
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

277 | P a g e

www.ijacsa.thesai.org

Mobile Malware Classification via System Calls and

Permission for GPS Exploitation

Madihah Mohd Saudi

Faculty of Science and Technology (FST),

Universiti Sains Islam Malaysia (USIM),

Bandar Baru Nilai, 71800 Nilai,

Negeri Sembilan, Malaysia

Muhammad „Afif b. Husainiamer

Faculty of Science and Technology (FST),

Universiti Sains Islam Malaysia (USIM),

Bandar Baru Nilai, 71800 Nilai,

Negeri Sembilan, Malaysia

Abstract—Now-a-days smartphones have been used

worldwide for an effective communication which makes our life

easier. Unfortunately, currently most of the cyber threats such as

identity theft and mobile malwares are targeting smartphone

users and based on profit gain. They spread faster among the

users especially via the Android smartphones. They exploit the

smartphones through many ways such as through Global

Positioning System (GPS), SMS, call log, audio or image.

Therefore to detect the mobile malwares, this paper presents 32

patterns of permissions and system calls for GPS exploitation by

using covering algorithm. The experiment was conducted in a

controlled lab environment, by using static and dynamic

analyses, with 5560 of Drebin malware datasets were used as the

training dataset and 500 mobile apps from Google Play Store for

testing. As a result, 21 out of 500 matched with these 32 patterns.

These new patterns can be used as guidance for all researchers in

the same field in identifying mobile malwares and can be used as

the input for a formation of a new mobile malware detection

model.

Keywords—Mobile malware; Global Positioning System (GPS)

exploitation; system call; permission; covering algorithm; static

and dynamic analyses

I. INTRODUCTION

Currently, Android smartphone is the most and widely used
worldwide and many new mobile malwares are designed to
attack it. Mobile malwares is defined as malicious software
that is built to attack mobile phone or smartphone system
without the owner consent. Examples of the mobile malwares
are Slembunk and Santa Claus, where they are able to collect
sensitive and confidential information and control smartphone
with root exploitation. They tarnish the infected victim
reputation and have caused loss of money, productivity and
confidential information. Furthermore, McAffee has also
reported that 37 million of malwares have been detected in
apps stores in year 2016.

1
 Apart from SMS, call log, audio and

picture exploitation, Global Positioning System (GPS) has
been used by many attackers to exploit smartphones. Through
GPS, attackers know the victims‟ details such as satellite
information and every movement can be monitored by them. In
early year 2017, Google has released a patch (CVW-2016-
8467) to overcome security vulnerabilities related with GPS

1 B. Snell, “Mobile threat report what‟s on the horizon for 2016”, 2016.

[Online]. Available: https://www.mcafee.com/us/resources/reports/rp-mobile-

threat-report-2016.pdf. [Accessed: 30- May- 2017]

exploitation in Nexus 6 and 6P phones.
2
 Currently, not much

work has been done to detect GPS exploitation in smartphone.
Therefore, this paper objective is to detect mobile malware
attacks for GPS exploitation based on system call and
permission patterns. A covering algorithm is used as a basis for
the proposed patterns. Then the proposed patterns are evaluated
to prove its effectiveness.

This paper is organized as: Section 2 presents related work
on mobile malware architecture, features and detection
techniques. Section 3 describes the methodology used in this
research. Section 4 presents the results of experiment carried
out in this research. Section 5 includes the summary and
potential future work of this paper.

II. RELATED WORK

There are many ways how mobile malwares can be
categorized. Work done by Altaher classified android malware
based on weighted bipartite graph [1]. He used API and
permission for the classification but the dataset used for the
experiment only limited to 500 dataset. A bigger and more
recent dataset would be a good improvement for this work. As
for Feizollah and colleagues, they used feature selection for
mobile malwares features extraction [2]. These are based on
four main features which are static, dynamic, hybrid and
application metadata features. The paper provides a
comprehensive review on feature selection for mobile
malwares and it is used as guidance for our experiment in this
paper. Hybrid feature which combines static and dynamic
analyses has been applied due to its comprehensive and
systematic feature. System call and permission that are related
with GPS exploitation have been extracted and categorized in
different patterns and details explained in Section 4 in this
paper. Work by Manuel and colleagues also used hybrid
feature in their experiment [3]. While works by [4]-[6] used
static analysis only, which would give a better a performance if
dynamic analysis is integrated in future (hybrid technique).

Apart from that, few research papers by [7]-[9], they
discussed about Location Based Services (LBS) or GPS usage
for Android smartphone. As for Singhal and Sungkla, they dis-
cussed about the implementation of LBS to give multiple

2 Tom Mendelsohn, “Google plugs severe android vulnerability that exposed

devices to spying | Ars Technica,” 2017. [Online]. Available:

https://arstechnica.com/security/2017/01/google-plugs-severe-android-

bootmode-vulnerability/. [Accessed: 30-May-2017].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

278 | P a g e

www.ijacsa.thesai.org

services to the user based on their location through Google
Web Services and Walk Score Transit APIs on Android. While
Ma and colleagues, have developed a tool called as Brox to
detect location information leakage in Android by integrating
static analysis and Vanjire and colleagues have developed an
Android application to locate nearest friends and family
members location. There are also many works related to
Android malwares analysis such as by [2], [6], [10]-[13].
However, none of the existing works discuss in detailed on
how to detect and overcome GPS exploitation for smartphone.
This is among the challenges for future work.

III. METHODOLOGY

The dynamic and static analyses and classification of GPS
exploitation for system call and permission are summarized as
in Fig. 1. The experiment was conducted in a controlled lab
environment as illustrated in Fig. 2. No outgoing network
connection is allowed to avoid any spread of the mobile
malwares.

Fig. 1. Research processes.

Fig. 2. Lab architecture.

TABLE. I. SOFTWARES USED

Software Function

Genymotion Android emulator

Microsoft Excel
Display log dataset in xlsx format

Tabulate result recorded

WinZip Unzip compressed file

ApkTool Decompile apk resource file into a folder

Strace
Learn application behavior effectively

through system calls

Android SDK Conduct the dynamic analysis

Android Studio Build application

Table 1 displays the softwares used for the experiment. For
this research, the training dataset consists of 179 different types
of mobile malwares from 5560 Drebin dataset [4]. While for
the testing, 500 mobile applications (apps) have been randomly
selected from Google Play Store. The Drebin dataset includes
all dataset from the Android Malware Genome Project. It is
among the largest malware dataset, free and widely used by
many researchers such as by [2], [6], [10]-[13].

The dynamic analysis was used to capture the system call
while static analysis was used to capture permission. Then all
the extracted system calls and permissions were classified by
using covering algorithm. For the dynamic analysis, the apk
was installed in Genymotion and being controlled by Android
Debug Bridge (ADB). Then the running processes and system
calls of the apk were identified and extracted. Fig. 3 displays
an example of a screen shot for the system calls captured and
Fig. 4 displays an example of a screen shot for the permissions
captured. As for the static analysis, the permissions were
extracted in the Genymotion where Dexplorer being installed
inside it.

1. Dataset from Drebin was downloaded

2. Laboratory environment was set up.

3. Tools were installed

4. Using static and dynamic analyses technique

(Stracemodule), data analysis was conducted

5. The emulator device was rootly controlled by using Android Debug
Bridge (ADB)

6. The parent process of the Android application were identified and
retrieved(ps)

7. System call behaviour of an application was monitored and
documented

8. The static and dynamic analyses were completed

9. System call classification were obtained

10. The result was tested with application from Google Play store

11. Documentation, report writing and publication

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

279 | P a g e

www.ijacsa.thesai.org

Fig. 3. Screenshot of system call captured.

Fig. 4. Screenshot of permissions captured.

Fig. 5. System calls frequency.

Fig. 5 displays an example of the system calls frequency.
Once all the permissions and system calls have been extracted,
percentage of occurrence and covering algorithm were applied.
These are crucial to verify the extracted dataset and to produce
pattern. The percentage of occurrence is developed to compare
the similarity between the extracted system calls and

permissions. This is useful to avoid redundancy. Each of the
system call occurrence is written as 1 to indicate the presence
of the system call and 0 for vice versa. Then, the total of the
presence and absence of the system calls and permissions were
calculated and being compared with the existing dataset.

Once above steps are completed, the output became the
input for the covering algorithm. The covering algorithm is
used to generate system call and permission pattern for each
apk. It identifies rules that have been set by the researchers. In
this experiment, specific to general rule induction for covering
algorithm has been applied as the following:

1) The extracted system calls and permissions are being

picked up and generalized by repeatedly dropping condition.

2) If all the system calls and permissions covered by the

set rule, then removed it and continue until all the system calls

and permissions are covered.

3) When dropping the condition, make sure to choose the

maximize rule coverage.

IV. FINDINGS

Thousands of system calls and permissions have been
extracted, but the focus of this paper is on GPS exploitation.
There are 58 system calls and 41 permissions out of 5560
samples that have been discovered that could be used together
with genuine system calls for GPS exploitation. These system
calls representation are shown in Table 2 and permissions
representations are shown in Table 3.

TABLE. II. SYSTEM CALLS REPRESENTATION

Nominal

Data
System call

Nominal

Data
Systemcall

m1 clock_gettime() m32 getsockname()

m2 epoll_wait() m33 unlinkat()

m3 recvfrom() m34 madvise()

m4 sendto() m35 pwrite64()

m5 futex() m36 setsockopt()

m6 gettimeofday() m37 lseek()

m7 writev() m38 nanosleep()

m8 getuid32() m39 getrlimit()

m9 read() m40 brk()

m10 ioctl() m41 fchown32()

m11 write() m42 getpid()

m12 close() m43 gettid()

m13 open() m44 lstat64()

m14 mmap2() m45 recvmsg()

m15 mprotect() m46 recv()

m16 dup() m47 stat64()

m17 fcntl64() m48 sigprocmask()

m18 epoll_ctl() m49 select()

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

280 | P a g e

www.ijacsa.thesai.org

Nominal

Data
System call

Nominal

Data
Systemcall

m19 munmap() m50 umask()

m20 pread() m51 getpaid()

m21 sched_yield() m52 pread64()

m22 getsockopt() m53 rename()

m23 clone() m54 fdatasync()

m24 access() m55 mkdir()

m25 fstat64() m56 uname()

m26 chmod() m57 rt_sigreturn()

m27 fsync() m58 _llseek()

m28 connect()

m29 sendmsg()

m30 socket()

m31 bind()

TABLE. III. FORTY-ONE PERMISSIONS

Nomi

nal

Data

Permission

Nomi

nal

Data

Permission

p1
access_course_loc
ation

p22
install_packag
es

p2
access_fine_locati
on

p23
install_shortcu
t

p3 access_gps p24 internet

p4
access_location_e

xtra_commands
p25

kill_backgrou

nd_process

p5
access_network_st

ate
p26

modify_audio

_setting

p6 access_wifi_state p27 read_calendar

p7 battery_stat p28 read_call_log

p8 bluetooth p29 read_contact

p9 bluetooth_admin p30
read_external_

storage

p10 call_phone p31 read_logs

p11 camera p32
read_phone_st

ate

p12
change_network_s

tate
p33 read_settings

p13
change_wifi_multi
cast_state

p34 read_sms

p14 change_wifi_state p35
receive_boot_
complete

p15 clear_app_cache p36 receive_mms

p16
control_location_u

pdates
p37 receive_sms

p17 delete_packages p38 record_audio

p18 disable_keyguard p39
restart_packag

es

p19 expand_status_bar p40
write_external

_storage

p20 get_accounts p41 write_settings

p21 get_tasks

TABLE. IV. SIX TOP PERMISSIONS USED TO EXPLOIT GPS

ACCESS_COURSE_LOCATION

ACCESS_FINE_LOCATION

GET_ACCOUNTS

READ_EXTERNAL_STORAGE

READ_PHONE STATE

WRITE_EXTERNAL_STORAGE

Table 4 shows permission classification that mostly used
together with system call to exploit GPS that have been
extracted from the Drebin dataset. Through dynamic analysis,
numerous system calls per application have been encountered
until the execution was stopped. Based on system calls
presence during dynamic analysis, logs of dataset were
recorded.

Table 5 shows the top 10 system calls classification that
widely used with permission and system call to exploit GPS
that have been extracted from Drebin dataset.

Table 6 shows list of patterns which have been produced
based on mostly used for GPS exploitation.

TABLE. V. TOP TEN SYSTEM CALLS USED FOR GPS CONNECTION

chmod()

epoll_wait()

ioctl()

read()

access()

socket()

bind()

connect()

recv()

writev()

TABLE. VI. THIRTY-TWO PATTERNS FOR POSSIBLE GPS EXPLOITATION

Pattern

Representation
Pattern

GPS1
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26

GPS2
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m7

GPS3
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m7+m28

GPS4
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m7+m28+m30

GPS5
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m7+m28+m30+m31

GPS6
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m7+m28+m30+m31+m46

GPS7
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m7+m28+m30+m46

GPS8
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m7+m28+m31

GPS9 p1+p2 +p20+p30+p32+p40+

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

281 | P a g e

www.ijacsa.thesai.org

m2+m9+m10+m24+m26+m7+m28+m31+m46

GPS10
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m7+m28+m46

GPS11
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m7+m30

GPS12
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m7+m30+m31

GPS13
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m7+m30+m31+m46

GPS14
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m7+m30+m46

GPS15
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m7+m31

GPS16
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m7+m31+m46

GPS17
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m7+m46

GPS18
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m28

GPS19
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m28+m30

GPS20
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m28+m30+m31

GPS21
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m28+m30+m31+m46

GPS22
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m28+m30+m46

GPS23
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m28+m31

GPS24
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m28+m31+m46

GPS25
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m28+m46

GPS26
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m30

GPS27
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m30+m31

GPS28
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m30+m31+m46

GPS29
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m30+m46

GPS30
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m31

GPS31
p1+p2 +p20+p30+p32+p40+

m2+m9+m10+m24+m26+m31+m46

GPS32
p1+p2+p20+p30+p32+p40+

m2+m9+m10+m24+m26+m46

TABLE. VII. PERCENTAGE OF APPLICATIONS THAT MATCH WITH SYSTEM

CALLS AND PERMISSION BASED ON GPS EXPLOITATION

Patt

ern

Google

play

applica

tions

Application name
Application

types
Percentage

GPS

1
21

A1
Game

4.2%

A2 Downloader

A3 Game

A4 Game

A5 Entertainment

A6 Game

A7 Music

A8 Location

A9 Launcher

A10 Game

A11 Education

A12 Game

A13 Entertainment

A14
Communicatio

n

A16 Map

A17 Weather

A18 Travel

A19 Browser

A20
Map

A21
Map

A22 Comic

GPS

2
21

A23
Game

4.2%

A24 Downloader

A25 Game

A26 Game

A27 Entertainment

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

282 | P a g e

www.ijacsa.thesai.org

A28 Game

A29 Music

A30 Location

A31 Launcher

A32 Game

A33 Education

A34 Game

A35 Entertainment

A36
Communicatio

n

A37 Map

A38 Weather

A39 Travel

A40 Browser

A41
Map

 A42
Map

A43 Comic

GPS

3
1 A45 Downloader 0.2%

GPS

4
1 A46 Downloader 0.2%

GPS

5
0 None 0 0%

GPS

6
0 None 0 0%

GPS

7
0 None 0 0%

GPS

8
0 None 0 0%

GPS

9
0 None 0 0%

GPS

10
0 None 0 0%

GPS

11
2

A47 Games

0.4%

A48 Downloader

GPS

12
0 None 0 0%

GPS 0 None 0 0%

13

GPS

14
0 None 0 0%

GPS

15
0 None 0 0%

GPS

16
0 None 0 0%

GPS

17
0 None 0 0%

GPS

18
1 A49 Downloader 0.2%

GPS

19
2

A50 Game

0.4%

A51 Downloader

GPS

20
0 None 0 0%

GPS

21
0 None 0 0%

GPS

22
0 None 0 0%

GPS

23
0 None 0 0%

GPS

24
0 None 0 0%

GPS

25
0 None 0 0%

GPS

26
2

A52 Game

0.4%

A53 Downloader

GPS

27
0 None 0 0%

GPS

28
0 None 0 0%

GPS

29
0 None 0 0%

GPS

30
0 None 0 0%

GPS

31
0 None 0 0%

GPS

32
0 None 0 0%

From 32 proposed patterns for potential GPS exploitation,
only 21 of them which were downloaded from Google Play
Store matched with our proposed patterns as summarized in
Table 7.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

283 | P a g e

www.ijacsa.thesai.org

Then from Table 7, the categories of these 21 apps are
summarized in Table 8.

TABLE. VIII. CATEGORIES OF THE MATCHED MALICIOUS APPLICATIONS

No Malicious Application Type

1

Apps1 Game

2 Apps2 Downloader

3 Apps3 Games

4 Apps4 Game

5 Apps5 Entertainment

6 Apps6 Game

7 Apps7 Music

8 Apps8 Location

9 Apps9 Launcher

10 Apps10 Game

11 Apps11 Education

12 Apps12 Game

13 Apps13 Entertainment

14 Apps14 Communication

15 Apps15 Map

16 Apps16 Weather

17 Apps17 Travel

18 Apps18 Browser

19 Apps19 Map

20 Apps20 Map

21 Apps21 Comic

V. CONCLUSION

Based on the analysis results in this paper, it can be
concluded that each of the executed mobile application has its
own system call and permission. GPS has been identified as
one of the features and has been used for different purposes.
Thirty-two possible patterns for GPS exploitation of system
calls and permissions combination are presented in this paper.
Without users‟ consent, their confidential information
especially that is related with their location or GPS can be
easily exploited by the attackers. Thus based on 21 mobile apps
that matched with our patterns, it is proven that GPS feature in
the Android smartphone can be exploited by android mobile
malware through permission and system call. For future work,
this research can be used as guidance for other researchers to
extend their work with the same interest and domain. These 32
patterns can be used as a database and input for the formation
of a new model to detect mobile attacks exploitation via GPS.

Furthermore, automatic for system call and permission
extraction is another challenge to be tackled in future.

ACKNOWLEDGMENT

The authors would like to express their gratitude to
Ministry of Higher Education (MOHE), Malaysia and
Universiti Sains Islam Malaysia (USIM) for the support and
facilities provided. This research paper is funded under grant:
[FRGS/1/2014/ICT04/USIM/02/1].

REFERENCES

[1] A. Altaher, “Using Weighted Bipartite Graph for android malware
classification”, International Journal of Advanced Computer Science and
Applications, vol. 8, no. 4, 2017.

[2] A. Feizollah, N. Anuar, R. Salleh and A. Wahab, “A review on feature
selection in mobile malware detection”, Digital Investigation, vol. 13,
pp. 22-37, 2015.

[3] M. Egele, T. Scholte, E. Kirda and C. Kruegel, “A survey on automated
dynamic malware-analysis techniques and tools”, ACM Computing
Surveys, vol. 44, no. 2, pp. 1-42, 2012.

[4] D. Arp, M. Spreitzenbarth, H. Malte, H. Gascon, and K. Rieck, “Drebin:
effective and explainable detection of android malware in your pocket,”
Symp. Netw. Distrib. Syst. Secur., no. February, pp. 23–26, 2014.
http://doi.org/10.14722/ndss.2014.23247.

[5] H. Kang, J. Jang, A. Mohaisen, and H. K. Kim, “Detecting and
classifying android malware using static analysis along with creator
information,” Int. J. Distrib. Sens. Networks, vol. 11, no. 6, p. 479174,
Jun. 2015. http://doi.org/10.1155/2015/479174.

[6] S. Wu, P. Wang, X. Li, and Y. Zhang, “Effective detection of android
malware based on the usage of data flow APIs and machine learning,”
Inf. Softw. Technol., vol. 75, pp. 17–25, Jul. 2016.
http://doi.org/10.1016/j.infsof.2016.03.004

[7] M. Singhal and A. Shukla, “Implementation of location based services
in android using GPS and web services,” Int. J. Comput. Sci. Issues, vol.
9, no. 1, pp. 237–242, 2012.

[8] Ma, S., Tang, Z., Xiao, Q., Liu, J., Duong, T. T., Lin, X., & Zhu, H.
(2013). Detecting GPS information leakage in android applications.
Global Communications Conference (GLOBECOM), 2013 IEEE, 826–
831. http://doi.org/10.1109/GLOCOM.2013.6831175.

[9] S. Vanjire, U. Kanchan, G. Shitole, and P. Patil, “Location based
services on smart phone through the android application,” Int. J. Adv.
Res. Comput. Commun. Eng., vol. 3, no. 1, 2014. Retrieved from
http://www.ijarcce.com/upload/2014/january/IJARCCE3B__A_unmesh
_Location.pdf.

[10] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,
V. van der Veen, and C. Platzer, “ANDRUBIS -- 1,000,000 apps later:
A view on current android malware behaviors,” in 2014 Third
International Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security (BADGERS), 2014, pp. 3–17.
http://doi.org/10.1109/BADGERS.2014.7.

[11] Hashim, H. A.-B., M. Saudi, M., & Basir, N. (2015). A systematic
review analysis of root exploitation for mobile botnet detection. Lecture
Notes in Electrical Engineering, 315, 925–938.
http://doi.org/10.1007/978-3-319-07674-4.

[12] A. Karim, R. Salleh, M. K. Khan, T. Schreck, J. Hoffmann, and I.
Witten, “SMARTbot: A behavioral analysis framework augmented with
machine learning to identify mobile botnet applications,” PLoS One,
vol. 11, no. 3, p. e0150077, Mar. 2016.
http://doi.org/10.1371/journal.pone.0150077.

[13] Bhatt, M. S., Patel, H., & Kariya, S. (2015). A survey permission
based mobile malware detection, 6(5), 852–856.

