected for availability analysis. Next, for the purpose of 
component availability modeling, Weibull++ is used to model 
component failure and repair data (i.e., TTF and TTR). A 
goodness-of-fit test is used to determine the corresponding 
distribution and estimate its parameters. 

BlockSim is then used to model the cloud infrastructure 
availability at the system-level using an RBD. The cloud 
infrastructure system is modeled as a simple series diagram, 
which referred to as the base model (see Fig. 8). Failure and 
repair distributions are fed into BlockSim, and Monte Carlo 
simulations are done for 300,000-time units. Moreover, three 
more models representing different scenarios are created for 
comparison with the base model, and the model was showing 
the greatest availability is selected. 

 
Fig. 7. Testing and validation approach. 

B. Results and Discussion 

The simulations show that failure data at the component-
level (host, VM, and cloudlet) were successfully fitted to a 
Weibull distribution. The parameters of each distribution were 
estimated using regression analysis. For instance, Fig. 9 shows 
the Weibull probability plot for host failure data. In the 
probability plot, the shape parameter (beta) is estimated based 
on the fitted-line slope. The scale parameter (eta) is the time at 
which a specific percentage of the population has failed. The 
correlation coefficient (rho) is a measure of how well the linear 
regression model fits the data. Furthermore, VM repair data 
were the best fit with the lognormal distribution and a two-
sided confidence level of 90% (see Fig. 10). In contrast, both 
the host and cloudlet have constant values for repair that are 
10,800 hours and 300 hours, respectively. 

 
Fig. 8. Base model RBD. 
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Fig. 9. Host failure data Weibull probability plot. 

 
Fig. 10. VM repair data lognormal probability plot. 

The failure and repair data distributions with associated 
parameters were used to feed several simulation models that 
were built using BlockSim and configured in four different 
models. 

A base model was built in simple series and configured 
using the data provided by Weibull++. Table 2 shows the base 
model block configurations detailing the inputs for each block 
(i.e., host, VM, and cloudlet) on the availability model and the 
corrective task. 

At the simulation end time (300,000-time units), the base 
model achieved an availability of 0.590767. Hence, to improve 
the system availability (i.e., to fulfill the customer's 
requirements), a sensitivity analysis is performed to study the 
impact of the repair rate and standby configuration (i.e., 
redundancy technique) on the overall system availability. 

In the second model, host repair time was improved in the 
base model to determine its impact on overall system 
availability. The results showed that at the simulation end time 
(300,000-time units), availability is increased to 0.722. 

In the third model, the base model was improved by using 
standby configurations. The base model was rebuilt with a 
standby container that included three base model systems; one 

system was active, and two were on standby (see Fig. 11). It is 
assumed that the switching reliability is 100%. The standby 
simulation results showed an improvement in overall system 
availability. 

For instance, at the simulation end time (300,000-time 
units), system availability was 0.977. Also, a fourth model was 
created by applying a standby configuration to the second 
model in which the host repair time is improved. The results 
showed an improvement in overall system availability. At the 
simulation end time (300,000-time units), availability had 
increased to 0.996313. Fig. 12 shows the mean availability of 
the four models. 

TABLE. II. BASE MODEL CONFIGURATIONS 

 
Fig. 11. Base model with standbys RBD. 

 
Fig. 12. Mean availability overlay plot for all models. 

Configuration Attribute Host VM Cloudlet 

Reliability 

Model 

Distribution 2P-Weibull 2P-Weibull 2P-Weibull 

Beta 1.37 1.43 1.46 

Eta 17281 17136 16260 

Corrective 

Task 

Distribution Constant Lognormal Constant 

Parameter 1 10800 
3.7  
(log mean) 

300 

Parameter 2 NA 
0.72  

(log-std) 
NA 

Restoration 
As good as 
new 

As good as 
new 

As good as 
new 

Task result 
Bring item 

down 

Bring item 

down 

Bring item 

down 
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V. CONCLUSIONS AND FUTURE WORK 

This paper’s primary contribution is a proposed model for 
evaluating the availability of cloud service provisioning 
systems. The model relies on NIST-CCRA, the well-known 
cloud computing reference architecture, to define cloud 
subsystems/components and the logical relationships among 
them. Using mature modeling techniques from reliability 
theory that can provide the operational measures that are so 
desirable today, we were able to quantify component-level 
availability. Furthermore, by considering series/parallel 
arrangements of the cloud system components, RBD was used 
to model system-level availability. The proposed model has 
some limitations imposed by the characteristics of RBDs. In 
future research, a dynamic RBD [30] will be adopted to 
consider the dynamic behavior of a cloud system. Other cloud 
scenarios such as cloud federation will also be modeled in 
future studies. 
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