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Abstract—Now-a-days smartphones have been used 

worldwide for an effective communication which makes our life 

easier. Unfortunately, currently most of the cyber threats such as 

identity theft and mobile malwares are targeting smartphone 

users and based on profit gain. They spread faster among the 

users especially via the Android smartphones. They exploit the 

smartphones through many ways such as through Global 

Positioning System (GPS), SMS, call log, audio or image. 

Therefore to detect the mobile malwares, this paper presents 32 

patterns of permissions and system calls for GPS exploitation by 

using covering algorithm. The experiment was conducted in a 

controlled lab environment, by using static and dynamic 

analyses, with 5560 of Drebin malware datasets were used as the 

training dataset and 500 mobile apps from Google Play Store for 

testing. As a result, 21 out of 500 matched with these 32 patterns. 

These new patterns can be used as guidance for all researchers in 

the same field in identifying mobile malwares and can be used as 

the input for a formation of a new mobile malware detection 

model. 
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exploitation; system call; permission; covering algorithm; static 

and dynamic analyses 

I. INTRODUCTION 

Currently, Android smartphone is the most and widely used 
worldwide and many new mobile malwares are designed to 
attack it. Mobile malwares is defined as malicious software 
that is built to attack mobile phone or smartphone system 
without the owner consent. Examples of the mobile malwares 
are Slembunk and Santa Claus, where they are able to collect 
sensitive and confidential information and control smartphone 
with root exploitation. They tarnish the infected victim 
reputation and have caused loss of money, productivity and 
confidential information. Furthermore, McAffee has also 
reported that 37 million of malwares have been detected in 
apps stores in year 2016.

1
 Apart from SMS, call log, audio and 

picture exploitation, Global Positioning System (GPS) has 
been used by many attackers to exploit smartphones. Through 
GPS, attackers know the victims‟ details such as satellite 
information and every movement can be monitored by them. In 
early year 2017, Google has released a patch (CVW-2016-
8467) to overcome security vulnerabilities related with GPS 

                                                           
1  B. Snell, “Mobile threat report what‟s on the horizon for 2016”, 2016. 

[Online]. Available: https://www.mcafee.com/us/resources/reports/rp-mobile-

threat-report-2016.pdf. [Accessed: 30- May- 2017] 

exploitation in Nexus 6 and 6P phones.
2
 Currently, not much 

work has been done to detect GPS exploitation in smartphone. 
Therefore, this paper objective is to detect mobile malware 
attacks for GPS exploitation based on system call and 
permission patterns. A covering algorithm is used as a basis for 
the proposed patterns. Then the proposed patterns are evaluated 
to prove its effectiveness. 

This paper is organized as: Section 2 presents related work 
on mobile malware architecture, features and detection 
techniques. Section 3 describes the methodology used in this 
research. Section 4 presents the results of experiment carried 
out in this research. Section 5 includes the summary and 
potential future work of this paper. 

II. RELATED WORK 

There are many ways how mobile malwares can be 
categorized. Work done by Altaher classified android malware 
based on weighted bipartite graph [1]. He used API and 
permission for the classification but the dataset used for the 
experiment only limited to 500 dataset. A bigger and more 
recent dataset would be a good improvement for this work. As 
for Feizollah and colleagues, they used feature selection for 
mobile malwares features extraction [2]. These are based on 
four main features which are static, dynamic, hybrid and 
application metadata features. The paper provides a 
comprehensive review on feature selection for mobile 
malwares and it is used as guidance for our experiment in this 
paper. Hybrid feature which combines static and dynamic 
analyses has been applied due to its comprehensive and 
systematic feature. System call and permission that are related 
with GPS exploitation have been extracted and categorized in 
different patterns and details explained in Section 4 in this 
paper. Work by Manuel and colleagues also used hybrid 
feature in their experiment [3]. While works by [4]-[6] used 
static analysis only, which would give a better a performance if 
dynamic analysis is integrated in future (hybrid technique). 

Apart from that, few research papers by [7]-[9], they 
discussed about Location Based Services (LBS) or GPS usage 
for Android smartphone. As for Singhal and Sungkla, they dis-
cussed about the implementation of LBS to give multiple 

                                                           
2 Tom Mendelsohn, “Google plugs severe android vulnerability that exposed 

devices to spying | Ars Technica,” 2017. [Online]. Available: 

https://arstechnica.com/security/2017/01/google-plugs-severe-android-

bootmode-vulnerability/. [Accessed: 30-May-2017]. 
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services to the user based on their location through Google 
Web Services and Walk Score Transit APIs on Android. While 
Ma and colleagues, have developed a tool called as Brox to 
detect location information leakage in Android by integrating 
static analysis and Vanjire and colleagues have developed an 
Android application to locate nearest friends and family 
members location. There are also many works related to 
Android malwares analysis such as by [2], [6], [10]-[13]. 
However, none of the existing works discuss in detailed on 
how to detect and overcome GPS exploitation for smartphone. 
This is among the challenges for future work. 

III. METHODOLOGY 

The dynamic and static analyses and classification of GPS 
exploitation for system call and permission are summarized as 
in Fig. 1. The experiment was conducted in a controlled lab 
environment as illustrated in Fig. 2. No outgoing network 
connection is allowed to avoid any spread of the mobile 
malwares. 

 

Fig. 1. Research processes. 

 

Fig. 2. Lab architecture. 

TABLE. I. SOFTWARES USED 

Software Function 

Genymotion Android emulator 

Microsoft Excel 
Display log dataset in xlsx format 

Tabulate result recorded 

WinZip Unzip compressed file 

ApkTool Decompile apk resource file into a folder 

Strace 
Learn application behavior effectively 

through system calls 

Android SDK Conduct the dynamic analysis 

Android Studio Build application 

Table 1 displays the softwares used for the experiment. For 
this research, the training dataset consists of 179 different types 
of mobile malwares from 5560 Drebin dataset [4]. While for 
the testing, 500 mobile applications (apps) have been randomly 
selected from Google Play Store. The Drebin dataset includes 
all dataset from the Android Malware Genome Project. It is 
among the largest malware dataset, free and widely used by 
many researchers such as by [2], [6], [10]-[13]. 

The dynamic analysis was used to capture the system call 
while static analysis was used to capture permission. Then all 
the extracted system calls and permissions were classified by 
using covering algorithm. For the dynamic analysis, the apk 
was installed in Genymotion and being controlled by Android 
Debug Bridge (ADB). Then the running processes and system 
calls of the apk were identified and extracted. Fig. 3 displays 
an example of a screen shot for the system calls captured and 
Fig. 4 displays an example of a screen shot for the permissions 
captured. As for the static analysis, the permissions were 
extracted in the Genymotion where Dexplorer being installed 
inside it. 

1. Dataset from Drebin was downloaded 

2. Laboratory environment was set up. 

3. Tools were installed 

4. Using static and  dynamic analyses technique  

(Stracemodule),  data analysis was conducted 

5. The emulator device was rootly controlled  by using Android Debug 
Bridge (ADB) 

6. The parent process of the Android application were identified and 
retrieved(ps) 

7. System call behaviour of an application was monitored and 
documented 

8. The static and dynamic analyses were completed 

9. System call classification were obtained 

10. The result was tested with application from Google Play store 

11. Documentation, report writing and publication 
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Fig. 3. Screenshot of system call captured. 

 
Fig. 4. Screenshot of permissions captured. 

 
Fig. 5. System calls frequency. 

Fig. 5 displays an example of the system calls frequency.  
Once all the permissions and system calls have been extracted, 
percentage of occurrence and covering algorithm were applied. 
These are crucial to verify the extracted dataset and to produce 
pattern. The percentage of occurrence is developed to compare 
the similarity between the extracted system calls and 

permissions. This is useful to avoid redundancy. Each of the 
system call occurrence is written as 1 to indicate the presence 
of the system call and 0 for vice versa. Then, the total of the 
presence and absence of the system calls and permissions were 
calculated and being compared with the existing dataset. 

Once above steps are completed, the output became the 
input for the covering algorithm. The covering algorithm is 
used to generate system call and permission pattern for each 
apk. It identifies rules that have been set by the researchers. In 
this experiment, specific to general rule induction for covering 
algorithm has been applied as the following: 

1) The extracted system calls and permissions are being 

picked up and generalized by repeatedly dropping condition. 

2) If all the system calls and permissions covered by the 

set rule, then removed it and continue until all the system calls 

and permissions are covered. 

3) When dropping the condition, make sure to choose the 

maximize rule coverage. 

IV. FINDINGS 

Thousands of system calls and permissions have been 
extracted, but the focus of this paper is on GPS exploitation. 
There are 58 system calls and 41 permissions out of 5560 
samples that have been discovered that could be used together 
with genuine system calls for GPS exploitation. These system 
calls representation are shown in Table 2 and permissions 
representations are shown in Table 3. 

TABLE. II. SYSTEM CALLS REPRESENTATION 

Nominal 

Data 
System call 

Nominal 

Data 
Systemcall 

m1 clock_gettime() m32 getsockname() 

m2 epoll_wait() m33 unlinkat() 

m3 recvfrom() m34 madvise() 

m4 sendto() m35 pwrite64() 

m5 futex() m36 setsockopt() 

m6 gettimeofday() m37 lseek() 

m7 writev() m38 nanosleep() 

m8 getuid32() m39 getrlimit() 

m9 read() m40 brk() 

m10 ioctl() m41 fchown32() 

m11 write() m42 getpid() 

m12 close() m43 gettid() 

m13 open() m44 lstat64() 

m14 mmap2() m45 recvmsg() 

m15 mprotect() m46 recv() 

m16 dup() m47 stat64() 

m17 fcntl64() m48 sigprocmask() 

m18 epoll_ctl() m49 select() 
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Nominal 

Data 
System call 

Nominal 

Data 
Systemcall 

m19 munmap() m50 umask() 

m20 pread() m51 getpaid() 

m21 sched_yield() m52 pread64() 

m22 getsockopt() m53 rename() 

m23 clone() m54 fdatasync() 

m24 access() m55 mkdir() 

m25 fstat64() m56 uname() 

m26 chmod() m57 rt_sigreturn() 

m27 fsync() m58 _llseek() 

m28 connect()   

m29 sendmsg()   

m30 socket()   

m31 bind()   

TABLE. III. FORTY-ONE PERMISSIONS 

Nomi

nal 

Data 

Permission 

Nomi

nal 

Data 

Permission 

p1 
access_course_loc
ation 

p22 
install_packag
es 

p2 
access_fine_locati
on 

p23 
install_shortcu
t 

p3 access_gps p24 internet 

p4 
access_location_e

xtra_commands 
p25 

kill_backgrou

nd_process 

p5 
access_network_st

ate 
p26 

modify_audio

_setting 

p6 access_wifi_state p27 read_calendar 

p7 battery_stat p28 read_call_log 

p8 bluetooth p29 read_contact 

p9 bluetooth_admin p30 
read_external_

storage 

p10 call_phone p31 read_logs 

p11 camera p32 
read_phone_st

ate 

p12 
change_network_s

tate 
p33 read_settings 

p13 
change_wifi_multi
cast_state 

p34 read_sms 

p14 change_wifi_state p35 
receive_boot_
complete 

p15 clear_app_cache p36 receive_mms 

p16 
control_location_u

pdates 
p37 receive_sms 

p17 delete_packages p38 record_audio 

p18 disable_keyguard p39 
restart_packag

es 

p19 expand_status_bar p40 
write_external

_storage 

p20 get_accounts p41 write_settings 

p21 get_tasks 
 
 

 

TABLE. IV. SIX TOP PERMISSIONS USED TO EXPLOIT GPS 

ACCESS_COURSE_LOCATION 

ACCESS_FINE_LOCATION 

GET_ACCOUNTS 

READ_EXTERNAL_STORAGE 

READ_PHONE STATE 

WRITE_EXTERNAL_STORAGE 

Table 4 shows permission classification that mostly used 
together with system call to exploit GPS that have been 
extracted from the Drebin dataset. Through dynamic analysis, 
numerous system calls per application have been encountered 
until the execution was stopped. Based on system calls 
presence during dynamic analysis, logs of dataset were 
recorded. 

Table 5 shows the top 10 system calls classification that 
widely used with permission and system call to exploit GPS 
that have been extracted from Drebin dataset. 

Table 6 shows list of patterns which have been produced 
based on mostly used for GPS exploitation. 

TABLE. V. TOP TEN SYSTEM CALLS USED FOR GPS CONNECTION 

chmod() 

epoll_wait() 

ioctl() 

read() 

access() 

 

socket() 

bind() 

connect() 

recv() 

writev() 

TABLE. VI. THIRTY-TWO PATTERNS FOR POSSIBLE GPS EXPLOITATION 

Pattern 

Representation 
Pattern 

GPS1 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26 

GPS2 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m7 

GPS3 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m7+m28 

GPS4 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m7+m28+m30 

GPS5 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m7+m28+m30+m31 

GPS6 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m7+m28+m30+m31+m46 

GPS7 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m7+m28+m30+m46 

GPS8 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m7+m28+m31 

GPS9 p1+p2 +p20+p30+p32+p40+ 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 6, 2017 

281 | P a g e  

www.ijacsa.thesai.org 

m2+m9+m10+m24+m26+m7+m28+m31+m46 

GPS10 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m7+m28+m46 

GPS11 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m7+m30 

GPS12 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m7+m30+m31 

GPS13 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m7+m30+m31+m46 

GPS14 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m7+m30+m46 

GPS15 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m7+m31 

GPS16 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m7+m31+m46 

GPS17 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m7+m46 

GPS18 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m28 

GPS19 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m28+m30 

GPS20 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m28+m30+m31 

GPS21 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m28+m30+m31+m46 

GPS22 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m28+m30+m46 

GPS23 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m28+m31 

GPS24 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m28+m31+m46 

GPS25 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m28+m46 

GPS26 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m30 

GPS27 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m30+m31 

GPS28 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m30+m31+m46 

GPS29 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m30+m46 

GPS30 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m31 

GPS31 
p1+p2 +p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m31+m46 

GPS32 
p1+p2+p20+p30+p32+p40+ 

m2+m9+m10+m24+m26+m46 

TABLE. VII. PERCENTAGE OF APPLICATIONS THAT MATCH WITH SYSTEM 

CALLS AND PERMISSION BASED ON GPS EXPLOITATION 

Patt

ern 

Google 

play 

applica

tions 

Application name 
Application 

types 
Percentage  

GPS

1 
21 

A1 
Game 

4.2% 

A2 Downloader 

A3 Game 

A4 Game 

A5 Entertainment 

A6 Game 

A7 Music 

A8 Location 

A9 Launcher 

A10 Game 

A11 Education 

A12 Game 

A13 Entertainment 

A14 
Communicatio

n 

A16 Map 

A17 Weather 

A18 Travel 

A19 Browser 

A20 
Map 

A21 
Map 

A22 Comic 

GPS

2 
21 

A23 
Game 

4.2% 

A24 Downloader 

A25 Game 

A26 Game 

A27 Entertainment 
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A28 Game 

A29 Music 

A30 Location 

A31 Launcher 

A32 Game 

A33 Education 

A34 Game 

A35 Entertainment 

A36 
Communicatio

n 

A37 Map 

A38 Weather 

A39 Travel 

A40 Browser 

A41 
Map 

 A42 
Map 

A43 Comic 

GPS

3 
1 A45 Downloader 0.2% 

GPS

4 
1 A46 Downloader 0.2% 

GPS

5 
0 None  0 0% 

GPS

6 
0 None 0 0% 

GPS

7 
0 None 0 0% 

GPS

8 
0 None 0 0% 

GPS

9 
0 None 0 0% 

GPS

10 
0 None 0 0% 

GPS

11 
2 

A47 Games 

0.4% 

A48 Downloader 

GPS

12 
0 None 0 0% 

GPS 0 None 0 0% 

13 

GPS

14 
0 None 0 0% 

GPS

15 
0 None 0 0% 

GPS

16 
0 None 0 0% 

GPS

17 
0 None 0 0% 

GPS

18 
1 A49 Downloader 0.2% 

GPS

19 
2 

A50 Game 

0.4% 

A51 Downloader 

GPS

20 
0 None 0 0% 

GPS

21 
0 None 0 0% 

GPS

22 
0 None 0 0% 

GPS

23 
0 None 0 0% 

GPS

24 
0 None 0 0% 

GPS

25 
0 None 0 0% 

GPS

26 
2 

A52 Game 

0.4% 

A53 Downloader 

GPS

27 
0 None 0 0% 

GPS

28 
0 None 0 0% 

GPS

29 
0 None 0 0% 

GPS

30 
0 None 0 0% 

GPS

31 
0 None 0 0% 

GPS

32 
0 None 0 0% 

From 32 proposed patterns for potential GPS exploitation, 
only 21 of them which were downloaded from Google Play 
Store matched with our proposed patterns as summarized in 
Table 7. 
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Then from Table 7, the categories of these 21 apps are 
summarized in Table 8. 

TABLE. VIII. CATEGORIES OF THE MATCHED MALICIOUS APPLICATIONS  

No Malicious Application Type 

1 

 
Apps1  Game 

2 Apps2 Downloader 

3 Apps3 Games 

4 Apps4 Game 

5 Apps5 Entertainment  

6 Apps6 Game 

7 Apps7 Music 

8 Apps8 Location 

9 Apps9 Launcher 

10 Apps10 Game 

11 Apps11 Education 

12 Apps12 Game 

13 Apps13 Entertainment 

14 Apps14 Communication 

15 Apps15 Map 

16 Apps16 Weather 

17 Apps17 Travel 

18 Apps18 Browser 

19 Apps19 Map 

20 Apps20 Map 

21 Apps21 Comic 

V. CONCLUSION 

Based on the analysis results in this paper, it can be 
concluded that each of the executed mobile application has its 
own system call and permission. GPS has been identified as 
one of the features and has been used for different purposes. 
Thirty-two possible patterns for GPS exploitation of system 
calls and permissions combination are presented in this paper. 
Without users‟ consent, their confidential information 
especially that is related with their location or GPS can be 
easily exploited by the attackers. Thus based on 21 mobile apps 
that matched with our patterns, it is proven that GPS feature in 
the Android smartphone can be exploited by android mobile 
malware through permission and system call. For future work, 
this research can be used as guidance for other researchers to 
extend their work with the same interest and domain. These 32 
patterns can be used as a database and input for the formation 
of a new model to detect mobile attacks exploitation via GPS. 

Furthermore, automatic for system call and permission 
extraction is another challenge to be tackled in future. 
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