
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 6, 2017

Cost Optimization of Replicas in Tree Network of
Data Grid with QoS and Bandwidth Constraints

Alireza Chamkoori
Department of Computer Engineering

Khormoj Branch
Islamic Azad University, Iran

Farnoosh Heidari
Department of Electrical Engineering

Bushehr Branch
Islamic Azad University, Bushehr, Iran

Naser Parhizgar
Department of Electrical Engineering

Shiraz Branch
Islamic Azad University, Shiraz, Iran

Abstract—Data Grid provides resources for data-intensive
scientific applications that need to access a huge amount of data
around the world. Since data grid is built on a wide-area network,
its latency prohibits efficient access to data. This latency can
be decreased by data replication in the vicinity of users who
request data. Data replication can also improve data availability
and decreases network bandwidth usage. It can be influenced by
two imperative constraints: Quality of Service (QoS) that is locally
owned by a user and bandwidth constraint that globally affects
on link that might be shared by multiple users. Guaranteeing
both constraints and also minimizing replication cost consisting
communication and storage costs is a challenging task. To address
this problem, the authors propose to use a dynamic algorithm
called Optimal Placement of Replicas to minimize replication
cost and coupled with meeting both mentioned constraints. It is
also designed as heuristic algorithms that are competitive with
optimal algorithm in performance metrics such as replication
cost, network bandwidth usage and data availability. Extensive
simulations show that the Optimal algorithm saves 10% cost com-
pared to heuristic algorithms and provides local responsiveness
for half of the user requests.

Keywords—Hierarchical data grid; replication cost; replica
optimal placement; communication cost; storage cost; cost mini-
mization; QoS and bandwidth constraints

I. INTRODUCTION

Data-intensive scientific applications are increasingly grow-
ing because of recent development in distributed systems (such
as peer to peer systems, grid, cloud computing, etc.). These
applications need extreme-scale repositories and computing
resources. For example, astronomy projects-Virtual Obser-
vations1 and protein simulation-Bio-Grid2 require analysing
a huge amount of data. The data generated from such an
experiment, with a network of sensors or an instrument is
stored at a master storage site and is moved to other sites all
over the world. Data grid is a suitable distributed system to
provide computational facilities and repositories in large scale
for users. It offers a scalable infrastructure for management of
massive storage resources and data that are distributed across
network.

Each data grid has its own model that is the manner of
resource organization such as data resources which can be
either single or distributed, data size, and sharing model of
data. Data grids usually follow four common models: monadic,
hierarchical, federation, and hybrid [1]. In this paper, it has

1www.birncommunity.org
2www.biogrid.jp

been focused on hierarchical model that consists of several
levels (tiers). In the first level, data is generated and stored.
Then, the data is distributed to other levels if it is requested.
This model is usually found in current data grids [1]. One
example for this model is LCG (Large Hadron Collidor Grid)
project in which scientists likely need to access a huge amount
of raw data that can reach several petabytes. Also, most of
these data are read only; because they are the input data to the
application for analysis, classification, and other purposes.

Data grid, building on wide-area network and resulting in
high latency as its consequence, utilizes efficient techniques to
deliver data to users with guaranteed QoS that has either local
or global influence on user satisfaction. The local influence is
due to QoS that is requested by user and the global influence is
because of constraint on the link bandwidth may be shared by
multiple users. One of the technique to guarantee QoS is data
replication in multiple locations which allows user to access
data from a server in her vicinity.

Clearly, in one hand, data replication not only reduces
data access cost and provides the guaranteed QoS, but also
promotes data availability in many applications. On the other
hand, replication cost borne by user can increase if a suitable
replication strategy is not taken. Thus, replication cost and
access cost are two potentially conflicting objectives that
should be addressed whilst the constraints in the system are
satisfied.

This paper discusses the aim of addressing the above
problem called Replica Placement Optimization with QoS and
bandwidth constraints. Here some assumptions in this problem,
which are compatible with the characteristics of real data
grid are also discussed. It is assumed that all objects are
initially stored in the root of tree and access to the objects
is based on the Closest policy in which the user requests are
served only by the closest replica in the path from request
node up to the root [2]. The objective of this problem is
to minimize communication and storage costs whilst QoS
constraint (number of hops) and link bandwidth limitation are
respected.

Several works investigate replica placement on parallel and
distributed systems with regular structures such as tree, hyper
cube, ring, etc. [3]. But, neither this deals with QoS guarantee
nor with bandwidth constraints. Moreover, the objective func-
tion of these work is not similar to that of us. Cidon et al.
[4] studied an optimal placement of replicas and minimized
communication and storage costs without any constraints.

www.ijacsa.thesai.org 464 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 6, 2017

Karlsson et al. [5] have taken into account bandwidth limi-
tations and proposed several heuristic algorithms to tackle NP-
complete problem. But, they do not consider QoS constraint.
Wu et al. [6] investigated a problem in which the objective
function is to minimize the number of replicas with QoS
in terms of a range limit (i.e., hops number). Rehn-Sonigo
[7] proposed a major extension [6], with the same objective
function but with an additional constraint, i.e., link bandwidth.
Our work is different with both of these previous works in
terms of the objective function.

The main objective of our algorithms is to minimize
replication cost, which includes communication and storage
costs whilst the desired QoS of user in terms of distance
between the client (i.e., user) and server is guaranteed. It is
also considered bandwidth constraint as a global QoS that
belongs to the network and can influence on all clients in the
data grid system. Further, proposed several heuristic algorithms
and compared with the optimal one in three aspects that are
important in data grid: replication cost, network bandwidth
usage, and data availability.

The rest of the paper organized as: Section II presents
related work in replica placement in data grid environments.
The basic preliminaries are provided and also formulated
replica placement optimization problem in Section III. Section
IV dedicated to proposed algorithms. The experimental results
are given in Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

Replica placement problem has been well investigated in
literature. This problem can be categorized based on network
structure: general graph and tree. The problem in former
category is known to be a NP-hard K-center problem and
has been dealt in two steps discussed as: In first step, with
considering the desired objective function, a spanning tree is
extracted. In the second step, the replicas are placed in the
extracted tree to optimize the objective function. In this regard,
many works considered QoS as a constraint whilst considering
replication cost as an objective function [8], [9]. Our work does
not fall into this line of research.

In the latter structure, this problem either can be reduced to
NP-problem or can be optimally solved, which depends on the
defined objective function and constraints in these problems.
Researchers have exhaustively studied this problem mainly for
two categories as follows:

Replica Placement without Constraint: Early work on this
category has done by Wolfson and Milo [10], where the
multicast write policy is employed to optimally allocate k
replicas in different topology. We also propsed algorithm to
place k replicas in data grid tree network [11], [12]. Kalpakis
et al. [13] discussed the replica placement problem when a
general objective function takes into account read, write, and
storage costs and uses a minimum spanning tree to propagate
updates among the replicas. Cidon et al. [4] studied an instance
of the problem with the objective function aimed at finding
the optimal number of replicas, where the communication
and storage costs are considered. Also a similar instance was
studied of the problem and an algorithm with the lower time
complexity in the context of data grid systems [14].

Replica Placement with Constraints: The constraints in
replica placement can be on server capacity, link bandwidth,
and QoS [2]. Tang et al. [15] have been the first author to con-
sider actual QoS constraint in replica placement problem. They
studied this problem in graph and tree networks. Several works
considered this constraint in data grid tree network where the
objective function is either replication cost minimization or
load balance on servers [6], [16]. Also, Shorfuzzaman et
al. [17] investigated the placement of k replicas with QoS
constraint in data grid tree network such that the replication
cost, which is a summation of write, read, and storage costs is
minimized. Rehn-Sonigo [7] proposed a theoretical algorithm
to balance load on servers such that QoS and link bandwidth
constraints are satisfied.

Most work listed above do not provide both QoS and
bandwidth constraints simultaneously. A dynamic algorithm is
proposed to optimize replication cost including communication
and storage costs such that QoS and bandwidth constraints
are guaranteed. Although [7] and our work are similar in
constraints (QoS and link bandwidth), our objective function
is to minimize communication and storage costs whilst the
objective function of [7] is aimed at balancing load on servers.
Moreover, three heuristic algorithms is proposed to replicate
data based on either read cost or storage cost.

III. PREMILINARIES AND PROBLEM FORMULATION

The system model is represented as a rooted undirected
tree Tr = (V,E), where V (|V | = n) is the set of nodes. A
node is a server if it has a replica of the object else it is a
client. E is the set of edges, which represents links in tree. r
is the root of tree and all objects i m(1 ≤ i ≤ m) are initially
stored in it. The size of each object i is denoted by Oi. Let
ri(v) and S(v) be two functions representing the number of
read requests issued by node v for object i and storage cost
of placing a replica of object at node v, respectively. Also,
let d(u, v) be a non-negative cost between nodes u and v and
assigned to link (u, v) ∈ E. It can be interpreted as delay,
link cost or number of hops. Also each link (u, v) ∈ E owns
a bandwidth limit bw(u, v) that cannot be exceeded. Let t(v)
the sub-tree rooted by node v, and t′(v) = t(v) − v, i.e. the
forest of trees rooted at v’s children.

It is defined in two constraints: QoS and link bandwidth.
The required QoS is termed by q(v) that should be guaranteed.
With no less of generality, it can be considered the distance
(i.e., the number of communication hops) between a client and
server as QoS. Thus,

∀c ∈ clients,∀v ∈ servers, d(c, v) ≤ q(c) (1)

where distance d(c, v) is the number of hops between client
c and server v. According to (1) if object i is retrieved by
client c from server v within distance d(c, v) ≤ q(c), then
QoS requirement is met; otherwise it is violated.

Other constraint in our system model is bandwidth limita-
tion and it is defined as follows. Assume that the node vl in
distance of l links is an ancestor of node c and also Sr(t(c), vl)
denotes the total requests issued from t(c) to node vl for the
desired object. Based on this constraint, Sr(t(c), vl) should not

www.ijacsa.thesai.org 465 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 6, 2017

2

3

3

3 4
4

12

2

Fig. 1. An example of bandwidth constraint.

exceed the bandwidth of all links between node c and vl. This
translates into:

∀c ∈ clients,∀v ∈ servers, Sr(t(c), vl) ≤ bw(c, vl) (2)

where l ∈ path[c, vl].

An example of bandwidth constraint is illustrated in Fig. 1.
Consider tree t(v1) that holds the desired object in its root (i.e,
v1). The number attached to node represents the requests per
time unit of that node for the desired object. For example, node
c1 owns 2 requests for object in node v1. Label on the link
shows its bandwidth. For example, link bandwidth between
v and v1 is 12. Suppose sub-tree rooted in v making 10
(2+3+3+2) requests must be passed through the link between v
and v1 to reach object at v1. In this case, there is not bandwidth
restriction because Sr(t(v), v1) = 10 ≤ bw(v, v1) = 12.
Another example: Let us increase the requests of node v
from 2 to 6. In this case, since Sr(t(v), v1) exceed from
10 to 14, the link bandwidth constraint is violated because
Sr(t(v), v1) = 14 > bw(v, v1) = 12. A simple solution to
remove this limitation is to retrieve a replica of object from
v1 and store it in node v.

In the following, is calculated the total cost and defined the
replica placement optimization problem. Consider a resident
set RPi hosting replicas of object i for tree Tr. To minimize
the total cost of this set, Cost(RPi, T), includes two types of
costs: communication and storage cost.

A read cost of RPi is the cost of serving all read requests
issued from v ∈ V and defined as∑

v∈V

ri(v)×Oi × d(v, vl) (3)

where vl ∈ RPi is the closest ancestor of node v that
contains object i and d(v, vl) equals the hops number on l
links.

The storage cost of RPi is the cost of hosting object i at
all nodes in RPi and formalized as∑

v∈RPi

Oi × S(v) (4)

Thus, the total cost for the set RPi for tree T is

Cost(RPi, T) =
∑
v∈V

ri(v)×Oi× d(v, vl) +
∑

v∈RPi

Oi×S(v)

(5)

Replica Placement Optimization Problem: Given a tree
network Tr(V,E), with m objects, find a subset RPi ⊆ V for
all objects i (1 ≤ i ≤ m) such that the total cost Cost(RPi, T)
given in (5) is minimized and constraints in (1) and (2) are
satisfied.

IV. PROPOSED ALGORITHMS

In this section, an algorithm called Replica Placement
Optimization is suggested that works in two phases in order
to solve the optimization problem described in the previous
section. In the first phase, the cost parameter is computed for
each node and then determined whether it is potential to host
a replica in itself or not. The computed cost parameter will
serve phase 2 to determine the optimal placement of replicas.
In the following, two phases are presented in details.

A. Phase 1: Bottom-Up Cost calculation

Let Ci
min(t(v), vl) denote the minimum cost (calculated

based on (5)) of the sub-tree t(v) with the assumption that
the issued requests from t(v) are processed by node vl that
is the lowest ancestor of node v. Also assume that the
candidate nodes set associated to Ci

min(t(v), vl) is termed
by Ci

set(t(v), vl). This set contains potential nodes that can
host a replica of object i. By traversing the tree Tr in breadth
first order from bottom to top, Ci

min(.) and Ci
set(.) for two

distinguished cases are calculated as follows:

Case (a): As shown in Fig. 2, assume that node v is a leaf.
It has two ways to access object i in vl, which is its lowest
ancestor. 1) It reads object i for one time and locally stores it.
Thus, node v incurs the read cost from vl through link (v, vl)
for one time in addition to the storage cost of object i. This cost
is called storing cost and is computed as Ci

sl(v, vl) = Oi ×
d(v, vl)+Oi×S(v) and node v is added to Ci

set(v, vl). Since
a request from v to vl is passed through links l ∈ path[v, vl]
to read the desired object for one time, the value Sr(v, vl) is
increased by one. This modification helps us to control link
bandwidth constraint. 2) It reads the object whenever it needs,
and incurs read cost for rv,i times. This cost is called reading
cost and is computed as Ci

rl = rv,i ×Oi × d(v, vl). So, node
v is not added to Ci

set(v, vl) and Sr(v, vl) is increased by rv,i
because all requests rv,i passed through links l ∈ path[v, vl].
By considering the defined QoS for each node and the link
bandwidth, Ci

min(.) for each leaf is calculated as follows.

If the distance between v and its ancestor vl is more
than q(v) (i.e., d(v, vl) > q(v)) or the issued requests rv,i
exceeds than bandwidth of any links l ∈ path[v, vl], then the
object i is retrieved from node vl and replicated at node v
(in fact, node v has only one way to access object in vl).
Thus, Ci

min(v, vl) = Ci
sl(v, vl) and the remaining parameters,

Ci
set(v, vl) and Sr(v, vl), corresponds to the parameters that

are defined in the storing cost. Otherwise, reading cost and
storing cost are calculated for node v and then the mini-
mum cost is considered. In fact, in this case, node v has
two ways to access its desired object. Thus, Ci

min(v, vl) =
min(Ci

sl(v, vl), C
i
rl(v, vl)), and based on the minimum cost,

other parameters, Ci
set(v, vl) and Sr(v, vl), are calculated,

respectively.

Case(b): As illustrated in Fig. 3, node v is a non-leaf.
Similar to leaf v, it is with two alternatives to access object i in

www.ijacsa.thesai.org 466 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 6, 2017

Fig. 2. The rational of dynamic algorithm for leaf nodes of tree.

Fig. 3. The rational of dynamic algorithm for non-leaf nodes of tree.

node vl. 1) Node v reads object i from vl and stores in itself.
Thus, storing cost is calculated as described for leaves. In
contrast to leaf, we have t′(v) 6= ∅ and replication cost of t′(v)
is the minimum replication cost for children c ∈ t′(v) with this
assumption that node v contains replica of object i. Therefore,
storing cost for non-leaf is calculated as Ci

s(v, vl) = Oi ×
(d(v, vl)+S(v))+

∑
c∈t′(v)(C

i
min(c, v)). Similar to the storing

cost incurred for leaf, Ci
set(v, vl) contains node v and Sr(v, vl)

is increased by one. Thus: Ci
set(v, vl) = ∪c∈t′(v)C

i
set(c, v)∪v

and Sr(v, vl) = Sr(v, vl) + 1, where ∪c∈t′(v)C
i
set(c, v) indi-

cates the optimal candidate nodes set of t′(v) if v contains
replica of object i. 2) Node v reads object from vl instead of
storing in itself and its cost equals to reading cost described
for a leaf. Since, in this case, node v does not contain replica
of object i, the replication cost of t′(v) is the minimum
replication cost of children c ∈ t′(v) with the assumption
that vl has a replica. Therefore, reading cost for non-leaf
is Ci

r(v, vl) = rv,i × Oi × d(v, vl) +
∑

c∈t′(v)(C
i
min(c, vl)),

and its corresponding parameters Ci
set(v, vl) and Sr(v, vl) are

given by Ci
set(v, vl) = ∪c∈t′(v)C

i
set(c, vl) and Sr(v, vl) =

Sr(v, vl)+ rv,i (see how these parameters are calculated for a
leaf that incurs reading cost).

Thus, based on the defined constraints for nodes and
links, Cmin(v, vl) for non-leaf nodes is calculated as fol-
lows. If one of constraints is violated (qv < d(v, vl) or
bw(v, vl) < rv,i), then v has to read object and replicate
in itself, and Cmin(v, vl) = Cs(v, vl). If d(v, vl) ≤ q(v),
Cmin(v, vl) is the minimum of storing and reading costs. If
(Cmin(v, vl) = Cs(v, vl)), it is not required to investigate the
link constraint because in storing cost case, only one request
goes up through links l ∈ path(v, vl) that can process at
least one request. Otherwise, if (Cmin(v, vl) = Cr(v, vl)), it

Algorithm 1: Cost Calculation: Phase 1

Input : Tr

Output: Cmin(v, vl), Cset(v, vl), Sr(v, vl)

1 forall v ∈ Tr traversed in breadth first order do
2 if v is a leaf then
3 if qv < d(v, vl) or bw(v, vl) < rv,i then
4 Sr(v, vl) + +, Cmin(v, vl)← Csl(v, vl)

5 Cset(v, vl)← v

6 else
7 Calculate Cmin ← min(Csl(.), Crl(.))

8 if Cmin(.) = Csl(.) then
9 Sr(v, vl) + +, Cset(v, vl)← v

10 else
11 Sr(v, vl) = Sr(v, vl) + rv,i
12 end
13 end
14 else
15 if q(v) ≤ d(v, vl) or bw(v, vl) < rv,i then
16 Sr(v, vl) + +, Cmin(v, vl)← Cs(v, vl)

17 Cset(v, vl)← ∪c∈child(v)(c, v) ∪ v

18 end
19 if (d(v, vl) ≤ q(v)) then
20 Calculate Cmin ← min(Cs(.), Cr(.))

21 if Cmin(.) = Cs(.) then
22 Sr(v, vl) + +,

Cset(v, vl)← ∪c∈child(v)(c, v) ∪ v

23 else
24 Sr(v, vl) =

∑
c∈child(v) Sr(c, vl) + rv,i

25 if bw(v, vl) < Sr(v, vl) then
26 call Bandwidth Constraint Handling

Algorithm
27 else
28 Cset(v, vl)← ∪c∈child(v)(c, v)

29 end
30 end
31 end
32 end
33 end
34 Return Cmin(v, vl), Cset(v, vl), Sr(v, vl)

is possible the link constraint violation happens. To handle
this violation, in the following subsection, an algorithm called
Bandwidth Constraint Handling with Minimal Cost (BCHMC)
and also three heuristic algorithms are suggested. Based on the
above discussions, Algorithm 1 details Phase 1.

B. Bandwidth Constraint Handling

In this section, at first introduced new terminologies and
then propose an algorithm to solve bandwidth constraint vio-
lation for a non-leaf node v. For clarity in notations, node v
is termed by vf . As discussed above, bandwidth constraint
happens when node vf reads object from vl and and its
requests Sr(vf , vl) = rvf ,i+

∑
c∈child(vf)

(rc,i) increases more
than the bandwidth of at least one of the links l ∈ path[vf , vl].

www.ijacsa.thesai.org 467 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 6, 2017

Algorithm 2: Bandwidth Constraint Handling with Min-
imal Cost (BCHMC)

Input : Tr, Sr(v, vl)

Output: Sr(v, vl), Cmin(v, vl), Cset(v, vl)

1 forall v ∈ R do
2 Cover(v) = Cs(v, vl)− Cr(v, vl)

3 end
4 Rsort ← sort node v ∈ R based on Cover(v)

5 while Sr(vf , vl) ≤ bw(vf , vl) do
6 select v ∈ Rsort

7 if (v = vf) then
8 Sr(vf , vl) = 1

9 Cmin(vf , vl) = Cs(vf , vl)

10 Cset(vf , vl) = ∪c∈child(v)C
i
set(c, vf) ∪ vf

11 else
12 Sr(vf , vl) = Sr(vf , vl)− (rv,i − 1)

13 Cmin(v, vl) = Cs(v, vl)

14 Cset(v, vl) = ∪c∈child(v)C
i
set(c, v) ∪ v

15 end
16 end
17 Return Cmin(v, vl), Cset(v, vl)

Note Sr(vf , vl) is the summation of requests of node vf (i.e.
rvf ,i) and requests of its children that do not contain the replica
of object (i.e.

∑
c∈child(vf)

(rc,i)). Let R be a set that includes
these nodes and defined as R = vf ∪ c ∈ childe(vf) ∧ c /∈
Cset(vf , vl). Also, let Cove(v) be the overhead cost of repli-
cation for node v ∈ R, which is the difference between storing
cost (Cs(v, vl)) and reading cost (Cr(v, vl)) of node v (i.e.,
Cove(v) = Cs(v, vl)−Cr(v, vl)). To eliminate link bandwidth
constraint, the BCHMC algorithm is proposed to select nodes
from R to host a replica of object i. The rationale behind this
algorithm is to select nodes v ∈ R such that the summation
of the overhead cost (i.e.,

∑
v∈R(Cover(v))) is minimized and

the constraint Sr(v, vl) ≤ bw(v, vl), l ∈ path[v, vl] is satisfied.

To do so, as illustrated in Algorithm 2, overhead cost for
all nodes v ∈ R is first calculated and then these nodes are
sorted based on Cover(v) on ascending order and denoted
by Rsort(Lines 1-4). To remove bandwidth constraint, nodes
v ∈ Rsort are selected until the condition Sr(vf , vl) ≤
bw(vf , vl) is satisfied for all links l ∈ path[vf , vl]. Clearly,
if v = vf (v ∈ R), then a replica placed at vf and the already
selected nodes (i.e., v ∈ Rsor ∧ v 6= vf) are not considered
because by creating a replica in vf , all requests made by vf and
its children c ∈ child(vf)∧ c /∈ Ci

set(vf , vl) are satisfied with
this replica. Thus: Sr(vf , vl) = 1, Cmin(vf , vl) = Cs(vf , vl)
and Cset(vf , vl) = ∪c∈child(vf)C

i
set(c, vf) ∪ vf , where c ∈

child(vf) ∧ c /∈ Ci
set(vf , vl) (Lines 5-10). Otherwise, if

v 6= vf
3, then a replica should be placed at v. As a result,

Sr(vf , vl) = Sr(vf , vl) − (rv,i − 1) because at least one
request from the selected node v goes up through links
l ∈ path(v, vl), Cmin(v, vl) = Cs(v, vl) and Cset(v, vl) =
∪c∈child(v)C

i
set(c, v) ∪ v (Lines 11-14).

3Note in this condition, node v is a child of vf that does not contain the
replica of object i

Algorithm 3: Replica placement: Phase 2

Input : Cmin(.), Cset(.)

Output: RP

1 RP← ∅, lev ← 1 , vinv ← c ∈ child(r)

2 Procedure Replica Placement (vinv, lev)
3 forall v ∈ Tr traversed in level order do
4 if vinv = Null then
5 Return;
6 else
7 if vinv ∈ Cset(vinv, vlev) or

Cmin(vinv, vlev) = Cs(vinv, vlev) or
Cmin(vinv, vlev) = Csl(vinv, vlev) then

8 RP←RP∪v
9 Replica Placement(c ∈ child(vinv),1)

10 end
11 if Cmin(vinv, vlev) = Cr(vinv, vlev) or

Cmin(vinv, vlev) = Crl(vinv, vlev) then
12 Replica Placement(RP)
13 end
14 end
15 end
16 Return Sr(v, vl), Cmin(v, vl), Cset(v, vl)

C. Phase 2: Top-Down Replica Placement

Phase 2: as illustrated in Algorithm 3, it is a recursive
approach that is fed by Cmin(.) and Cset(.) computed in Phase
1. In this phase, an algorithm called Replica Placement is
suggested to determine which node v ∈ Tr contains a replica
of the object. This algorithm begins at the root of tree and
ends at leaves. In the proposed algorithm, assumed that lev
is the distance between node v and node vinv . Here, node
v has a replica of the object and node vinv is the node that
should be investigated whether to host a replica or not, such
that (5) is minimized and constraints are satisfied. Sine Replica
Placement Algorithm starts from root r, we set lev = 1, v = r
and vinv = c ∈ child(r).

By starting from the right most child of r, if node
vinv ∈ Cset(vinv, vlev), then a replica is placed at vinv
and it is added to RP, i.e., the set of optimal placement
of replicas. Also Replica Placement Algorithm is called
with lev = 1, and vinv = c ∈ child(vinv). That is,
Replica Placement (child(vinv), 1) (lines 7-10). Otherwise, if
vinv /∈ Cset(vinv, vlev), algorithm investigates the value of
Cmin(vinv, vlev) and based on this value two cases are consid-
ered: 1) If (Cmin(vinv, vlev) = Cr(vinv, vlev)), then node vinv
does not host a replica and the Replica Placement Algorithm
is called with lev = lev + 1 and vinv = c ∈ child(vinv)(lines
11-13). 2) Otherwise, if (Cmin(vinv, vlev) = Cs(vinv, vlev)),
Replica Placement Algorithm works similar to the case as
discussed above where vinv ∈ Cset(vinv, vlev).

The time complexity of the algorithm to find an optimal
placement of replicas is as follows. The algorithm works in
two phases. In Phase 1, for each node v ∈ Tr, the values
of Cmin(.) and Cset(.) are calculated. So, the computation
requires O(n) if bandwidth constraint is not violated. If this

www.ijacsa.thesai.org 468 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 6, 2017

constraint happens (Lines 27-28), then Algorithm 2 is called
and takes time complexity of O(n). Thus, in worst case, the
time complexity of Phase 1 is O(n2). In regard to Phase 2, for
all nodes, the computed parameters in Phase 1 are compared
and optimal placement of replicas is determined. Thus, this
phase takes O(n), and the total computation complexity of
proposed algorithm is O(n2 + n) = O(n2).

D. Heuristic Algorithms for handling Bandwidth Constraint

In this section, the authors propose three algorithms to
address bandwidth constraint and then compare with Algo-
rithm 2 in performance parameters in the next section. These
algorithms are as follows:

Bandwidth Constraint Handling Based On Nodes Requests
(BCHNR): Whenever link bandwidth constraint occurs for
node vf , it is handled as follows: First, all children of vf
not containing replica of object (i.e., c ∈ childe(vf) ∧ c /∈
Cset(vf , vl)) and node vf are sorted based on their requests
in descending order. Second, the first node in the sorted nodes
list is selected and a replica of object is placed at this node.
The node selection process is repeated until the bandwidth
constraint is removed (i.e., Sr(vf , vl) ≥ bw(vf , vl)).

Bandwidth Constraint Handling Based on Nodes Storage
Cost (BCHNSC): When link bandwidth constraint happens for
node vf , this algorithm works as follows. First the storage cost
of replication in all children of node vf is calculated and then
the children of vf are sorted in ascending order of storage cost.
Second, the nodes corresponding to these sorted values are
chosen to host replica of the object. The node selection (to host
replica) continues until the constraint Sr(vf , vl) ≥ bw(vf , vl)
is removed.

Bandwidth Constraint Handling Based on Node Random
Selection (BCHNRS): Similar to the above discussed heuristic
algorithms, whenever the link bandwidth constraint is violated
for node vf , the children of vf not containing replica are
randomly selected to host object replica until the violation is
omitted.

Bandwidth Constraint Handling Based on Node vf
(BCHNV): In this simple algorithm, if link bandwidth con-
straint happens for node vf , then the desired object is repli-
cated in node vf ; as a result the constraint is discarded.

V. PERFORMANCE EVALUATION

Extensive experiments have been done to evaluate optimal
placement of replica Algorithm with QoS and bandwidth
constraints, using different proposed algorithms that handle
bandwidth constraint, with several criterion such as replication
cost, network bandwidth usage and local availability of objects.

A. Simulation Setup

In this simulation, the tree is randomly generated and con-
trolled by two parameters: number of nodes and the children
of each node that effects the proposed algorithms that handle
the bandwidth constraint. The number of nodes n ranges from
100 to 5000 and the number children of each node follows
a uniform distribution in (1-5) for n ≤ 1000 and [1-10] for
n > 1000. It is set q with a fraction of the tree height h. That is,
q = 1/4h, q = 1/2h, q = 3/4h and q = h+1. The last value

TABLE I. DEFAULT SYSTEM PARAMETER SETTINGS

Parameter Setting Parameter Setting
n 1-5000 ri,v 1-10
m 100 S(v) 1-20
Oi 1MB-100MB d(u, v) 1-5

of q implies the absence of QoS. The link bandwidth constraint
is assigned as follows. Tree links in level 0 connecting a leaf
to its father is assigned with a uniform distribution in the range
(1, 10), and the link bandwidth of an immediate higher level
of that leaf (level1) is set to (10, 30) for n ≤ 1000 and (30-
70) for n > 1000. Each higher levels links (level ≥ 2) is
assigned between 2 and 4 times the immediate corresponding
lower level links. The value of other parameters following a
uniform distribution is according to Table I.

B. Results

1) Normalized Replication Cost: It indicates the ratio of
replication cost of the proposed algorithms to the BCHNV
Algorithm as a benchmark. If this ratio is lower, the algorithm
works better in finding a placement for the replicas in the tree
network. From Fig. 4, observed that the BCHMC Algorithm
has minimal normalized replication cost for all q and n values
compared with other algorithms. Three observations we can
make are as follows: 1) As n increases the normalized repli-
cation cost of the BCHMC algorithm decreases. The reason is
that when tree size (i.e., n) increases, QoS and link bandwidth
constraint violations happen more and the proposed optimal
algorithm works better than other algorithms. As an example,
for q = 1/2, the normalized cost replication decreases from
95% to below 90% when n increases from 100 to 5000. 2)
As the requested QoS of nodes is tight (that is q is low),
the normalized cost of replication in all proposed algorithms
is small in comparison with the case in which QoS tend to
be relaxed. This is because, in former case the QoS violation
occurs more than the latter case. 3) As expected, the hierarchy
between other proposed algorithms in normalized replication
cost is respected, i.e., BCHNSC is better than BCHNR which
in turn is better than BCHNRS especially n increases. The
reason is that the BCHNSC algorithm works based on the
storage cost whilst the other two algorithms act based on
requests number.

2) Effective Network Usage: It is the ratio of the total data
transferred through links to the total requested data for serving
user requests. As this parameter decreases, the algorithm
performs better in placing replicas in the tree. As shown in
Fig. 5, data transferred below 50% through the links in the
BCHMC algorithm for all n and q whilst this value for other
heuristic algorithms is between 55% and 78%. BCHNR comes
after BCHMC such that less than 60% of data is remotely read.
In fact, it performs better than other heuristic algorithms. The
reason is that the priority of this algorithm is to store replicas
in nodes that have more requests. As results show, in regards
to remaining heuristic algorithms therefore BCHNSC works
better than BCHNRS, which is in turn better than BCHNV.
Also, from Fig. 5 It is found that as q decreases, the network
usage percentage improves because of more QoS violations,
that results in more replicas being placed in the tree.

3) Local Access Percentage of Objects: It exhibits the
percentages of user requests in the tree that are locally satisfied.
As shown in Table II, by using BCHMC algorithm, more than

www.ijacsa.thesai.org 469 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 6, 2017

0

0.5

1

1.5

q=1/4h q=1/2h q=3/4h q=h+1

N
o

rm
iz

e
d

 C
o

st

Quality of Service(QoS)

BCHMC BCHNSC BCHNR BCHNRS

(a)

0.8

0.85

0.9

0.95

1

1.05

1.1

q=1/4h q=1/2h q=3/4h q=h+1

N
o

rm
al

iz
e

d
 C

o
st

Quality of Service(QoS)

BCHMC BCHNSC BCHNR BCHNRS

(b)

0.85

0.9

0.95

1

1.05

q=1/4h q=1/2h q=3/4h q=h+1

N
o

rm
al

iz
e

d
 C

o
st

Quality of Service(QoS)

BCHMC BCHNSC BCHNR BCHNRS

(c)

Fig. 4. Normalized Cost vs. Quality of service(QoS). (a) nodes number=100.
(b) nodes number=1000. (c) nodes number=5000.

50% of requests are locally served and it always outperforms
other proposed algorithms for all n and q. But the BCHNV
algorithm has the worst performance because in this algorithm
the link bandwidth constraint is removed by replication of data
in the node vf instead of its children. As a result, more than
70% of requests remotely access objects. It is also observed the
BCHNR algorithm comes after BCHMC with regards to local
responsiveness, where BCHNR services 35%-40% of requests
locally. The reason is that, to remove bandwidth constraint,
BCHNR selects nodes based on their read rate to replicates
objects in those nodes. The other algorithms, BCHNSC and
BCHNRS, rank next in this metric, respectively.

VI. CONCLUSIONS AND FUTURE WORKS

This paper studied a new replica placement algorithm in
hierarchical data grid, that amid at replication cost optimization
whilst QoS and bandwidth constraints take into consideration.
This algorithm has low time complexity which makes it well-

0

0.2

0.4

0.6

0.8

1

q=1/4h q=1/2h q=3/4h q=h+1 Ef
fe

ct
iv

e
 N

e
tw

o
rk

 U
sa

ge

Quality of Service(QoS)

BCHMC BCHNR BCHNSC BCHNRS BCHNV

(a)

0

0.2

0.4

0.6

0.8

1

q=1/4h q=1/2h q=3/4h q=h+1 Ef
fe

ct
iv

e
 N

e
tw

o
rk

 U
sa

ge

Quality of Service(QoS)

BCHMC BCHNR BCHNSC BCHNRS BCHNV

(b)

0

0.2

0.4

0.6

0.8

1

q=1/4h q=1/2h q=3/4h q=h+1

Ef
fe

ct
iv

e
 N

e
tw

o
rk

 U
sa

ge

Quality of Service(QoS)

BCHMC BCHNR BCHNSC BCHNRS BCHNV

(c)

Fig. 5. Network Usage vs. Quality of service(QoS).(a) nodes number=100.
(b) nodes number=1000. (c) nodes number=5000.

suited for data grid environment. The simulation showed that
this algorithm compared with heuristic algorithms has suitable
performance in terms of access cost, network bandwidth usage
and data availability. The BCHMC algorithm replicates data
in nodes with guaranteed constraints such that it saves cost
by at least 10% compared to other heuristic algorithms. It
also locally serve 50% of requests whereas at most only
40% of requests could be locally satisfied in other algorithms.
As a future work, we plan to consider updating cost in the
proposed algorithms and evaluate the effects of this cost
on the performance criterion that are important in data grid
environment.

ACKNOWLEDGMENT

The authors would like to thank Deepak C Poola for
his helpful suggestions to improve our paper. This work has
been done when the second author was with Islamic Azad
University. Now, he is a PhD student at Melbourne University
in CLOUDS laboratory.

www.ijacsa.thesai.org 470 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 6, 2017

TABLE II. LOCAL ACCESS PERCENTAGE OF OBJECTS

Algorithm q=1/4h q=1/2h q=3/4h q=h+1
BCHCMC 54.5% 87.4% 50.3% 50%
BCHNR 42.8% 41.4% 35.6% 38.4%
BCHNSC 31.8% 40% 31.8% 40.4%
BCHNRS 30.8% 39.4% 30% 33.7%
BCHNV 30% 31.4% 29% 30.4%

(a) Number of Nodes, n=100
Algorithm q=1/4h q=1/2h q=3/4h q=h+1
BCHCMC 52% 53.1% 50.8% 50%
BCHNR 38.4% 40.1% 36.6% 36.1%
BCHNSC 34.4% 35.7% 33% 31.2%
BCHNRS 32.4% 33.9% 31.6% 30.4%
BCHNV 30.4% 31.7% 28.9% 29.9%

(b) Number of Nodes, n=1000

Algorithm q=1/4h q=1/2h q=3/4h q=h+1
BCHCMC 56.7% 58.3% 52.4% 53.4%
BCHNR 40.1% 42.5% 37.7% 38.9%
BCHNSC 39.7% 41.7% 36.6% 35.6%
BCHNRS 38% 41% 30% 34.3%
BCHNV 30.1% 35.6% 34% 34.2%

(c) Number of Nodes, n=5000

REFERENCES

[1] S. Venugopal, R. Buyya, and K. Ramamohanarao, “A taxonomy of data
grids for distributed data sharing, management, and processing,” ACM
Comput. Surv., vol. 38, no. 1, Jun. 2006.

[2] A. Benoit, V. Rehn-Sonigo, and Y. Robert, “Replica placement and
access policies in tree networks,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 19, no. 12, pp. 1614–1627, 2008.

[3] O.Kariv and S. Hakimi, “An algorithmic approach to location problems.
ii: The p-medians,” SIAM J.Applied Math, vol. 37, no. 2, pp. 539–560,
1979.

[4] I. Cidon, S. Kutten, and R. Soffer, “Optimal allocation of electronic
content,” in INFOCOM 2001. Twentieth Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings. IEEE,
vol. 3, 2001, pp. 1773–1780 vol.3.

[5] M. Karlsson and C. Karamanolis, “Choosing replica placement heuris-
tics for wide-area systems,” in Proceedings of the 24th International
Conference on Distributed Computing Systems (ICDCS’04), ser. ICDCS
’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 350–
359.

[6] J.-J. Wu, Y.-F. Lin, and P. Liu, “Optimal replica placement in hier-
archical data grids with locality assurance,” Journal of Parallel and
Distributed Computing, vol. 68, no. 12, pp. 1517 – 1538, 2008.

[7] V. Rehn-Sonigo, “Optimal replica placement in tree networks with qos
and bandwidth constraints and the closest allocation policy,” Tech. Rep.

[8] J.-J. Wu, S.-F. Shih, H. Wang, P. Liu, and C.-M. Wang, “Qos-aware
replica placement for grid computing,” Concurr. Comput. : Pract.
Exper., vol. 24, no. 3, pp. 193–213, Mar. 2011.

[9] Z. Du, J. Hu, Y. Chen, Z. Cheng, and X. Wang, “Optimized qos-aware
replica placement heuristics and applications in astronomy data grid,”
Journal of Systems and Software, vol. 84, no. 7, pp. 1224 – 1232, 2011.

[10] O. Wolfson and A. Milo, “The multicast policy and its relationship to
replicated data placement,” ACM Trans. Database Syst., vol. 16, no. 1,
pp. 181–205, Mar. 1991.

[11] M. Garmehi and Y. Mansouri, “Optimal placement replication on
data grid environments,” in Information Technology, (ICIT 2007). 10th
International Conference on, Dec 2007, pp. 190–195.

[12] Y. Mansouri, S. T. Azad, and A. Chamkori, “Minimizing cost of k-
replica in hierarchical data grid environment,” in Advanced Information
Networking and Applications (AINA), 2014 IEEE 28th International
Conference on, May 2014, pp. 1073–1080.

[13] K. Kalpakis, K. Dasgupta, and O. Wolfson, “Steiner-optimal data repli-
cation in tree networks with storage costs,” in Database Engineering
and Applications, 2001 International Symposium on., 2001, pp. 285–
293.

[14] Y. Mansouri, M. Garmehi, M. Sargolzaei, and M. Shadi, “Optimal
number of replicas in data grid environment,” in Distributed Framework
and Applications, 2008. DFmA 2008. First International Conference on,
Oct 2008, pp. 96–101.

[15] X. Tang and J. Xu, “Qos-aware replica placement for content distribu-
tion,” Parallel and Distributed Systems, IEEE Transactions on, vol. 16,
no. 10, pp. 921–932, 2005.

[16] Y. Mansouri and R. Monsefi, “Optimal number of replicas with qos
assurance in data grid environment,” in Asia International Conference
on Modelling and Simulation, 2008, pp. 168–173.

[17] M. Shorfuzzaman, P. Graham, and R. Eskicioglu, “Qos-aware dis-
tributed replica placement in hierarchical data grids,” in Advanced Infor-
mation Networking and Applications (AINA), 2011 IEEE International
Conference on, 2011, pp. 291–299.

www.ijacsa.thesai.org 471 | P a g e

