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Abstract—Metaheuristic algorithms are investigated and used 

by many researchers in different areas. It is crucial to find 

optimal solutions for all problems under study especially for the 

ones which require sensitive optimization. Especially, for real 

case problems, solution quality and convergence speed of the 

algorithms are highly desired characteristics. In this paper, a 

new optimization algorithm called Core Levels Algorithm 

(COLA) based on the use of metaheuristics is proposed and 

analyzed. In the algorithm, two core levels are applied 

recursively to create new offsprings from the parent vectors 

which provides a desired balance on the exploration and 

exploitation characteristics. The algorithm’s performance is first 

studied on some well-known benchmark functions and then 

compared with previously proposed efficient evolutionary 

algorithms. The experimental results showed that even at the 

early stages of optimization, obtained values are very close or 

exactly the same as the optimum values of the analyzed functions. 

Then, the performance of COLA is investigated on real case 

problems such as some selected microwave circuit designs. The 

results denoted that COLA produces stable results and provides 

high accuracy of optimization without high parameter 

dependency even for the real case problems. 

Keywords—Metaheuristic algorithms; evolutionary algorithms; 

microwave circuits, optimization 

I. INTRODUCTION 

Solution of optimization problems is an interesting field of 
study for various areas such as array antenna synthesis [1]-[3], 
financial analysis [4], [5], error minimization and game 
programming [6], [7], microwave design [8]-[10] and data 
mining [11], [12]. Most of the related algorithms are 
motivated from the nature and are aimed to find near optimal 
solutions of given problems [13]-[17]. The performances of 
proposed algorithms are usually represented with their 
solution quality and convergence speeds. Each algorithm has 
several control parameters which are needed to be well tuned 
depending on the optimization problem in order to achieve 
better performance. This can be considered as a vital step in 
most of the cases and affects the exploration and exploitation 
characteristics of the algorithms [18]-[20]. The number of 
control parameters and their adjustment are quite deterministic 

for the performance of the algorithms. Typically, an algorithm 
that needs a few control parameters is assumed as a good 
choice in solving a given problem. However, in some cases, 
even the fine adjustment of control parameters is not sufficient 
to find the optimal points of the problems. In such problems, 
the exploration strategies of the algorithms may not be 
adequate to converge to the global optimum of the given 
problem. Therefore, some modifications of the algorithms are 
proposed to solve these specific problems [21]-[24]. 
Introduction of new optimizers is still an open area of 
research, because of the lack of an optimization algorithm that 
performs well in all fields. Some optimization algorithms 
perform well for some problems, while perform inadequate for 
other problems [25]. In the literature, many different 
optimization algorithms have been proposed to increase the 
solution quality for complex optimization problems with as 
little effort as possible. 

In many microwave design problems, it is required to deal 
with some highly nonlinear objective functions with a large 
number of variables. In addition, gradient based algorithms 
cannot yield sufficient solutions in most of the cases since the 
optimization parameters in most of the problems are highly 
coupled with each other. Evolutionary algorithms are widely 
used when the analytical methods are insufficient to obtain 
appropriate solutions [26]-[28]. Although Genetic Algorithm 
(GA) is the first dominant evolutionary algorithm, which was 
applied on microwave and electromagnetic based problems, 
Differential Evolution (DE) and Particle Swarm Optimization 
(PSO) algorithms including their variants dominate the other 
evolutionary algorithms in this field [3], [29], [30]. 

In this paper, a new evolutionary algorithm called Core 
Levels Algorithm (COLA) is proposed to solve complex 
optimization problems including the design problems for 
microwave circuits. COLA uses the similar steps of 
evolutionary algorithms such as selection of candidates, 
generation of offsprings and replacement of the parents with 
the new offsprings which have better fitness values. In 
addition to that, COLA focuses on two core levels to obtain 
better offspring candidates by their parent vectors. A balance 
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is achieved between the core levels to perform iterative 
exploitation in near optimal regions and to have better 
exploration in the search region. Moreover, the second core 
level of the algorithm is designed in such a way that it 
performs an exploration scheme which is centered on the 
selected vector and covers the whole domain of interest in 
order to solve different kind of optimization problems without 
modifying the algorithm.  

Optimization characteristics of COLA were studied with 
the use of benchmark functions. In this study, the correlation 
between the number of selected parent vectors and the 
optimization capability was observed. Also, a comparative 
analysis of COLA with DE, PSO and Harmony Search (HS) 
algorithms was done for multimodal functions to observe the 
benefits of COLA.  Another goal of the paper was to verify 
that COLA is applicable to the real case problems. Therefore, 
two microwave models were selected and optimized to 
achieve this goal. 

The rest of the paper is organized as follows: Section II 
introduces the main concept of COLA in detail. Section III 
focuses on benchmark function results, real case microwave 
problems and discussions. Lastly, Section IV summarizes the 
obtained results and concludes the paper. 

II. CORE LEVELS ALGORITHM (COLA) 

The Core Levels Algorithm implements a new method to 
find the global optimum of a given function which is mainly 
based on the use of the balance between two core levels. This 
provides good exploration and exploitation characteristics of 
the algorithm. The pseudo code of COLA is shown in Fig. 1 
and the detailed steps of COLA are explained in the following 
paragraphs: 

 Initialize the population randomly using uniform 
distribution in the related domain of the optimization 
problem. 

The algorithm has a few control parameters to be set which 
are np; the number of elements in the population and k; the 
number of elements to be combined. COLA starts by 
initializing randomly the solution set of the optimization 
problem. The initialization can be defined as follows: 

  jjjji xxrandxx min,max,min,, 1,0  ,                                      (1) 

Where,  npi ,,2,1   and  Dj ,,2,1  . Here, D 

represents the dimension of given problem, 
jxmin,
 and 

jxmax,

represent the lower and upper bounds for the jth variable 

respectively and 
jix ,
 is the jth

 
component of the ith solution 

vector. 

 Evaluate the fitness of each element in the population. 

 Select k number of solutions according to their fitness 
values. 

Using roulette wheel selection, k number of solutions are 
selected randomly according to their fitness values. 

 

 
Fig. 1. Pseudo code of COLA. 

 Obtain a new candidate solution from the selected 
solution and the randomly generated solution by using 
two core levels. 

The new candidate solution vector is formed which is a 
weighted sum of the selected k number of solution vectors by 
core level 1. New candidate solution vector (NC) is calculated 
using the following expression: 







k

n
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jSkkjSjSnew

j

fitt

xfittxfittxfitt
x k

1
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 ,                       (2) 

Where, 
new

jx  is the jth
 
component of the new candidate 

vector,  1,1it  and is selected as -1 or 1 with equal 

probability,
pfit   is the fitness of the pth selected solution 

vector and jS p
x , is the jth component of the pth selected 

vector. The new candidate formation using (2)  is performed 
once in every two generations of the candidate vector.  

Core level 2 is implemented for the next generation of the 
new candidate by using the following expression: 

  randjS

new

j xxx   ,1  ,                                       (3)      

where, 
new

jx  is the jth
 
component of the new candidate vector, 

α is a random number in the uniformly distributed interval    

1. start 

2. Building initial Population  (Q) 

3.               Evaluation of fitness values  (FV) 

4.               i=0 

5.       while i < NFE (Number of function evaluations) do 

6.          if  i mod 2==0 

7.     for z=1 to k do 

8.   Select an arbitrary solution from Q. 

9. Multiply the selected solution by its 

fitness and t then calculate their 

summation to obtain the New 

Candidate (NC). 

10.                                   end for 

11.  NC is obtained by dividing the summation value 

with the total fitness values and multiplied by t. 

12.             else 

13.                               Generate  new random solutions. 

14. Combine them with the selected solution from Q 

to find the NC. 

15.                       end if 

 

16.                      if  FV (NC) > FV (Worst solution) 

17.                  Replace worst solution with NC. 

18.         end if 

19.         i++ 

20.     end while 

21.     Select the solution that has the best FV value 

22. end 

Core Level 1 

Core Level 2 
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[0, 1], jSx , is the jth component of the randomly selected S 

vector from the population and randx  is a randomly obtained 

number in the related domain which is calculated using (1). In 

the Core level 2, new vector 
new

jx  can be obtained by 

applying in three different methods. 

1) Only one of the randomly selected components of  Sx  

is updated.  

2) The  k number of components in the range of        1 < 
k < D are updated where the number of k is selected 
randomly.  

3) All of the components of Sx  are updated by their 

linear combination with random numbers.  

For each core level 2 application, only one of these 
methods is performed and this selection is done recursively. 

 Replacement of the new candidate solution with the 
parent vector, if the fitness value of the new candidate 
is better. 

The fitness of  new vector is compared with the fitness of 
the worst parent solution vector in the population. If the 
fitness of new vector is better than fitness of the worst parent 
solution vector, then the new vector replaces with the worst 
parent solution vector in order to advance to the next 
generation. This can be expressed as follows: 

   

.
.

)()(

otherwise

worstxfitnessnewxfitness
worstx

ifnewxworstx








          (4)                                  

 The steps will be repeated until the stopping criterion is 
met.  

III. EXPERIMENTAL RESULTS AND DISCUSSIONS 

A. Testing with benchmark functions 

In this section, COLA is applied to 12 well-known 
benchmark functions to demonstrate its performance. These 
functions are taken from literature and they have been widely 
used for testing of optimization problems [31]. The selected 
benchmark functions are shown in Table 1. Among these 
functions, the first seven functions are unimodal functions and 
the following five functions are multimodal functions. For 
unimodal functions, convergence rates are the distinguishing 
characterictics of the optimization algorithms rather then final 
results. However, for multimodal functions, due to the many 
optimum points of problems, the final result obtained by 
algorithm is significant. The presented experimental results 
are average, standard deviation and the best value of the 
functions. All values are gathered over 40 independent runs. 
Average value indicates the solution quality, standard 
deviation value specifies the stability of the algorithm for 
undergoing random operations and the best value simply 
expresses the closest result to the optimal solution out of 40 
independent runs.  

TABLE I.  THE SELECTED BENCHMARK FUNCTIONS USED IN 

EXPERIMENTS 
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Population size is fixed to 100, dimension is set to 30 and 
the number of function evaluations is set to 10000 for all 
benchmark functions. The algorithm continues until the 
stopping condition is met. 

The results obtained for the listed functions above are 
given in Table 2. In this table, it is aimed to observe the 
performance of COLA for different k parameter values in the 
set {3, 4, 5} and a random selection of k from the same set for 
each iteration. 
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TABLE II.  THE DESCRIPTIVE VALUES OF BENCHMARK FUNCTIONS BY 

SELECTED NUMBER OF K PARAMETER AMONG THE PARENT VECTORS 

 

10000 

function evaluations 

 

k = 3 k = 4 k = 5 k = rand[3-5] 

Sphere 

Avg 0 0 0 0 

Best 0 0 0 0 

Stdev 0 0 0 0 

Schwefel 
2.22 

Avg 0 0 0 0 

Best 0 0 0 0 

Stdev 0 0 0 0 

Schwefel 

1.2 

Avg 0 0 0 0 

Best 0 0 0 0 

Stdev 0 0 0 0 

Schwefel 
2.21 

Avg 0 0 0 0 

Best 0 0 0 0 

Stdev 0 0 0 0 

Rosenbrock 

Avg 0.002908 0.000315 0.002061 1.92E-4 

Best 2.92E-27 2.92E-27 2.92E-27 2.92E-27 

Stdev 0.007363 0.000647 0.000228 0.000227 

Step 

Avg 0 0 0 0 

Best 0 0 0 0 

Stdev 0 0 0 0 

Quartic 

Avg 0 0 0 0 

Best 0 0 0 0 

Stdev 0 0 0 0 

Schwefel 

Avg -12569.5 -12569.5 -12569.5 -12569.5 

Best -12569.5 -12569.5 -12569.5 -12569.5 

Stdev 0 0 0 0 

Rastrigin 

Avg 0 0 0 0 

Best 0 0 0 0 

Stdev 0 0 0 0 

Ackley 

Avg -1.4E-16 -1.4E-16 -1.4E-16 -1.4E-16 

Best -1.4E-16 -1.4E-16 -1.4E-16 -1.4E-16 

Stdev 0 0 0 0 

Griewank 

Avg 0 0 0 0 

Best 0 0 0 0 

Stdev 0 0 0 0 

Penalized 

Avg 3.67E-6 2.58E-6 2.18E-6 1.74E-6 

Best 1.36E-22 1.36E-22 1.36E-22 1.36E-22 

Stdev 3.2E-06 1.38E-6 1.09E-6 8.43E-7 

It can be observed from the results in Table 2, except 
Rosenbrock, Ackley and Penalized functions, all other 
functions are converged to their optimal values regardless of 
selection of k. Moreover, when the results of Rosenbrock and 
Penalized functions are investigated, instead of selecting k 
parameter as a fixed number, the selection of it randomly in 
given interval for each iteration decreases the average and 
standard deviation values. This is the indication of better 
solution quality and faster convergence speed of the algorithm 
under the random selection of k parameter in the given 
interval. For these two functions, the average and standard 
deviation are shown for different values of k in Fig. 2 and 3, 
respectively. 

The figures illustrate that selecting parameter k randomly 
in a given interval for each iteration presents better results. It 
is obvious that COLA performs effectively to reach to the 
optimum points of Rosenbrock and Schwefel functions. Since 
the control parameter k is randomized in the given interval, 
COLA performs efficiently by using only a single control 
parameter which is np; the number of elements in the 
population. 

 
Fig. 2. Average function values obtained for Rosenbrock and Penalized 

functions for different values of k parameter. 

 
Fig. 3. Standard deviation of function values obtained for Rosenbrock and 

Penalized functions for different values of k parameter. 

In order to verify the advantage of COLA over some 
effective evolutionary algorithms which are Differential 
Evolution, Particle Swarm Optimization and Harmony Search 
algorithms, it is compared for the multimodal benchmark 
functions under the same conditions. These comparative 
results are presented in Table 3. The results for DE, PSO and 
HS algorithms are taken from the previously reported work 
[32]. Since the global optimum point is located in many local 
optimum points, it is quite challenging to reach the global 
optimum of given multimodal functions. It is also known that 
the solution quality of the last value achieved by an algorithm 
is a distinguishing characteristic especially for multimodal 
functions. Therefore, a comparison analysis is performed only 
for the multimodal functions. It can be seen from Table 3 that 
COLA optimizes the multimodal functions with a good 
convergence rate, while the others are away from the global 
points of the functions even after 10000 number of function 
evaluations. 

B. Microwave Models 

Importance of optimization and computer design has been 
realized for many years.  One of the earliest papers on the area 
of optimization methods for microwave circuits was Bandler 
and Macdonald’s work [33], [34]. A classical paper on the 
analysis part of microwave circuits in computer aided design 
was introduced by Monaco and Tiberio [35]. 

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

3 4 5 rand[3-5]

A
v
er

ag
e 

V
al

u
e 

parameter k 

Rosenbrock Avg

Penalized Avg

0

0.002

0.004

0.006

0.008

0.01

3 4 5 rand[3-5]

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

 V
al

u
e 

parameter k 

Rosenbrock Stdev

Penalized Stdev



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 7, 2017 

61 | P a g e  

www.ijacsa.thesai.org 

TABLE III.  COMPARATIVE VALUES OF ALGORITHMS FOR MULTIMODAL 

FUNCTIONS. 

Function name COLA DE PSO HS 

Schwefel 

Avg -12569.5 -7485.74 -8531.08 -12554.6 

Best -12569.5 -8128.58 -10353.9 -12566.1 

Stdev 0 270.62 949.247 28.8299 

Rastrigin 

Avg 0 137.899 46.3655 18.1256 

Best 0 126.013 19.0816 12.7443 

Stdev 0 6.6812 17.416 3.41769 

Ackley 

Avg -1.4E-16 16.7758 2.86698 1.09805 

Best -1.4E-16 15.1746 0.65150 0.56317 

Stdev 0 0.75719 1.01934 0.29879 

Griewank 

Avg 0 1.53190 0.39352 1.04977 

Best 0 1.29684 0.05316 0.56317 

Stdev 0 0.19544 0.31861 0.0222 

Penalized 

Avg 1.74E-6 5.08107 4.36306 0.29210 

Best 1.36E-22 2.79334 0.37862 0.04269 

Stdev 8.43E-7 2.13136 2.94708 0.24432 

In this paper, different methods used in the analysis 
programs of linear circuits in frequency domain were 
described. Also, determination of sensitivity and convenience 
of using one or the other method in relation to the number of 
parameters and different analysis methods were explained. 

Different methodology which used the combination of 
experimental design and computer-aided design was 
demonstrated in [36]. In 2002, computer-aided design 
summary of works to date is included as a survey paper [37]. 
It is also indicated that there are three essential reasons for 
simulation of radio frequency and microwave circuits; to 
understand the physics of a complex system of interacting 
elements, to test new concepts and to optimize the designs. 
Over the years many papers for the computer aided design or 
optimization of microwave circuits can be found. Recently a 
new technique for rapid multi-objective optimization of the 
compact microwave passive components was presented [38], 
[39]. 

C. Microwave Tapered Matching Circuit Design 

Microwave matching networks are important in the design 
of many different types of microwave circuitry. Only with 
proper matching such a circuit can attain maximum power 
transfer and eliminate the reflection. In microwave matching 
circuit design, especially when one needs to match real load 
impedances, one of the most useful network is a tapered 
microwave matching network which can be considered as a 
series of cascaded quarter wavelength transmission lines.  The 
design for tapered lines is usually done by using computer 
algorithms for continuous sections [40], [41]. For this kind of 
structure design optimization using nature-inspired 
metaheuristic methods, namely, particle swarm optimization, 
was done [10].  An example circuit is shown in Fig. 4. 

 

Fig. 4. Microwave Tapered matching network. 

As can be seen from Fig. 4, the tapered line in this model 
of study consists of a series of λ/4 transmission lines. This 
type of configuration can be used to achieve a match for real 
loads. In the model,100Ω load is matched to a 50Ω line using 
a series of cascaded three transmission lines of a quarter 
wavelength long. Starting from the load higher impedance 
transmission lines exist and as moving along the tapered line, 
lower impedance transmission lines are obtained. The 
objective function of this circuit is given as below: 

  

,50
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1
),,(

2

2

31
321 







 


Z

ZZ
ZZZf

                                       (5) 

Where, the values of parameters, which are the 
characteristic impedances, Z1, Z2 and Z3 must to be found also 
with the condition that Z3<Z2<Z1 and the values are restricted 
to be in the range [0-100]. In order to observe the performance 
of COLA on this microwave circuit, 40 independent runs were 
performed. For each run, 1000 function evaluations were 
executed to obtain values of Z1, Z2 and Z3 that provide optimal 
value of function (5). From the performed 40 independent 
trials, a sample of five impedence values (Ω) are shown in 
Table 4. 

The  reflection coefficient obtained by using first and the 
second trial values are plotted in Fig. 5 for the design 
frequency of 5 GHz to demonstrate the impedance values. As 
it can be seen in Fig. 5,  reflection coefficient values are 
around – 35 dB and below at 5 GHz, which indicates a good 
matching. This indicates that the values obtained by COLA 
are all correct yielding proper designs at the end. 

TABLE IV.  IMPEDENCE VALUES FOR FIVE INDEPENDENT TRIALS 

 Z1 (Ω) Z2 (Ω) Z3 (Ω) 

Trial 1 81.809594 50.364347 43.531533 

Trial 2 93.715554 63.237186 47.714004 

Trial 3 82.929957 61.988993 52.855251 

Trial 4 82.588533 66.591554 57.014379 

Trial 5 92.639060 57.197776 43.658620 
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Fig. 5. Reflection coefficient values for two different trial sets. 

Another aspect that needs to be analyzed is the sensitivity 
analysis of the obtained results using the algorithm. Simple 
5% error is introduced to the obtained values to see how the 
design is affected. In this case it is observed that there is not a 
change in design operating frequency since the lengths are not 
different. The reflection value is worse, however still lower 
than -25 dB which yields a reasonable match since the 
reflection coefficient value is very low.  

D. Microwave Amplifier Design 

Amplification is necessary for most of the electronic 
circuits and for microwave circuit systems. Nowadays, with 
the development of transistor technology, all microwave 
amplifiers use transistor devices which are more reliable and 
rugged. The main advantage of using transistor devices is that 
they can easily be integrated into monolithic circuits. Design 
of amplifiers in general requires the matching network design 
for input and output parts of the network.  If the work is done 
by hand, first the stability of the transistor is checked and 
drawing the Gain Circles and selecting optimum points, one 
can perform the design operation using Smith Chart.  This 
process can be performed by using metaheuristic algorithms 
especially the nature-inspired metaheuristic algorithms.  
Similar works, using metaheuristic algorithms to solve 
amplifier design problems, were performed by the following 
researchers for the given specific problems [9], [42]-[46]. 
Simple two-port microwave network which produces 
amplification with a proper design is shown in Fig. 6. 

In the Fig. 6, there are two matching nework designs that 
should be done simultaneously to achieve the desired gain. 
The overall design also needs a compromise in gain and in 
return loss at the same time. The design in this case is the 
design of two impedance matching networks to achieve the 
desired gain goal. In other words, the design requires finding 
the proper lengths of transmission lines d1, d2, l1 and l2 at the 
central operation frequency. The power function that needs to 
be optimized is given by the following expression: 
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Fig. 6. Microwave amplifier design illustration. 

This expression depends on transistor s-parameters: S11, 
S12, S21 and S22. The reflection parameters are ΓS and ΓL for 
source and load respectively. Expressions for ΓS and ΓL and 
Z1, Z2, Z3 and Z4 were derived in [9] and are as follows: 
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Where, Zo is the characteristic impedance of the 
transmission line. In our design, transistor FHX35X, 
manufactured by Fujitsu Cooperation was used. With the 
chosen s-parameters, the design was centered at frequency of 
10 GHz. The design was optimized to get a gain of 16, which 
in decibels is 12 dB. The characteristics were gathered over 40 
independent runs. Each run had 1000 function evaluations. 
The values for  d1, d2, l1 and l2 were restricted to be range [0, 
2π]. These values for d1, d2, l1 and l2 were obtained in terms of 
radians and five of them were tabulated in Table 5. In 
addition, a microwave simulator was used to obtain 
characteristics. Fig. 7 demonstrates results of Trial 1 for gain 
and reflection values.  

The plot shows S11 and S22 which are the reflections in the 
ports 1 and 2, respectively and S21 which is the transmission 
from port 1 to 2. In this case, gain value is S21 value. In a 
design, especially at the design frequency S11 and S22 values 
should be minimized and if possible S11 and S22 values should 
be kept below 0 dB at all times to avoid oscillations. It is seen 
that this is roughly happening all throughout the band of 
observation from 7 GHz to 13 GHz.  
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TABLE V.  A SAMPLE SOLUTION SET FOR DIFFERENT NUMBER OF 

TRIALS 

    d1 d2 l1 l2 

Trial 1 4.279915 4.826180 5.600057 5.307381 

Trial 2 1.077591 3.406553 2.602834 4.395524 

Trial 3 0.905713 1.858479 2.642391 2.087756 

Trial 4 0.069484 4.511318 0.641231 2.218899 

Trial 5 3.332904 3.381557 3.622599 1.301090 

 

Fig. 7. Gain and reflection coefficient values of Trial 1 for  the amplifier 

design. 

At the design frequency S11 value is -8 dB and S22 value is 
-11 dB. The gain value is also at 12 dB. A sensitivity test is 
also performed to see if the values produced by the algorithm 
are sensitive to errors. 3% error is introduced to all of the 
length values, the overall gain dropped to 10.77 dB; however 
the simulation indicated that the transistor is stable. When a 
5% error is introduced to all of the length values, the 
maximum gain dropped from 12 dB to 9.82 dB which is not a 
very desirable feature. However this kind of result is expected, 
since the gain performance in the model relies on correct 
transmission line lengths and introducing a 5% error in all 
lengths is actually a significant change in the design. These 
results overall indicate that COLA performed efficiently and it 
can be a good candidate of optimization algorithm for 
designing a stable amplifer. 

IV. CONCLUSIONS 

In this paper, a new optimization algorithm COLA is 
proposed to find the global optimum points of given problems 
by providing good solution quality with robust solutions to the 
random operations in the algorithm. Two core levels are 
applied simultaneously to reach these goals by providing a 
balance between exploration and exploitation characteristics. 

The algorithm is tested with different characteristics of 
benchmark functions, compared with powerful evolutionary 
algorithms and then applied to two real microwave circuit 

design problems. The results obtained for benchmark 
functions indicate that COLA provides better solution quality 
than the analyzed algorithms and its convergence speed is 
fairly good even for the first stages of optimization such as 
10000 function evaluations. The results for microwave circuits 
obtained by COLA are verified by microwave simulators and 
it is seen that it produces accurate results. It is studied that the 
control parameter k is randomized in given interval produces 
better results. Therefore, COLA uses only one control 
parameter np which is not necessary to be well tuned for the 
problems studied in this paper.  The number of population np 
is fixed to 100 for all the problems in this study. In other 
words, it can be considered that the algorithm is almost 
parameter free which can be used for any problem without 
tuning any control parameter. This advantage of the algorithm 
makes it very practical to be used for any real case problems. 

According to these results, it can be concluded that the 

solution quality of the algorithm is better than the analyzed 

algorithms and also is quite robust even though there is no 

parameter to be tuned. The algorithm COLA can be suggested 

as a candidate for optimization problems including real case 

problems from different fields. As future work, a new research 

can be done to compare COLA with recent hybrid 

optimization algorithms. 
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