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Abstract—Recently, the approaches based on source 

separation are increasingly adopted for the fault diagnosis in 

several industrial applications. In particular, Independent 

Component Analysis (ICA) method is attractive, thanks to its 

simplicity of implementation. In the context of electrical rotating 

machinery with a variable speed, namely the wind turbine type, 

the interaction between the electrical and mechanical parts along 

with the fault is complex. Therefore, the essential system 

variables are affected and it thereby requires to be analyzed in 

order to detect the presence of certain faults. In this paper, the 

target system is the classical association of a doubly-fed induction 

motor to a two stage gearbox for wind energy application system. 

The investigated mechanical fault is a uniform wear of two gear 

wheels for the same stage. The idea behind the proposed 

technique is to consider the fault detection and identification as a 

source separation problem. Based on the analysis into 

independent components, Fast–ICA algorithm is adopted to 

separate and identify the sources of the gear faults. Afterwards, a 

spectral analysis is applied on the signals resulting from the 

separation in order to identify the fault components related to the 

damaged wheels. The efficiency of the proposed technique for the 

separation and identification of the fault components is evaluated 

by numerical simulations. 

Keywords—Source separation; fault diagnosis; independent 

component analysis; fast–ICA; spectral analysis 

I. INTRODUCTION 

Wind power increasingly gain ground, thanks to its 
characteristics as an inexhaustible and clean source of energy, 
which has made it a privileged field of scientific research and 
technological development in the world. A recent report shows 
the large-scale expansion of the installation of wind farms in 
the world [1]. Yet, an electric machine, whether running as a 
motor or as a generator, is rather sized in torque.  

In small powers, the speed is relatively high, however in 
the case of large powers, (several hundred KW to a few MW), 
the low speeds lead to very high torques and prohibitive 
generator masses. For this reason, a gearbox is typically 
interposed between the turbine and the generator. 
Consequently, the fast shaft of the gearbox is coupled to the 
shaft of the electric generator [2], [3], [4]. A recent study of 
faults in the wind energy conversion systems revealed that 

about 10% of the identified defects are related to the gearbox 
[5], [6]. Although this proportion is apparently low, this type of 
fault often leads to prohibitive production stops. That's from 
where comes the need to continuously monitor the proper 
functioning of this essential component in the energy 
conversion chain. That is why, several diagnostic techniques 
for the fault detection in these speed multipliers have been 
developed. These techniques include: Analysis of acoustic 
emissions [7], [8], oil analysis [9], [11] and specifically 
vibratory analysis. In particular, the investigation of vibratory 
signals has been proposed in different works, using different 
approaches: statistical analysis [10]-[11], temporal and/or 
frequency domain [7], [12], [13]. 

In reality, the vibratory signals collected during operation 
contain relevant informations which reflect several sources of 
faults relating to the speed multiplier itself and to those 
associated with the machine coupled with it. This is clearly 
justified in the references [14], [15], where the characterization 
of bar breaking faults, as well as the unbalance was based on 
the time-frequency analysis of the vibratory signals. 

However, the measured observations are often mixtures of 
the vibrations of the defects mentioned before. This makes the 
diagnosis of defects a very difficult task. To solve this problem, 
several techniques have been used to identify the sources of 
defects from the spectral mixtures resulting from vibratory 
signals [16], [17], [18]. 

In the literature, Independent Component Analysis (ICA) 
has been widely applied for the separation of sources in 
different domains, including medical imagery, 
telecommunications, and more recently for the diagnosis of 
faults in electromechanical systems [19], [20], [21], [22]. 

More recently, new ICA-based techniques have been 
proposed for fault diagnosis in the electromechanical systems. 
In fact, the most used algorithms of the (ICA) can be classified 
as follows 

 The InfoMax algorithm [23] solves the ICA problem by 
maximizing the differential entropy of the output of an 
invertible non-linear transformation of the whitened 
observations; 
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 JADE [24]-[25] consists in jointly diagonalizing the set 
of the eigen-matrices constructed from the eigenvectors 
associated to the P greatest eigenvalues of the 
covariance matrix of the whitened observations; 

 Fast–ICA [26] tries, after the whitening step, to 
maximize a contrast function based on negentropy. 

In the present work, the fast temporal algorithm, known as 
Fast–ICA , has been adopted for the identification of gear 
faults because of its appealing characteristics: high 
convergence speed and low computational cost. Moreover, this 
technique is interesting since it is relatively insensitive to the 
increase in the number of sources. This paper is organized as 
follows: Fast-ICA is formulated for fault diagnosis in the 
second section. Then, the gear vibration data is described in the 
third section. Afterwards, the fourth section is dedicated for the 
spectral analysis. Finally, the paper ends with a conclusion. 

II. FORMULATION OF THE FAST–ICA FOR FAULT 

DIAGNOSIS 

The Fast–ICA  algorithm is an advanced version of the 
ICA, characterized mainly by a very fast convergence, whose 
separation into independent components takes place in a 
whitened space [27],[28]. In fact, instantaneous linear mixtures 
(signals from sensors) are preprocessed. This consists in their 
projection into a whitened space. Then, they are separated by 
the Fast–ICA algorithm itself. The details of these two 
preprocessing steps and the Fast–ICA processing are described 
in the following. Furthermore, several nonlinearity functions 
are presented because of their impact on the performance of 
Fast–ICA algorithm. 

A. Preprocessing step 

Let n sources of faults sj denoted by [s1, ..., sn]
T
, and mixed 

before being retrieved by the sensors. Thus, m mixtures xi of 
length N, are represented as rows of a mxN matrix denoted X = 
[x1, ..., xm]

T
.  

 

  (

           

        
           

)           (1) 

 
Moreover, it can be represented by a linear model as 

                                     (2) 

where   is an m×n mixing matrix,   is the additive noise 
with the corresponding Gaussian weight vector given by b = 
[b1,..., bn]

T
. 

In order to apply Principal Component Analysis (PCA) to 
the mixtures, they should be considered differently. Indeed, the 
mixtures X should be seen as a set of N m-dimensional points. 
Now, each column of X is interpreted as the coordinates of a 
point in the space   . 

First of all, PCA computes the mean of the N points, 
denoted            , as follows 

 

   
 

 
∑     

 
   , for all i=1,…,m                   (3) 

Then, PCA centers each point relatively to   as follows: 

                            
              

           ,  

for all  j=1,…., N (4) 

Therefore, the resulting matrix denoted X‟ has as rows the 
centered mixtures. 

   (
                 
             

                 

)           (5) 

Afterwards, the covariance matrix   of X’ is computed as 
follows 

  
 

   
                                 (6) 

Then, the   matrix is diagonalized as follows 

                                       (7) 

Therefore, two matrices are obtained  

 a diagonal matrix denoted D composed of decreasingly 
sorted eigenvalues of the covariance matrix of X’. 

 a matrix denoted E whose columns are the eigenvectors 
of the covariance matrix of X’. These eigenvectors are 
pairwise orthogonal. 

 Once PCA achieved, the whitening matrix denoted U 
is calculated by the following expression 

      
 

                                   (8)                         

 Finally, this steps results in the matrix composed of 
whitened mixtures, denoted V, is obtained by 

                                             (9)  

B. Processing Step: Implementation of the "Fast–ICA " fixed 

point algorithm 

The ICA method defines a separation model in order to 

estimate the sources  ̂ given the whitened mixtures   

 ̂                                      (10) 

Therefore, the goal of the ICA subsequently is to estimate 
W

T
, called the whitened separation matrix.In particular, the 

Fast–ICA estimates the independent components by 
maximizing the non-gaussianity, defined as the opposite of the 
deviation of this signal distribution relatively to a gaussian 
signal distribution of the same power. It is thus possible to 
separate the sources of a linear mixture by maximizing the 
non-gaussianity of the obtained output signal by a linear 
combination of the observations.  

There are multiple approaches to measure the non-
gaussianity. After several trials with different approaches, 
mainly: normalized kurtosis, negentropy, [26], [29], the authors 
in the literature opted for negentropy. Next, the steps of the 
Fast–ICA algorithm are described, represented by the 
flowchart of Figure 1.  
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k ← k-1

Estimated sources

Choose threshold (ɛ)(e1)

Randomly build W(0)(e2)

Orthogonalize W(0)(e3)

Update W(k)(e4)

Orthogonalize W(k)(e5)

(e6) Convergence ?

True

False

 
Fig. 1. Flowchart of FastICA. 

Indeed, the application of the Fast–ICA algorithm starts 
with  

step (e1) which assigns a positive and infinitely small value 
to a parameter, called convergence threshold and denoted ε.  

The next initialization step denoted (e2) consists in 
constructing W(k), as well as its zero-order orthogonalization in 
step (e3). Thereafter, the algorithm iteratively performs the 
following two steps 

 step (e4) of updating the matrix W to the order k is 
performed by the following equation of the fixed point 
of the negentropy 

      {            }   {             }  (11)    

where the function g is representing the non-linearity of the  
Fast–ICA algorithm, which will be detailed later. 

 the orthogonalization step (e5) based on the symmetric 
method, which does not favor any vector w, consists of 
starting directly from any matrix W, orthogonalizing it 
by the Gram-Schmidt approach, as follows 

       (         )
 
                  (12) 

 finally, at the end of each iteration, the algorithm checks 
in step (e6) whether it has reached a maximum of the 
negentropy, which is based on the thresholding process 
given by 

    ‖           ‖                         

C. Choice of the nonlinearity: 

The function   of equation (11) is the non-linearity of Fast–
ICA, which can be, as shown in the literature 

 tangent-hyperbolic noted    which is effective for any 
type of situation  

                                           

 kurtosis noted    which is used only in the case of 
subgaussian variables 

                                                

 exponential or Gauss noted    which is more suitable in 
the case of supergaussian variables 

         
  

                                    

 skewness noted    is the third level moment which 
measures the asymmetry of the data 

       
  

 
                                      

The choice of the function   has a direct impact on the 
updating of   as indicated in equation (12), and consequently 
on the overall performance of the algorithm.  

III. PRESENTATION OF GEAR VIBRATION DATA 

A. System Description 

In order to evaluate the efficiency of the method described 
above, the asynchronous double-feed machine-speed multiplier 
combination of Figure 2 has been considered.  

More precisely, the defects relating to the gear- A two-
stage speed multiplier are interesting. Indeed, the gear in 
question is composed of four toothed wheels (R1, R2, R3 and 
R4). The system under consideration is assumed to operate at 
nominal speed of 1012 rpm on the side of the generator (Wheel 
R4) and 46 rpm on the turbine side (Wheel R1). 

In fact, the vibrations resulting from the gearbox operation 
are due to the forces of mutual contact between the teeth of the 
wheels in contact. For two wheels, of the same stage, making 
contact, a meshing frequency is given by 

                                                      

where the fr,i and fr,i+1 are the rotational frequencies of the 
wheels for the same considered stage. The numbers of teeth 
relative to each wheel are denoted Zi and Zi+1. 

Under healthy gear, the vibration spectrum typically shows 
the harmonic chain in (19) with small amplitudes. 

                                                   

On the other hand, in presence of a uniform wear fault on 
all the teeth of the same wheel, the amplitude of the harmonics 
in (19) shows a noticeable increase, making it possible to 
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identify the wheel affected by the fault. In the considered 
system, the wheels R1 and R2 have the same meshing 
frequency fmesh1,2 and have respectively different lateral 
frequencies (fl1,fr1) and (fl2,fr2). 

Likewise, the wheels R3 and R4 have the same meshing 
frequency feng3,4 and have respectively different lateral 
frequencies (fg3,fd3) and (fg4,fd4), as detailed in Table I. 

Stator 

Connections

DFIM

Rotor

Connections

Gearbox

Stage I

Stage II

R4

R3 R2

R1

 

Fig. 2. Simplified representation of the generator association with double-

fed multiplier of speed composed of two stages. 

TABLE I. FREQUENCIES OF FAULT IDENTIFICATION 

 
Rotating Speed 

(tr/min) 

Number of 

teeth Zi 
flk, (k=1..4) frk, (k=1..4) 

R1 46 69 52.12 53.66 

R2 186.7 17 49.78 56 

R3 186.7 92 283.62 289.84 

R4 1012 17 269.87 303.59 

B. Description of mixtures  

The mixtures are linear combinations of the sources as 
indicated in equation (2), where matrix A and vector b must be 
specified 

 the adopted mixture matrix A is chosen as 

      























9.07.052.06.0

6.09.071.055.0

55.068.09.045.0

6.07.00539.0

A
                   (20) 

 the vector b, of dimension 4×1, for the weighting of 
noise in the mixtures 

 























1.0

7.0

5.0

3.0

b
                               (21) 

On the other hand, a mixture can be represented either in 
the temporal space or in the spectral space. Nevertheless, the 
choice of the appropriate representation is required. It allows to 
know whether a mixture is in healthy mode or in faulty mode. 

The temporal representation of the mixtures makes it 
possible to distinguish the healthy mode from the faulty mode. 
Indeed, the amplitudes in the faulty mode shown in Figure 4 
are generally greater than the amplitudes in the healthy mode 
illustrated in Figure 3. However, the problem is that the 
temporal representation does not make possible to display 
exactly which wheels are affected by the fault. For this 
purpose, it is preferred to use the spectral representation instead 
of the temporal representation. 

  

Fig. 3. Mixtures used for the separation under healthy condition. 

  
Fig. 4. Mixtures used for the separation under a uniform wear of R1 and R2. 

 
Fig. 5. Spectrum of mixture 1, in healthy mode. 
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Fig. 6. Spectrum of mixture 1, under a uniform wear of R1 and R2. 

For instance, for the frequency-band centered at fmesh34, the 
spectrum of mixture 1 in the faulty mode, presented in Figure 
6, is similar to the spectrum of this mixture in the healthy 
mode, in Figure 5. This result shows that the wheels R3 and R4 
are healthy. 

On the other hand, for the frequency-band centered in 
fmesh12, the spectrum of mixture 1 in the fault mode, in Figure 6, 
is different from the spectrum of the same mixture in the 
healthy mode, in Figure 5. This proves that the wheels R1 and 
R2 are affected by the uniform wear fault. 

C. Study of the whitening preprocessing 

The mixtures are firstly whitened using Principal 
Component Analysis (PCA) technique.  

Let x be the sample composed of points in    extracted 
from the mixtures X in the faulty mode, Figure 7. PCA 
computes the two following moments of x 

 the arithmetic mean 

                                         (22) 

 the covariance matrix 

      (

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

)                      (23) 

The points of x are centered relatively to µ. It comes the 

two matrices 

 D : matrix whose diagonal values are the eigenvalues of 
  

  (

       

 
 
 

 
       

 
 

 
 

       

 

 
 
 

       

)      (24) 

 E : matrix whose columns are the eigenvectors of   

     ⃗⃗⃗⃗    ⃗⃗⃗⃗    ⃗⃗⃗⃗    ⃗⃗  ⃗  

     (

       
      

       
       

       
       

      
      

       
      

      
      

       
      

      
      

)(25) 

In Figure 7 and 8, only the three eigenvectors   ⃗⃗⃗⃗ ,   ⃗⃗⃗⃗  and   ⃗⃗⃗⃗  
are displayed.  

And, then, the obtained whitening matrix U expressed in 
(8) based on D and E 

  (

       
       
     
    

          
       
      
    

           
      
      
    

          
      
     
    

)   (26) 

 Therefore, the whitened mixtures V is the projection of X 
into U, as shown in equation (9). These resulting mixtures V 
are more appropriate for the source separation than the original 
mixtures X. Indeed, the sample v composed of the points 
belonging to V, shown in Figure 8, has the following appealing 
characteristics 

 the zero arithmetic mean: 

                                       (27) 

 the identity covariance matrix 

   (

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

)                         (28) 

 the orthonormal basis composed by the eigenvectors 
corresponding to the columns of E. 

 

Fig. 7. Dispersity of points from mixtures before Whitening. 

 

Fig. 8. Dispersity of points from mixtures after Whitening 
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D.  Study of the source separation processing 

In this section, the performance of the Fast–ICA algorithm 
is evaluated for the source separation task.  

1) Performance measures 
In the context of the separation of vibratory signal sources, 

performance measurement is an essential task for assessing 
separation quality. Therefore, the following measures are 
adopted [30]  

 the Signal-to-Distortion Ratio (SDR) 




















2

int

2
arg

10log10
artif
j

er
j

ett
j

ee

S
SDR                (29) 

 source-to-Interference Ratio (SIR) 


















2

int

2
arg

10log10
er

j

ett
j

e

S
SIR                             (30) 

 the Souce-to-Artifact Ratio (SAR) 



















2

2
intarg

10log10
artif
j

erf
j

ett
j

e

eS
SAR                (31) 

where 

    
      

  (  ) is a version of the original source 

modified using an allowed distortion    , such that   
encompasses several time-invariant gains distortions, 

    
      

 and   
     

are, respectively, the error terms 

relative to interferences and artifacts.  

2) Results and discussion 
Our goal in this section is to identify the non-linearity 

results in the best performance of source separation using Fast–
ICA algorithm. Furthermore, the experiments are conducted 
with healthy and faulty gears.  

In the case of healthy mode, the results of table II are 
obtained. It is obvious that the tanh outperforms the other non-
linearities. Indeed, it gives rise to the highest average values of 
SIR: 69.3 and SDR: 41.47.  

Kurtosis gives the second best performance in terms of SIR: 
65.87 and SDR: 38.02. The gauss non-linearity gives 
significantly lower average values of SIR: 27.23 and SDR: 
21.95.  

The worse performance is obtained by Skew non-linearity. 
It gives very low average value of SIR: 3.96 and SDR: 3.97. All 
the non-linearities result in close high SAR values between 41 
and 44. Therefore, Fast–ICA leads to low overlap artifact in the 
estimated sources. In the case of faulty mixtures, the results of 
table III are obtained. Particularly, Fast–ICA performs the best 
separation using tanh non-linearity. It results in SIR average 
value 81.27 and SDR average value 48.15.  

What is interesting in this faulty mode is that the sources of 

the damaged gear wheels R1 and R2 have been well separated 

based on tanh. Indeed, tanh gives rise the highest values of SIR: 

88.67 and SDR: 59 for the estimated source of damaged wheel 

R1. Similarly, tanh gives the highest values of SIR: 75.75 and 

SDR: 38.85 for the estimated source of damaged wheel R2.  

Moreover, the obtained average SAR values are between 45 

and 48 for all the non-linearities. These values are higher than 

average SAR values obtained in the case of healthy mode. 

Therefore, Fast–ICA results in less overlap artifact in the faulty 

mode. 

TABLE II. PERFORMANCE MEASURE OF SOURCE SEPARATION IN 

HEALTHY MODE 

  Tanh Kurtosis Gauss Skew 

Nb of iterations 5 5 7 15 

 

 

SIR 

(dB) 

R1 70.4 70,1 60.8 5.7 

R2 64.3 61,4 3.86 1.98 

R3 65.9 62 40.4 2.4 

R4 76.6 70 3.86 5.77 

Average 69.3 65.87 27.23 3.96 

 

SDR 

(dB) 

R1 37.69 35.8 44.3 5.7 

R2 45 42.23 3.8 1.98 

R3 38.8 40.39 35.9 2.44 

R4 44.4 33.69 3.8 5.77 

Average 41.47 38.02 21.95 3.97 

 

SAR 

(dB) 

 

R1 37.69 38.8 44.4 47.63 

R2 45 45.26 56.6 40.19 

R3 38.8 44.41 37.7 36.34 

R4 44.4 37.69 37.9 46.86 

Average 41.47 41.54 44.15 42.75 

TABLE III. PERFORMANCE MEASURE OF SOURCE SEPARATION IN FAULT 

MODE 

  Tanh Kurtosis Gauss Skew 

Nb of iterations 5 5 7 15 

 
 
SIR 

(dB) 

R1 88.67 71.94 84.7 2.39 

R2 75.75 72.01 71.5 -4.1 

R3 73 71.07 70.3 1.3 

R4 87.67 86.5 66.4 3.5 

Average 81.27 75.38 73.22 0.77 

 
SDR 

(dB) 

R1 59 37.68 55 2.39 

R2 38.85 36.7 37.7 -4.13 

R3 37 38.8 38.8 1.37 

R4 57.75 59 37.68 3.5 

Average 48.15 43.04 42.29 0.78 

 
SAR 

(dB) 

 

R1 59 37.68 59 41.54 

R2 38.85 57.75 57.7 37.89 

R3 37.68 38.85 38.8 61.29 

R4 57.75 59 37.6 41.6 

Average 48.32 48.32 48.27 45.58 

IV. SPECTRAL ANALYSIS 

In this section, the results obtained by the Fast–ICA  
algorithm are studied. First, Fast–ICA converges quickly in up 
to 15 iterations, which confirms that this algorithm is a fast 
variant of the ICA. On the other hand, in our experiments, 
Fast–ICA is applied on two types of mixing: healthy mode and 
fault mode. Therefore, two questions that arise: Is the Fast–
ICA able to separate the gear signals associated to the four 
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wheels R1, R2, R3 and R4? And, in the case of a fault mode, 
can it distinguish between damaged wheels and healthy wheels 
?  

By observing the spectrums of the estimated sources, Fast–
ICA succeeded in separating the gear signals corresponding to 
each wheel. The spectrum presented in Figure 9 is composed of 
a fundamental frequency fmesh,12 and two lateral frequencies fl,1 
and fr,1. Thus, the source 1 corresponds to the wheel R1. The 
second spectrum illustrated in Figure 10 is composed of a 
fundamental frequency fmesh,12 and two lateral frequencies fl,2 
and fr,2. Thus, the source 2 identifies the wheel R2. The third 
spectrum shown in Figure 11 is composed of a fundamental 
frequency fmesh,34 and two lateral frequencies fl,3 and fr,3, leading 
to a clear identification of wheel R3. Finally, the spectrum 
given in Figure 12 is composed of a fundamental frequency 
fmesh,34 and two lateral frequencies fl,4 and fr,4. Thus, the source 
4, corresponding to the wheel R4, is clearly identified. 

By comparing the results obtained in fault mode with the 
results obtained in healthy mode, Fast–ICA distinguishes 
between the faulty sources and the healthy sources of the gears 

 The wheel R1 has two slightly different spectrums. 
Indeed, the spectrum of the wheel R1 mentioned in 
Figure 13 is slightly different from the spectrum of R1 
in Figure 9 which is in a healthy mode. 

 The wheel R2 has two slightly different spectrums. 
Indeed, the spectrum of the wheel R2 mentioned in 
Figure 14 is slightly different from the spectrum of R2 
in Figure 10 which is in a healthy mode.  

 On the other hand, the other two wheels R3 and R4 are 
healthy. Indeed, each of these two wheels keeps almost 
the same spectrum in the healthy mode and in the fault 
mode, as shown in Figures (15, 11) and Figures (16, 12) 
respectively. 

V. CONCLUSION 

In this paper, a diagnostic technique is presented for 
separating and identifying uniform wear in two-stage gearbox, 
classically associated to a double-fed induction machine in 
modern wind energy conversion systems. Based on Fast–ICA, 
the main contribution of the proposed technique is its ability to 
isolate the fault frequency components, representative of a 
uniform wear for each pinion or gear of the gearbox.  

The obtained results show also clearly the ability of the 
Fast–ICA for separating the characteristic frequency 
components of the gears from noisy mixtures. Moreover, the 
spectral analysis allows us to distinguish for each estimated 
source associated to a gear whether it is healthy or faulty. As a 
perspective, further faults than gear fault would be taken into 
account in a future work. 

 
Fig. 9. Spectrum of signal resulting from the estimation of component 

relative to the wheel R1, in healthy mode. 

 
Fig. 10. Spectrum of signal resulting from the estimation of component 

relative to the wheel R2 in healthy mode. 

 
Fig. 11. Spectrum of signal resulting from the estimation of component 

relative to the wheel R3, in healthy mode. 
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Fig. 12. Spectrum of signal resulting from the estimation of component 

relative to the wheel R4, in healthy mode. 

 

Fig. 13. Spectrum of signal resulting from the estimation of component 

relative to the wheel R1, in fault mode with uniform wear of R1 and R2. 

 

Fig. 14. Spectrum of signal resulting from the estimation of component  

 

Fig. 15. relative to the wheel R2, in fault mode with uniform wear of R1 and 

R2. 

Fig.  

Fig. 16. Spectrum of signal resulting from the estimation of component 
relative to the wheel R4, in fault mode with uniform wear of R1 and R2. 
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