
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

168 | P a g e

www.ijacsa.thesai.org

InstDroid: A Light Weight Instant Malware Detector

for Android Operating Systems

Saba Arshad

Department of Computer Science

COMSATS Institute of Information Technology

Islamabad, Pakistan

Rabia Chaudhary

Department of Computer Science,

 Bahria University

Islamabad, Pakistan

Munam Ali Shah

Department of Computer Science,

 COMSATS Institute of Information Technology

Islamabad, Pakistan

Neshmia Hafeez

Department of Computer Science,

 COMSATS Institute of Information Technology

Islamabad, Pakistan

Muhammad Kamran Abbasi

Department of Distance Continuing & Computer Education

University of Sindh

Hyderabad, Pakistan

Abstract—With the increasing popularity of Android

operating system, its security concerns have also been raised to a

new horizon in past few years. Different researchers have

introduced different approaches in order to mitigate the malware

attacks on Android devices and they succeed to provide security

up to some extent but these antimalware techniques are still

resource inefficient and takes longer time to detect the malicious

behavior of applications. In this paper, basic security

mechanisms, provided by Google Android, and their limitations

are discussed. Also, the existing antimalware techniques which lie

under the basic detection approaches are discussed and their

limitations are also highlighted. This research proposes a light

weight instant malware detector, named as InstDroid, for

Android devices that can identify the malicious applications

immediately. Through experiments, it is shown that InstDroid is

an instant malware detector that provides instant security at low

resource consumption, power and memory, in comparison to

other well-known commercial antimalware applications.

Keywords—Android; static; resource efficient; power

consumption; memory; detection rate; accuracy

I. INTRODUCTION

Smart phones have become a necessary part of everyday
life. From businessman to a common person, everyone uses
smart phones to perform different tasks depending upon their
needs. Android devices provides attractive and easy to use
features to the users due to which they are known as most
popularly used devices from previous few years [1]. Android
phones store the critical data related to the personal as well as
professional life of a person. This data can be in the form of
important transaction details, pictures, SMS and official
encrypted files. It is important to ensure the security of such
data in smart phones. Large number of malwares had been
designed to infect and intrude into the smart phones in order to
exploit the privacy of the user [2]. The mobile malware

designers exploit the vulnerabilities that exist in the Android
operating system. Android operating system is an open source
platform that allows the installation of third party applications
from App-stores other than Google play store for example
PandaApp [3] and GetJar [4]. This openness becomes the
opportunity for malware developers to harm the user‟s data and
is the reason for several issues such as invalid access from one
resourceful application to the other (information leakage),
permission escalation, repackaging application to infuse
malicious code and Denial of Service (DoS) attacks.

In order to mitigate these issues, researchers have
developed lot of detection systems by using different
approaches to ensure the security up to some extent. The basic
approaches used by malware detection approaches includes
static analysis and dynamic analysis. Static analysis techniques
monitor the behavior of application without running the
application on device. It scans all the code of application
without running the application due to which it is not able to
detect the runtime malicious behavior of applications. In
dynamic analysis technique, run time behavior of application is
monitored by executing the application on emulator or real
device for a specific time period. These analysis techniques
enable the antimalware systems to identify the malicious
applications and protect the Android devices.

Android smartphone devices are usually resource
constrained. They have limited battery power and storage. Due
to this reason, detailed static and dynamic analysis cannot be
performed on Android devices. In order to overcome this
limitation, researchers have developed cloud based malware
detection systems. Although these security systems shift the
workload from mobile device to cloud server, but the service
becomes expensive and network dependent. If the detailed
analysis at server takes longer time, it is possible that during

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

169 | P a g e

www.ijacsa.thesai.org

this time period, the malicious application might get the control
over device and compromise the device. An efficient and very
light weight system is the necessity of time which can provide
protection to Android devices against known malware types
and their variants at the instant when the application is installed
on the device at very low resource consumption.

In this research, InstDroid, a light weight malware
detection system, is proposed that can provide instant detection
of malicious applications as soon the user will install the
application. It immediately identifies the malicious applications
through quick scan and notifies the user about it. The
heavyweight Android malware tools consume a lot of power
and memory while the smart phones are constrained by
resources. InstDroid is able to detect the malware using very
negligible amount of hardware resources of Android devices,
thus not affecting the performance of the device.

Rest of the paper is organized as follows: Section II
discuses about basic security mechanisms provided by Google
Android to the Android devices and user‟s data. Basic
approaches for malware detection, static and dynamic analysis,
and deployment systems are discussed in Section III.
Section IV describes about the proposed malware detection
system, InstDroid. The experimental results are explained in
Section V and Section VI concludes the paper and future work
is also discussed in this section.

II. BASIC SECURITY MECHANISMS & THEIR LIMITATIONS

This section discusses the basic security mechanisms
provided by Google Android and their limitations. These
security mechanisms include permission framework,
application sandboxing and Bouncer, shown in Fig. 1.

Fig. 1. Basic security mechanisms provided by Google Android.

A. Android Permission Framework

By default, an Android application has no permissions
linked with it until the application requires special resources in
order to operate. Different permissions have different purposes
associated with them but they are used in order to limit the
access of the application to the critical resources of device such
as camera, SMS storage and Bluetooth permissions, etc. After
careful inspection of these permissions, it is up to the user
whether he wants to install the application or not [12]. There
are four major categories of permissions: Normal, Dangerous,
Signature and SignatureOrSystem [22]. Normal permissions
are low level permissions that allows the (requesting)
application to access the restricted application level features
with only minimum level risk attached to other applications,
the system, or the user. Dangerous permissions are high risk

level permissions and can be consequently used to harm the
user‟s device and data. Signature and SignatureOrSystem
permissions are only used by the system applications or the
applications which are added by the manufacturer. Any user
application requesting such permissions can be malicious.
Although, permission system provides information to users
about applications behavior up to some extent but due to lack
of technical knowledge about these permissions and their use,
by the applications, users usually ignore the permissions and
simply install the applications. This makes Android permission
mechanism completely ineffective to provide security against
the access of unnecessary resources by newly installed
application, which might be malicious.

B. Application Sandboxing

Android uses application sandboxing mechanism which
separates the application associated data and code
implementation from other applications. Each Android
application runs within its separate space or sandbox, having
no conflict with other applications or interaction, unless a
particular application has been assigned special privileges to
communicate with other applications. For better protection of
Android application‟s data, Android kernel executes the Linux
Discretionary Access Control (DAC) to efficiently manage and
protect the device from getting misused. Each application
process is protected with an assigned unique ID (UID) within
its isolated sandbox [13]. The isolated application
communicates with each other through a method known as
Inter-Component Communication (ICC) or Binder. Android
middleware allows the ICC between different components of
the application. The ICC very smoothly takes care of
transferring the request from user to the destination
applications. After that applications can access the components
or services of other applications as a service [12]. This ICC
process is used by malware applications too in order to control
the other applications and perform malicious activities on the
device. Privilege escalation or permission escalation attacks
were actually possible because of the loopholes that exist
within the Android operating system, in order to get access to
the assets that are hidden or protected from the user of
application. This series of attacks can result into the leakage of
fatal information because of the unauthorized access of
resources to the application than the intended access of
resources. Android applications might have such components
that have been added into it through external resources. In this
case these exported components can be misused in order to get
the access to critical permissions [11].

C. Bouncer

Bouncer is a malware detection tool deployed at Google
Play Store for the analysis of all the applications available at
Google Play Store. The main purpose of the bouncer is to
provide a security check looking for malicious software
containing malware, spyware, and Trojans. This kind of
applications can be used to intrude the privacy of the user,
selling it to the blackmailers or using it for more harmful
purposes. Bouncer keeps on analyzing the applications
continuously. If any application is detected as malware, it is
instantly removed from the Play Store. Although, Bouncer
performs its job very well but still there exist some malware

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

170 | P a g e

www.ijacsa.thesai.org

applications on Google Play Store that remains undetected by
Bouncer, reported in a research [5].

III. MALWARE DETECTION APPROACHES

In spite of the security mechanisms provided by Google
Android, malware attacks are increasing every year [6]. Lot of
research has been done to protect the Android devices from
malware attacks. Major approaches used for the malware
analysis includes static analysis and dynamic analysis.

A. Static Analysis

Static analysis techniques monitor the behavior of
application without running the application on device. Kirin
[7], Drebin [8] and RiskRanker [9] are well known examples of
antimalware techniques which performs static analysis to
explore the static features of Android malware. It scans all the
code of application but cannot detect dynamic loading of
malware code. Also, the encrypted malicious code remains
undetected. In [10] authors have categorized static analysis
based malware detection techniques as signature based
malware detection, permission-based malware detection, and
dalvik byte code malware detection. The signature-based
detection technique extracts the signatures of the applications
and then matches it with the database of known malware
signatures [9]. AndroSimilar [11] and DroidAnalytics [12] are
signature based detection systems.

Permission based detection is a light weight malware
detection method which also falls under the category of static
analysis. In [13], authors have proposed the system which
performs analysis on permissions declared in the Android
manifest file and then analyzes if the application is over
privileged or not. In the manifest file of the application, they
extract three major features i.e. permissions, intent filters,
process number and a total number of predefined permissions.
On basis of these features, they compare it with the list of
already known keywords. They tested 365 samples on the total
to determine the efficiency of the proposed system. The
proposed system almost provides 90% detection rate. In [14],
[15] and [16], authors have also used permission based
detection method.

Dalvik byte code analysis performs the instruction level
code analysis to find out the malicious behavior of the
applications. But it occupies more storage space due to the
instruction level analysis of the code and hence consuming
more power resources, therefore making it less likely to be
more productive on resource constrained devices like smart
phones [17]-[19].

B. Dynamic Analysis

Dynamic analysis technique provides run-time monitoring
of the applications. TaintDroid [20], DroidRanger [5] and

DroidScope [21], use the dynamic analysis to monitor the run-
time behavior of the application. Dynamic analysis can detect
the dynamic malicious payloads.

DroidDolphin [22] uses dynamic analysis that takes
support of GUI-based testing, big data and machine learning
for the detection of Android malwares. API calls are monitored
by API Monitor [23] during execution of apk. Logs are
collected by installing instrumented apk file on virtual device
of Android. Sandboxing is done through DroidBox [24] for
having dynamic logs. Testing tool, Monkeyrunner, is combined
with APE [25], that is used for GUI based event simulation.
Events are represented by n-grams and features are given as
input to Support Vector Machine [26] algorithm that classifies
the applications. Emulation and testing phases become
complex for future testing because of large data set.

CopperDroid is presented in [27] that works on top of
QEMU and performs dynamic analysis. Behaviors are
analyzed by system calls tracking and centric analysis. The
CopperDroid analyzes malware by information extraction from
manifest file. The CopperDroid was evaluated for two sets of
malwares and there is no static analysis involved.

Although dynamic analysis overcomes the limitations of
static analysis, but it can only analyze the code which executes
during monitoring interval and is not able to detect malicious
code which does not execute during monitoring period.

C. Cloud Based Detection

These analysis approaches, static and dynamic, can be used
at either mobile device or at cloud for detection of malwares.
As mobile devices are resource constrained due to which
malware detection systems cannot perform detailed and
effective analysis on mobile devices. To develop an effective
and accurate malware detection system, researchers have
deployed the analysis and detection mechanism at clouds.

A cloud based intrusion detection and response framework
was developed and discussed in [28], that analyzes behavior of
a device and in case of unusual events, it performs different
appropriate actions. This framework can work with minimum
resources and can produce real and accurate detection and
responses for registered devices. A key point of this
architecture is to copy user inputs in real time. Proxy settings
are configured by installing a software and proxy server
replicates the conversation between internet and device and
sends it to emulated environment for malware detection and
analysis. A light weight agent is also involved for gathering
info, sending it to emulated environment and waiting for
responses and actions. Proposed framework was deployed to
Android-equipped HTC Droid Incredible devices but attack
graph does not automatically take actions in an emulated
phone environment, like computer systems.

TABLE I. CLOUD-BASED ANDROID MALWARE DETECTION TECHNIQUES

Ref. Year Implementation Limitations

[28] 2011 Working prototype Android-equipped HTC Droid Incredible devices and attack graph does not work for emulated devices

[29] 2014 Framework Need device user, app store and security professionals‟ association

[30] 2012 Security system Cloud can be crashed because of single component failure

[31] 2012 Architecture Needs number of detection engines

[32] 2014 Security Mechanism Mobile interference is less due to of cloud services

[33] 2015 Experimental Requires different configurations

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

171 | P a g e

www.ijacsa.thesai.org

TABLE II. RESOURCE UTILIZATION ANALYSIS FOR ANDROID MALWARE DETECTION

Ref. Year Implementation Evaluated Parameters Limitations

[34] 2013 Prototypes
Battery level, FPR, cutoff drop

value
Cut off values may affect the results

[35] 2016 Experimental Accuracy, FPR, FNR Specific pattern for resource utilization was not considered

[36] 2014 Prototype FP percentage Need user efforts and time to create profiles

In [29], authors proposed a cloud based detection and
prevention approach. When a user makes request for any
application, the request is sent to known libraries. If the
application is found in libraries then it is declared as safe or
malicious, on the basis of classification of that application. If
application is not found in libraries then application is declared
as unknown and send to malware detector that downloads the
application. The malware detector performs both static and
dynamic analysis and declares the application as safe or
malicious for users on the basis of classification results. All
these operations are performed at cloud, that keeps resources of
mobile devices conserved. Mobile devices just deal with
libraries for finding application classification, as safe or
malicious. The major limitation of this technique is that it is
highly dependent on the Internet services and cloud system. If
any component at cloud fails to perform its operations, security
will not be provided. This approach requires mobile users, app
stores and IT security professional‟s association.

Qian et al. [30] proposed a cloud based security system
which provides security to Android devices by detecting
malwares, pours out harmful application and provides data
backup facility. Android devices have an agent/client that
communicates with the cloud. Connection between client and
server should be fair enough for sending malicious applications
to cloud. Authors presented agent and server modules to
elaborate the system clearly. Different features were
implemented that provide security. VPN builds connection
between device and cloud for user safety. A transparent proxy
is used to communicate data between internet and proxy server
that provides security to users. Malicious applications can also
send information to suspicious addresses. Push function is used
to discard illegal packets that are sent to devices. Management
server has facility to detect malicious applications by running
different algorithms that may be available in market or may
use static, dynamic zero-day analysis programs in an emulated
environment or can be executed on the PC. Backing up of data
is also maintained at cloud. Proposed system uses limited
device resources but the service might be expensive for the
users.

The security system proposed in [31], contains a host that
works with the cloud provided services and it has a vast range
of signature database. Different detection modules can be made
run simultaneously. Virtualization helps a lot to detect malware

and large number of users can be scaled over the network.
Proposed system provides services such as creating a clone of
the device and a proxy in cloud is used for identifying
memory, system calls invoked on run time. Different open
source antiviruses are used to detect malwares. Host agent is a
process that is installed on the device. It performs inspection on
files and compares the files against a cache of files. If file is
absent in cache it is sent to the cloud for further analysis and
recovery actions are taken accordingly. After analysis, it is
placed on local and cloud caches. This approach needs number
of detection engines to provide large detection exposure.

According to the research performed in [32], proposed
system consists of three modules. First module classifies
applications as light, heavy, medium, very light and very
heavy, based on the signatures, permissions and services etc.
Second module has local server that creates all user‟s feedback.
Package name for feedback, date of report, IMEI number for
report receiving and report that has „1‟ and „0‟ values for good
and bad applications. In third module, filters are applied to
applications for permission set and the generated report is sent
to server. Algorithm is used for malware detection and works
on confidence index. If confidence index is greater than 50 %,
there is possibility of malware if not then application is
considered to be safe. Mobile resource consumption is less due
to the use of cloud services.

Table 1 shows cloud-based detection for malicious
applications in Android. Cloud-based detection requires
internet availability, detection engines, files uploading on cloud
which consumes large amount of power. Major limitations of
such techniques include that any component failure at cloud
may affect the whole detection system. Mobile or host device
have to wait for the cloud response in order to provide security
on Android devices.

D. Resource Utilization Based Detection

Although cloud based detection systems allow deep
analysis of applications but at the cost of heavy servers and
they are dependent on cloud server‟s response. Also, the power
consumption at mobile device increases if the device is at large
distance from the server and communicates with cloud server
for detection purpose. Many researchers have developed
malware detection systems to overcome the power
consumption limitations of cloud based detection systems.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

172 | P a g e

www.ijacsa.thesai.org

Fig. 2. Workflow diagram of InstDroid.

In [33], authors have observed effectiveness of two
techniques for malware detection. Prototypes were developed
for Android platform. Techniques include normal and location
specific power profiles for phones. Experiments were
performed to detect malware and minimizing power
consumption. Authors used SMS spam and user tracking
simulators for the evaluation of techniques. Normal power
profile technique takes power utilization as a time function.
Normal battery consumption rate is measured initially after
which the system starts monitoring the power drainage pattern.
Location power profile works over an extended time, based on
the location i.e. whether playing games at home or using
browser at airport etc. A program was written by authors to
measure power utilization for working models. For first
discussed technique cut off value may affect results of
prototype. For second discussed technique, anomalies were
predicted just for two locations.

Canfora et al. [34] proposed a malware detection technique
that detects presence of malicious applications by analyzing the
device resources such as memory, CPU, and network.
Proposed methodology has three components: numerical
feature set related to application behavior, a procedure in which
applications are executed in a balanced environment and
performs data collection, method for analyzing the collected
data. Monkey tool was used as a debugger. Data is analyzed by
using machine learning techniques.

Three different detection techniques are mentioned in [35]
that are used in Android malware detection for testing and data
collection. These techniques include location based detection,
time based detection and a hybrid, combination of both. The
basic idea of these techniques is to investigate the usage of
battery profiles to detect malwares. Battery usage will be more
in case of malware attack. In first technique, profiles are
created for normal battery usage, based on the user location,
because battery usage may vary depending upon location.
Second technology creates profile, based on time in which user
uses the Android device. Third technology involves hypothesis
that user uses Android device differently at different locations
in different timings. SMS spam and location tracking
simulations are performed by authors. Data collection and
location based detection is done by standalone prototype. Data
needs to be segmented after assortment correspondent to fall in
battery level between two data points and average rate of
charge per second. Standard deviation is calculated for each
segment by standalone project. Abnormal battery usage is
observed when a new segment is created for a location.
Segments are also monitored for hours but during period of

6 hours, segments produce better detection results. When both
these techniques are combined, false positive rate is reduced. A
program is written to measure battery usage of the prototype by
authors. Random values for location and time data segments
were taken and tested for two simulators. Profile creation for
specific location involves user presence at that location at
different time.

Table 2 shows different techniques that are developed for
enhancing the resource efficiency in terms of power. Keeping
in view all the limitations of malware Antimalware techniques,
discussed in literature, an instant malware detection system is
proposed that can provide instant security against known
malware families and their known variants, at low resource
consumption.

IV. INSTDROID: THE MODEL

This research proposes a light weight and instant malware
detection system for Android devices. This instant malware
detector immediately detects the malwares and provides instant
protection to Android devices from known malware types. This
light weight Android security system consumes very negligible
amount of hardware resources of resource constrained Android
devices. Fig. 2 depicts the workflow of Instant malware
detection system. When an Android user installs any
application, InstDroid instantly initiates the detection
mechanism and secures the Android devices.

A. Features

Features used for the detection of malicious applications
are:

1) Hash Code: Hash code generated for application.

2) Package Name: Package name of application.

3) Application Store Name: Name of market from which

the application is installed.

B. Working

Initially, when a user installs the application from
Application store, InstDroid gets activated. It generates the
hash code of application and extracts the features from the
application code statically. Features extracted from the
application includes package name and name of application
store from which application is downloaded. These features are
then forwarded to the remote server which is responsible for
making decision about the application‟s behavior. Remote
server contains the database of malware applications. When it
receives the application‟s hash code, package name and App-
store name from InstDroid client application, it immediately

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

173 | P a g e

www.ijacsa.thesai.org

looks into the malware database. An application is declared as
malicious if one of the two conditions occurs:

a) Any record in the database contains the same

package name and App-store name, sent by InstDroid client

application.

b) Any record in the database contains the same hash

code send by InstDroid client application.

If the application package name and App-store name or
hash code is not found in the remote server‟s database then the
application is declared as legitimate.

Once the application is declared as legitimate or malicious,
the decision is forwarded to the InstDroid client application
which informs user about the application‟s behavior
immediately. Fig. 2 describes the work flow of the proposed
system.

V. EVALUATION

This section provides the experimental results which we
have performed for evaluation of InstDroid. We have used
Drebin‟s dataset of malicious application for identification of
malware applications, as this dataset is claimed to be the
largest dataset of malware applications.

A. Power Consumption

In the first experiment we have measured the power
consumed by InstDroid and compared it with the real
antimalware applications such as 360 Security [36], Avira
Antivirus [37] and Avast Antivirus [38]. These antivirus
applications are commercially available in Google official
marketplace.

In most of the detection systems, the security service keeps
on running in the background all the time which consequently
affects the performance of the device and causes the resource
drainage. InstDroid is a light weight detection system which is
developed to overcome the limitations of the existing systems.
It gets activated only when any application is installed on the
device, performs detection mechanism and then stop running in
the background. This is how the power consumption at real
Android device is very low in comparison to the other malware
detectors. Fig. 3 depicts the comparison between InstDroid and
other antimalware applications. It can be observed that
InstDroid consumes significantly low power in comparison to
other devices.

Fig. 3. Comparison of power consumed by different antimalwares.

Fig. 4. Comparison of memory usage by different antimalwares.

B. Memory Consumption

The memory consumption and CPU usage of any
application is directly proportional to the performance of the
device. The large sized antivirus tools provide the efficient
scanning of the applications on the cost of reduced
performance and battery derail age of the device. The proposed
system provides a very light weight mechanism for detecting
the malicious properties as it requires very low amount of
storage space to perform malware detection. Due to this low
resource usage feature of InstDroid, performance of the device
is not affected.

In this experiment, InstDroid is evaluated on the basis of
memory consumption and the results are compared with the
other well-known antimalware Android applications. Fig. 4
depicts the comparison of memory consumption by different
antimalware systems. It can be seen that InstDroid is more
resource efficient than the other antimalware tools.

C. Detection Time

Time taken by the antimalware system is also an important
parameter for the evaluation. In this experiment, InstDroid is
evaluated on the basis of detection time, time taken by the
security system to detect the malicious behavior of application.
Total time taken by the InstDroid to complete the detection
process is compared with other antimalware applications.
Fig. 5 shows the comparison of detection time between
different anti-malwares. It can be seen that InstDroid is faster
than all the other applications, just like its name – an instant
malware detector.

Fig. 5. Comparison of detection time between different antimalwares.

0

500

1000

1500

InstDroid Avira

AntiVirus

Avast

Mobile

Security

360

Security

184

1378

723

1040

0 5 10 15 20 25 30 35

InstDroid

Avira AntiVirus

Avast Mobile Security

360 Security

4.8

10

30.5

16

Memory usage (MB)

A
n

ti
m

al
w

ar
es

5

120

187
240

0

50

100

150

200

250

InstDroid Avira

AntiVirus

Avast

Mobile

Security

360

Security

D
et

ec
ti

o
n
 T

im
e

(s
ec

)

Antimalwares

P
o
w

er
 (

m
W

)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

174 | P a g e

www.ijacsa.thesai.org

D. Detection Accuracy

In this experiment, the detection accuracy of antimalware
system is measured and is compared with other commercial
antimalware applications. This experiment is performed on 100
different malware applications and the detection accuracy of
antimalware systems is observed, depicted in Fig. 6.
Experimental results show that InstDroid achieves highest
accuracy.

Fig. 6. Comparison of detection time between different antimalwares.

VI. CONCLUSION AND FUTURE WORK

With the increasing popularity of Android operating
system, its security concerns have also been raised to a new
horizon in past few years. Different researchers have
introduced different approaches in order to mitigate the
malware attacks on Android devices and they succeed to
provide security up to some extent but they are still resource
inefficient and takes longer time to detect the malicious
behavior of applications. If any malware gets installed on the
device, it is possible that it effects the device before the
antimalware tool knows about the malicious behavior of
application. InstDroid is the instant malware detection system
which becomes active at the instant when application is
installed on the device and in no time, it notifies about the
application‟s classification to the user. It is a light weight
malware detector that barely occupies the space of few
megabytes and consumes significantly low power in
comparison to other antimalware applications.

In future, we aim to enhance the dataset of malware
applications so that InstDroid can detect the new malware
families and their variants immediately. InstDroid can be
integrated with other antimalware systems in a modular form,
for instant detection of all the known malwares and their
variants. As an example, different malware types and attacks
are usually recorded in different countries. For such case,
InstDroid can be used with addition of cache mechanism. In
such a scheme, the data set of malwares, specific to the
country, can be stored in cache for quick detection. This will
provide instant detection of malwares and protection against
them at low resource consumption.

REFERENCES

[1] “Gartner Says Worldwide Sales of Smartphones Grew 7 Percent in the
Fourth Quarter of 2016,” 2017. [Online]. Available:
http://www.gartner.com/newsroom/id/3609817. [Accessed: 28-Apr-
2017].

[2] “Mind the (Security) Gaps: The 1H 2015 Mobile Threat Landscape -
Security News - Trend Micro USA.” [Online]. Available:
http://www.trendmicro.com/vinfo/us/security/news/mobile-safety/mind-
the-security-gaps-1h-2015-mobile-threat-landscape. [Accessed: 08-Dec-
2015].

[3] “Android.PandaApp.com | Free Your Mobile Life!” [Online]. Available:
http://android.pandaapp.com/. [Accessed: 01-Aug-2017].

[4] “GetJar - Download Free Apps, Games and Themes APK.” [Online].
Available: https://www.getjar.com/. [Accessed: 01-Aug-2017].

[5] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, You, Get Off of My
Market: Detecting Malicious Apps in Official and Alternative Android
Markets,” in Proceedings of the 19th Annual Network and Distributed
System Security Symposium, 2012, no. 2, pp. 5–8.

[6] “Trend Micro Q2 Security Roundup Report | Androidheadlines.com.”
[Online]. Available: http://www.androidheadlines.com/2015/08/trend-
micro-q2-security-roundup-report.html. [Accessed: 08-Dec-2015].

[7] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone
application certification,” in of the 16th ACM conference on …, 2009,
pp. 235–245.

[8] D. Arp, M. Spreitzenbarth, H. Malte, H. Gascon, and K. Rieck, “Drebin:
Effective and Explainable Detection of Android Malware in Your
Pocket,” in Symposium on Network and Distributed System Security
(NDSS), 2014, pp. 23–26.

[9] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “RiskRanker :
Scalable and Accurate Zero-day Android Malware Detection Categories
and Subject Descriptors,” in Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Services, 2011, pp.
281–293.

[10] S. Arshad, M. Ahmed, M. A. Shah, and A. Khan, “Android Malware
Detection & Protection : A Survey,” Int. J. Adv. Comput. Sci. Appl., vol.
7, no. 2, pp. 463–475, 2016.

[11] P. Faruki, V. Ganmoor, V. Laxmi, M. S. Gaur, and A. Bharmal,
“AndroSimilar: Robust Statistical Feature Signature for Android Malware
Detection,” in Proceedings of the 6th International Conference on
Security of Information and Networks - SIN ‟13, 2013, pp. 152–159.

[12] M. Zheng, M. Sun, and J. C. S. Lui, “DroidAnalytics : A Signature Based
Analytic System to Collect , Extract , Analyze and Associate Android
Malware,” 2013.

[13] R. Sato, D. Chiba, and S. Goto, “Detecting Android malware by
analyzing manifest files,” Proc. Asia-Pacific Adv. Netw., vol. 36, pp. 23–
31, 2013.

[14] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. G. Bringas, and G.
Álvarez, “PUMA: Permission usage to detect malware in Android,” Adv.
Intell. Syst. Comput., vol. 189 AISC, pp. 289–298, 2013.

[15] M. Qiao, A. H. Sung, and Q. Liu, “Merging Permission and API Features
for Android Malware Detection,” in 2016 5th IIAI International Congress
on Advanced Applied Informatics (IIAI-AAI), 2016, pp. 566–571.

[16] K. A. Talha, D. I. Alper, and C. Aydin, “APK Auditor: Permission-based
Android malware detection system,” Digit. Investig., vol. 13, pp. 1–14,
2015.

[17] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-Level
Features for Robust Malware Detection in Android,” in Security and
Privacy in Communication Networks, Springer, Cham, 2013, pp. 86–103.

[18] E. R. Wognsen, H. S. Karlsen, M. C. Olesen, and R. R. Hansen,
“Formalisation and analysis of Dalvik bytecode,” Sci. Comput. Program.,
vol. 92, no. December 2012, pp. 25–55, 2014.

[19] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged
smartphone applications in third-party Android marketplaces,” in
Proceedings of the second ACM conference on Data and Application
Security and Privacy - CODASKY ‟12, 2012, pp. 317–326.

[20] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J.
Jung, P. McDaniel, and A. N. Sheth, “TaintDroid: An Information-Flow

0

20

40

60

80

100

InstDroid Avira

AntiVirus

Avast

Mobile

Security

360

Security

98.8

79
85

93

A
cc

u
ra

cy
 %

Antimalwares

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

175 | P a g e

www.ijacsa.thesai.org

Tracking System for Realtime Privacy Monitoring on Smartphones,”
ACM Trans. Comput. Syst., vol. 32, no. 2, pp. 1–29, Jun. 2014.

[21] L. Yan and H. Yin, “Droidscope: seamlessly reconstructing the os and
dalvik semantic views for dynamic Android malware analysis,” in
Proceedings of the 21st USENIX Security Symposium, 2012, p. 29.

[22] W.-C. Wu and S.-H. Hung, “DroidDolphin: A Dynamic Android
Malware Detection Framework Using Big Data and Machine Learning,”
in Proceedings of the 2014 Conference on Research in Adaptive and
Convergent Systems, 2014, pp. 247–252.

[23] “API Monitor: Spy on API Calls and COM Interfaces (Freeware 32-bit
and 64-bit Versions!) | rohitab.com.” [Online]. Available:
http://www.rohitab.com/apimonitor. [Accessed: 22-Aug-2016].

[24] “DroidBox.” [Online]. Available: https://github.com/pjlantz/droidbox.
[Accessed: 22-Aug-2016].

[25] S. Chang, “Ape: A smart automatic testing environment for Android
malware,” Comput. Sci. Inf. Eng. Natl. Taiwan Univ. Taiwan, 2013.

[26] A. Andrew, “An Introduction to Support Vector Machines and Other
Kernel‐based Learning Methods,” in Kybernetes, 2013.

[27] K. Tam, S. Khan, A. Fattori, and L. Cavallaro, “CopperDroid: Automatic
Reconstruction of Android Malware Behaviors.,” NDSS, 2015.

[28] A. Houmansadr, S. A. Zonouz, and R. Berthier, “A cloud-based intrusion
detection and response system for mobile phones,” in 2011 IEEE/IFIP
41st International Conference on Dependable Systems and Networks
Workshops (DSN-W), 2011, pp. 31–32.

[29] N. Penning, M. Hoffman, J. Nikolai, and Y. Wang, “Mobile malware
security challeges and cloud-based detection,” in 2014 International
Conference on Collaboration Technologies and Systems (CTS), 2014, pp.
181–188.

[30] H. Qian and Q. Wen, “A cloud-based system for enhancing security of
Android devices,” in 2012 IEEE 2nd International Conference on Cloud
Computing and Intelligence Systems, 2012, pp. 245–249.

[31] R. S. Khune and J. Thangakumar, “A cloud-based intrusion detection
system for Android smartphones,” in 2012 International Conference on
Radar, Communication and Computing (ICRCC), 2012, pp. 180–184.

[32] M. Patil and M. Shelke, “Revisiting Defense against Malwares in
Android using Cloud Services,” Int. J. Appl. or Innov. Eng. Manag., vol.
3, no. 3, 2014.

[33] B. Dixon and S. Mishra, “Power Based Malicious Code Detection
Techniques for Smartphones,” in 2013 12th IEEE International
Conference on Trust, Security and Privacy in Computing and
Communications, 2013, pp. 142–149.

[34] G. Canfora, E. Medvet, F. Mercaldo, and C. A. Visaggio, “Acquiring and
Analyzing App Metrics for Effective Mobile Malware Detection,” in
Proceedings of the 2016 ACM on International Workshop on Security
And Privacy Analytics - IWSPA ‟16, 2016, pp. 50–57.

[35] B. Dixon, S. Mishra, and J. Pepin, “Time and Location Power Based
Malicious Code Detection Techniques for Smartphones,” in 2014 IEEE
13th International Symposium on Network Computing and Applications,
2014, pp. 261–268.

[36] “360 Security - Antivirus Boost - Android Apps on Google Play.”
[Online]. Available:
https://play.google.com/store/apps/details?id=com.qihoo.security.
[Accessed: 16-May-2017].

[37] “Avira Antivirus Security - Android Apps on Google Play.” [Online].
Available:
https://play.google.com/store/apps/details?id=com.avira.android.
[Accessed: 16-May-2017].

[38] “Mobile Security & Antivirus - Android Apps on Google Play.”
[Online]. Available:
https://play.google.com/store/apps/details?id=com.avast.android.mobilese
curity. [Accessed: 16-May-2017].

