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Abstract—In hyperspectral imagery, endmember extraction 

(EE) is a main stage in hyperspectral unmixing process where its 

role lies in extracting distinct spectral signature, endmembers, 

from hyperspectral image which is considered as the main input 

for unsupervised hyperspectral unmixing to generate the 

abundance fractions for every pixel in hyperspectral data. EE 

process has some difficulties. There are less distinct endmembers 

than its mixed background; also, there are endmembers that 

have rare occurrences in data that are considered as difficulties 

in EE process. In this paper, we propose a new technique that 

uses divide and conquer method for EE process to find out these 

difficult (rare or less distinct) endmembers. divide and conquer 

method is used to divide hyperspectral data scene to multiple 

divisions and take each division as a standalone scene to enable 

endmember extraction  algorithms (EEAs) to extract difficult 

endmembers easily and finally conquer all extracted 

endmembers from all divisions. We implemented this method on 

real dataset using three EEAs: ATGP, VCA, and SGA and 

recorded the results that outperform the results from usual 

endmember extraction techniques methods in all used 

algorithms. 
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 INTRODUCTION I.

Endmember extraction is considered to be an important 
and crucial step in hyperspectral data exploitation. A pixel in 
hyperspectral data may be either a pure pixel or mixed pixel. 
A pure pixel represents an endmember (EM) that exists in the 
scene. A mixed pixel contains multiple contributions from a 
group of different endmembers that exists in the scene. 
Therefore, endmember is considered as a pure signature for a 
class [1]. Generally, an endmember is not a pixel; it is a 
spectral signature which is specified completely by the 
spectrum of a single material substance. 

Several endmember extraction methods have been 
developed to extract pure pixels from hyperspectral data. Here 
we use three different algorithms for extracting endmembers 
from hyperspectral data. The first one is Automatic Target 
Generation Process (ATGP) that finds its targets by using a 
sequence of orthogonal subspaces with the maximal 
orthogonal projections [2], [5], [7], [8] where ATGP 

considered the unsupervised version of Orthogonal Subspace 
Projection (OSP) algorithm. The second used algorithm is the 
Simplex Growing Algorithm (SGA) [3], [8] which finds its 
endmembers by growing a simplex, vertex by vertex, until it 
reaches the required endmembers represented by vertices of 
simplex. The last used algorithm is the Vertex Component 
Analysis (VCA) [4], [8], it is an OP-based EEA that is 
characterized by computational complexity reduction by 
replacing simple volume calculation with OP and growing 
nonnegative convex hulls, vertex by vertex, until it builds a p-
vertex convex hull (p denotes the endmembers required to be 
extracted).  

Authors in [6], demonstrate some EEAs as ATGP, VCA, 
and SGA and demonstrate their efficiency by using different 
criteria as sequential or parallel implementation, 
dimensionality reduction, etc. ATGP, VCA, SGA are most 
widely used in EE [8]. They are similar in their design but 
different in preprocessing steps. 

Some researches work in spatial and spectral information 
of hyperspectral data to enhance EEAs. Over segmentation 
based method introduced in [9], exploit spatial and spectral 
information to enhance computational performance for EEA. 
A new enhancement for EEAs is suggested in [10] that gives 
guidance to EE process for spatially homogenous regions and 
consequently to enhance performance of unmixing process. 

This paper contributed to enabling EEAs to find difficult 
endmembers where EEAs alone couldn’t find them without 
using this proposed method. 

This paper is organized as follows. Section 2 introduces 
Linear Mixture Model. Section 3 describes the proposed 
method. Dataset used is introduced in Section 4. Results and 
discussions are provided in Section 5. The conclusion is given 
in Section 6. 

 LINEAR MIXTURE MODEL II.

Linear mixture model is a well-known approach used for 
determination and quantification of materials in hyperspectral 
images. Hyperspectral image consists of pixels where every 
pixel is represented by a vector of values for each spectral 
band which, in its turn, is the reflectance of the material in a 
specific wavelength. 

Let r be an L × 1 column vector in a hyperspectral image 
where L refers to the number of bands. Suppose that there are 
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p materials in the hyperspectral image and M = [m1 m2 ... mp] 
is an L × p matrix of material signature, where mj is an L × 1 
column vector of the j

th
 material signature in the hyperspectral 

image. Assume that a is a p × 1 abundance column vector 

denoted as (a1, a2, …, ap)
 T 

which associated with r (ak 

represents the abundance fraction of the k
th

 signature exist in 
the pixel vector r). 

Linear unmixing can solve this mixed pixel problem. It 
assumes that spectral signature r can be represented by a linear 
regression model as in (1) where r is linearly mixed by p 
material signatures.  

 r = Ma + n 

Where n is noise. In unsupervised hyperspectral unmixing 
process, hyperspectral image pixel represented by r with M 
and a are unknown. Endmember extraction algorithms come 
to extract M matrix from hyperspectral image to be used as an 
input in a linear unmixing method that plays its role to unmix 
the unknown abundance fractions matrix by an inverse of the 
linear mixture model. 

 PROPOSED METHOD III.

From the spectral viewpoint, endmembers in the scene 
have distinct signatures. These endmembers are the target of 
any EEA regardless its design and implementation. EEAs used 
extract all vertices in the simplex as endmembers as shown in 
Fig. 1 where vertices of great triangle are E1, E4, and E5 but 
vertices in small triangle are E1, E2, and E3. Endmembers set 
in small triangle is different from endmembers set in bigger 
triangle according to EEAs viewpoint. Notice E2, and E3 
cannot be extracted from the bigger triangle unless we divide 
data into sections that will raise the probability of extracting 
them using different EEAs used.   

In this section, a new technique that uses divide-and-
conquer method in endmember extraction algorithms is 
proposed. 

Not necessarily that all extracted pixels are pure pixels and 
represent material signature resident in hyperspectral scene. 
Usually, some of the extracted pixels, using the EEAs, are 
mixed. This is normal because each EEA has its strategy in 
finding endmember set. EEAs suffer from not finding all 
materials signatures. The proposed technique tries to solve this 
problem and enhance EEAs results. To test the method, we 
used real dataset (as explained in the next section) along with 
its ground truth abundant matrix. Fig. 2 explains the workflow 
used in the proposed technique.  

 
Fig. 1. 2-dimentional plot for many pixels includes 5 endmembers. 

 
Fig. 2. Workflow used in the proposed technique. 

There are five stages in the workflow, beginning with 
hyperspectral image (HSI). To begin, HSI is divided spatially 
into scheme N×N to create N

2
 equivalent segments, where 

every segment is considered as a standalone HSI. 

Following this, EEAs are applied into every segment to 
extract p endmembers and record them into p-list (p refers to 
the expected number of endmembers in HSI). 

In the subsequent stage, all p-lists that are created are 
assembled into overall-list that contains p × N

2 
endmembers. 
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Next, each endmember in the overall-list is validated using 
abundance map. 

A. The different schemes used in the proposed method are as 

the following: 

 No division scheme: dataset remains as one segment 
and EEAs are applied on the full dataset and results are 
recorded. 

 Scheme 2×2: dataset is divided spatially into 2 by 2 
grids that yield 4 equivalent segments. 

 Scheme 3×3: dataset is divided spatially into 3 by 3 
grids that yield 9 equivalent segments. 

 Scheme 4×4: dataset is divided spatially into 4 by 4 
grids that yield 16 equivalent segments. 

 REAL DATASET (JASPER RIDGE) IV.

Jasper Ridge is one of the popular datasets used in 
hyperspectral data analysis [11]-[12]. Jasper Ridge is a cube of 
data consists of 512 rows × 614 columns × 224 bands. Its 
spectral range is starting at 0.38 micron and ending at 2.5 
micron. For simplicity, we cut a subset from the original 
dataset consisting of 100 rows × 100 columns as shown in 
Fig. 3. 

This subset is starting from pixel at 105th row and 269th 
column from the whole dataset. Because of some effects of 
atmosphere and water vapor absorptions, 26 bad bands are 
discarded from total 224 bands as follows: 
1:3,108:112,154:166,220:224. The number of remaining 
bands is 198 were used for analysis.  

There are four endmembers in Jasper Ridge data: Tree, 
Water, Soil, and Road. Their abundance images are shown in 
Fig. 4(a). Jasper Ridge dataset has an abundance map that 
restricted by Abundance Non-negativity Constraint (ANC) 
and Abundance Sum-to-one Constraint (ASC). Due to some 
noise and other calibration problems, we suppose that the 
pixel which has abundance fraction greater than 90 % is 
considered as a pure pixel. Fig. 4(b) illustrates pure pixels for 
every endmember in the map. 

 

Fig. 3. Jasper Ridge subset consisting of 100rows x 100columns. 

 
Tree 

 
Water 

 
Soil 

 
Road 
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Road 
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Fig. 4. (a) Abundance images for four endmembers.of Jasper Ridge dataset 

(b) Pure pixels for each endmember in Jasper Ridge dataset. 

 RESULTS AND DISCUSSIONS V.

In this section, a full description for experiments is 
executed on Jasper Ridge dataset and synthetic dataset. It 
gives an overall analysis which demonstrates that results from 
EEAs using the proposed method D&C outperforms results 
from EEAs without D&C. 

There are three EEAs used in the experiments (ATGP, 
SGA, and VCA). ATGP is a deterministic algorithm, where it 
can extract the same set of endmembers for different runs, so 
it was executed only one time. As opposed to ATGP, VCA 
and SGA are random algorithms, so they were executed three 
different runs and their results were recorded separately. 

Applying an EEA on any dataset using No Division 
Scheme will give set of p extracted endmembers (where p is 
the number of endmembers resident in this dataset). Using 
Scheme 2×2, there are 4 × p extracted endmembers by 
applying any EEA. Also in Scheme 3×3 and Scheme 4×4 
there are 9 × p and 16 × p extracted endmembers respectively. 
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No divisions 

 
2×2 division 

 
3×3 division 

 
4×4 division 

Fig. 5. Different division schemes for Jasper Ridge dataset. 

Fig. 5 illustrates different division schemes used on Jasper 
dataset. The workflow, introduced before, will be applied on 
every scheme and the extracted endmembers sets will be 
gathered into one overall set for every unique scheme. 

Table 1 illustrates number of divisions and number of 
expected extracted endmembers according to different 
schemes used in Jasper Ridge dataset. 

Tables 2 to 4 demonstrate results from applying EEAs of 
different division schemes on Jasper dataset. 

According to abundance image for Jasper Ridge dataset, 
all pixels extracted by EEAs from Jasper dataset are validated 
as follows: 

A. No Divisions Scheme Results 

Table 2 demonstrates results extracted from EEAs by 
using No Divisions Scheme. ATGP extracted four pixels; two 
of them were pure pixels one for Tree and another for Soil. 
The other two pixels were mixed pixels, and ATGP couldn’t 
extract any pure pixels for Water or Road. 

VCA #1 as VCA #2, they extracted two pure pixels one for 
Water and another for Soil, but also they couldn’t extract any 
pure pixels for Tree and Road. But, VCA #3 extracted three 
pure pixels from the four extracted pixels, only Road couldn’t 
be extracted. 

All SGA runs extracted here the same two pure pixels, 
Tree and Soil, while Water and Road didn’t have any pure 
pixels with SGA. 

TABLE I.  NUMBER OF DIVISIONS AND NUMBER OF EXTRACTED 

ENDMEMBERS IN EVERY SCHEME 

 
No Divisions 2×2 Scheme 

3×3 

Scheme 
4×4 Scheme 

# of Divisions 1 4 9 16 

# of extracted 

endmembers 
4 16 36 64 

TABLE II.  EXTRACTED PURE PIXELS USING NO DIVISION SCHEME 

EMs ATGP 
VCA SGA 

#1 #2 #3 #1 #2 #3 

Tree 1 0 0 1 1 1 1 

Water 0 1 1 1 0 0 0 

Soil 1 1 1 1 1 1 1 

Road 0 0 0 0 0 0 0 

# of extracted pure 

EMs 
2/4 2/4 2/4 3/4 2/4 2/4 2/4 

# of extracted pure 

materials 
2 2 2 3 2 2 2 

TABLE III.  EXTRACTED PURE PIXELS USING 2×2 SCHEME 

EMs ATGP 

VCA SGA 

#1 #2 #3 #1 #2 #3 

Tree 3 4 4 4 4 3 3 

Water 0 3 3 3 0 0 0 

Soil 2 2 2 2 2 2 1 

Road 0 0 0 0 0 0 0 

# of extracted pure 

EMs 
5/16 9/16 9/16 

9/1

6 

6/1

6 

5/1

6 

4/1

6 

# of extracted pure 

materials 
2 3 3 3 2 2 2 

TABLE IV.  EXTRACTED PURE PIXELS USING 3×3 SCHEME 

EMs ATGP 

VCA SGA 

#1 #2 #3 #1 #2 #3 

Tree 8 10 11 9 10 8 9 

Water 0 5 4 3 0 0 0 

Soil 5 4 5 4 4 4 5 

Road 2 1 1 1 1 1 1 

# of extracted 

pure EMs 
15/36 

20/ 

36 

21/ 

36 

17/ 

36 

15/ 

36 

13/ 

36 

15/ 

36 

# of extracted 

pure materials 
3 4 4 4 3 3 3 
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TABLE V.  EXTRACTED PURE PIXELS USING 4×4 SCHEME 

EMs 
AT

GP 

VCA SGA 

#1 #2 #3 #1 #2 #3 

Tree 15 15 16 15 13 13 14 

Water 2 10 9 9 2 2 2 

Soil 6 4 5 4 4 5 5 

Road 3 3 3 3 3 2 3 

# of extracted pure 

EMs 

26/6

4 

32/ 

64 

33/ 

64 

31/ 

64 

22/ 

64 

22/ 

64 

24/ 

64 

# of extracted pure 

materials 
4 4 4 4 4 4 4 

TABLE VI.  COMPUTATIONAL TIME FOR ATGP, VCA, & SGA USING 

DIFFERENT DIVISION SCHEMES (TIME IN SECONDS) 

Division Scheme ATGP VCA* SGA* 

No Division 0.339 0.148 3.745 

Division 2x2 0.311 0.211 3.658 

Division 3x3 0.313 0.289 3.522 

Division 4x4 0.228 0.364 3.105 

* Average computational time of three runs 

B. 2×2 Divisions Scheme Results 

Table 3 shows results after applying EEAs using 2×2 
Divisions Scheme. ATGP extracted four groups where each 
group contains four pixels with a total of 16 pixels that should 
be extracted as endmembers. Five of sixteen were pure pixels 
which represent only Tree and Soil, and the other 11 pixels 
were mixed pixels. ATGP is still not able to find pure pixels 
for Water and Road signature. All VCA runs had same results, 
where they extracted all materials signatures except for Road 
signature. SGA as ATGP couldn’t find Water and Road 
signatures. 

C. 3×3 Divisions Scheme Results 

According to 3×3 Divisions Scheme, results extracted after 
applying EEAs is listed in Table 4. ATGP was able to find 
two pure pixels for Road. Also, results of VCA were improved 
and all materials signatures are extracted. SGA could extract 
one pure pixel for Road signature as ATGP and continued to 
be unable to extract any pure pixels for Water spectral 
signature. 

D. 4×4 Divisions Scheme Results 

Finally, Table 5 shows results for extracted pixels by 
EEAs using 4×4 Divisions Scheme where this scheme set 
appropriate conditions for different EEAs to find pure pixels 
for all materials signatures in dataset. 

E. Computation Time 

Different division schemes divide dataset into different 
number of divisions as shown in Table 1, but by increasing the 
number of divisions, the division size get smaller. This section 
describes the change in computational time for different used 
divisions. Table 6 illustrates computational time consumed in 
seconds for different used EEAs using different division 
schemes where its content is reflected by Fig. 6.  

In ATGP, computational time using N×N Divisions 
Scheme declines towards increasing N but it’s a bit disturbing 
in VCA, where time slightly increases. It is noticeable that 
SGA slightly decreases in time consumption by incrementing 
N. It’s worth noting that computational time of ATGP and 
SGA decline towards more divisions for dataset, but time for 
VCA slightly increases. 

F. No Division Scheme vs. Different Others Schemes from 

Viewpoint of Extracted p 

In the first experiments, No Division scheme used in 
extracting only 4 endmembers (p = 4), where the expected 
number of endmembers in dataset is 4 (Tree, Water, Soil, and 
Road). Also each division, in the other division schemes, is 
used in extracting 4 endmembers.  

It is a fair comparison among different division schemes in 
terms of giving the suitable chance to extract p endmembers 
from each different division where division is considered as a 
standalone scene. But it is not a fair comparison in terms of 
the number of total endmembers extracted that equals to p × 

N
2
 for N×N Divisions Scheme used.  

In this experiment, No Division scheme used to extract the 
same numbers of total extracted endmembers from different 
other division schemes. According to experiments conducted 
on whole dataset (No Division Scheme) with p = 16, 36, & 64, 
we discuss the extracted results and the computational time 
taken in the following two sections: 

 

Fig. 6. Computational time consumed for different EEAs using different 
division schemes. (* Average computational time of three runs). 
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1) Extracted results using different values for p 
Firstly, in Table 7, an experiment conducted on whole 

Jasper dataset with p = 16. ATGP and SGA extracted pure 
pixels for all materials signatures expect for Water. Although 
there are 16 extracted pixels, but 10 of them are mixed pixels. 
VCA results varied in extracting materials signatures where 
VCA #1 extracted all materials signatures, VCA #2 extracted 
all except Road, and VCA #3 only extracted Tree and Soil 
signatures. 

An experiment conducted in Table 8 with p = 36. ATGP 
and SGA also (as results using p = 16), were agreed on the 
same extracted results where Water wasn’t extracted yet, but 
all other materials signatures were extracted. VCA extracted 
all materials signatures sometimes including Water and 
sometimes without it. 

Finally, using p = 64, Table 9 lists the results. ATGP and 
SGA were unable to extract Water signature and VCA were 
able to extract pure pixels for all materials signatures. 

2) Computational time consumed using different values 

for p 
Computational time taken for experiments conducted for 

different values of p (p = 16, 36, & 64) are tabulated in 
Table 10. By comparing computational time consumed for 
different EEAs used, we found that VCA increased linearly 
which considered the least growing algorithm in 
computational time. ATGP had great increments in time by 
increasing p. SGA increases dramatically which indicates the 
difficulty of its implementations as p increases. All EEAs 
increased in computational time using different values for p 
without resorting to divide data spatially.  

TABLE VII.  EXTRACTED PURE PIXELS USING NO DIVISION SCHEME (P=16) 

EMs ATGP 
VCA SGA 

#1 #2 #3 #1 #2 #3 

Tree 3 3 3 2 3 3 3 

Water 0 1 1 0 0 0 0 

Soil 2 1 1 1 2 2 2 

Road 1 1 0 0 1 1 1 

# of extracted 

pure EMs 
6/16 6/16 5/16 3/16 6/16 6/16 6/16 

# of extracted 

pure materials 
3 4 3 2 3 3 3 

TABLE VIII.  EXTRACTED PURE PIXELS USING NO DIVISION SCHEME (P=36) 

EMs ATGP 
VCA SGA 

#1 #2 #3 #1 #2 #3 

Tree 5 7 7 5 5 5 5 

Water 0 0 1 1 0 0 0 

Soil 4 4 1 2 4 4 4 

Road 2 1 3 5 2 2 2 

# of extracted 

pure EMs 
11/36 

12/ 

36 

12/ 

36 

13/ 

36 

11/ 

36 

11/ 

36 

11/ 

36 

# of extracted 

pure materials 
3 3 4 4 3 3 3 

TABLE IX.  EXTRACTED PURE PIXELS USING NO DIVISION SCHEME (P=64) 

EMs ATGP 

VCA SGA 

#1 #2 #3 #1 #2 #3 

Tree 8 8 9 10 8 8 8 

Water 0 1 1 2 0 0 0 

Soil 9 7 5 2 9 9 9 

Road 3 5 4 5 3 3 3 

# of extracted 

pure EMs 
20/64 

21/ 

64 

19/ 

64 

19/ 

64 

20/ 

64 

20/ 

64 

20/ 

64 

# of extracted 

pure materials 
3 4 4 4 3 3 3 

TABLE X.  COMPUTATIONAL TIME FOR ATGP, VCA, & SGA USING NO 

DIVISION SCHEMES FOR DIFFERENT VALUES OF P (TIME IN SECONDS) 

Value of P ATGP VCA* SGA* 

4 0.218 0.143 3.114 

16 1.136 0.322 19.501 

36 2.729 0.434 84.152 

64 4.772 0.607 286.066 

* Average computational time of three runs 

As opposed to using different division schemes which 
showed that computational times consumed were declined as 
ATGP and SGA or at most slightly increased as VCA. It is 
noted that division schemes showed superiority in the 
consumption of less computational time and improve the 
results of EEAs. 

 CONCLUSION VI.

Unsupervised hyperspectral unmixing process needs 
endmember extraction process prior to extract endmembers 
resident in hyperspectral scene. EEA suffers from finding less 
distinct and scarce endmembers in the scene. Our proposed 
method divided dataset into equivalent sections where each 
section represented as a standalone dataset, and applied EEAs 
on each section and the extracted endmember sets for the same 
division scheme were grouped into one overall set. VCA could 
find pure pixels that represent all materials signatures in 
smaller homogeneous division, while ATGP and SGA could 
find them in even smaller divisions. 

By comparing all overall sets for different division 
schemes, we found that dividing data into sections can help 
EEAs to find rare and less distinct endmembers where 
computational time consumed decreases as in ATGP and SGA 
and at most increases slightly as in VCA. 

We often need to increase p value to make EEAs more 
capable of finding pure pixels in hyperspectral image. But it 
takes great computational time and doesn’t guarantee finding 
pure pixels that represent all materials signatures in the scene. 
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Results could enhanced using different division schemes, 
not only for enhancement of finding pure pixels, but also in 
decreasing the computational time consumed. 

We divided the data into 4 sections, 9 sections and 16 
sections but didn’t need more divisions. But how far will we 
stop the data divisions!! This work can be extended by 
creating stop condition for more divisions. 
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