
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

379 | P a g e

www.ijacsa.thesai.org

Hybrid Technique for Java Code Complexity

Analysis

1
Nouh Alhindawi

1
Faculty of Science and Information Technology

Jadara University

Irbid, Jordan

2
Mohammad Subhi Al-Batah

2
Faculty of Science and Information Technology

Jadara University

Irbid, Jordan

3Rami Malkawi
3
Faculty of Information Technology and Computer Science

Yarmouk University

Irbid, Jordan

4
Ahmad Al-Zuraiqi

4
Faculty of Science and Information Technology

Jadara University

Irbid, Jordan

Abstract—Software complexity can be defined as the degree

of difficulty in analysis, testing, design and implementation of

software. Typically, reducing model complexity has a significant

impact on maintenance activities. A lot of metrics have been used

to measure the complexity of source code such as Halstead,

McCabe Cyclomatic, Lines of Code, and Maintainability Index,

etc. This paper proposed a hybrid module which consists of two

theories which are Halstead and McCabe, both theories will be

used to analyze a code written in Java. The module provides a

mechanism to better evaluate the proficiency level of

programmers, and also provides a tool which enables the

managers to evaluate the programming levels and their

enhancements over time. This will be known by discovering the

various differences between levels of complexity in the code. If

the program complexity level is low, then of the programmer

professionalism level is high, on the other hand, if the program

complexity level is high, then the programmer professionalism

level is almost low. The results of the conducted experiments

show that the proposed approach give very high and accurate

evaluation for the undertaken systems.

Keywords—Complexity; java code; McCabe; Halstead; hybrid

technique

I. INTRODUCTION

Java language is considered as one of the languages that
has various advantages, these advantages includes its
simplicity, safety, strength, impact, high level object-oriented
ability, and many other advantages [1]. Complexity can here be
defined as, the relationship between the internal parts of the
program and how these parts can be interacted with each other,
some of these parts will be connected to other parts of the
program to make the program more complex and difficult to be
analyzed or maintained. However, if these parts are less
cohesive then the program will be less complex, in this case,
the analysis would be easier to be analyzed and maintained [2].
The benefits of complexity measurement can be summarized as
follows:

a) Complexity analysis of code can even be estimated

from a design (whenever the design is easy and simple then the

code will be less complex, in contrast, if the design is more

complex and unclear, then the program will be more complex).

b) The ability to distinguish between the simple and

more complex program (allow the programmers to write a

program in a way that has the following features: high quality,

easy to understand, has few mistakes, easy to use and re-use,

easy to maintain, easy to test, saves time and lower cost).

c) Good Complexity Measure provides continuous

feedback (allowing us to follow the program continuously and

to avoid most of the expected mistakes or problems).

TABLE I. LEVEL OF COMPLEXITY BY MCCABE MEASURE

Complexity Risk Evaluation

1-10 A simple module without much risk

11-20
A more complex module with moderate
risk

21-50 A complex module of high risk

51 or more An untestable program of very high risk

Categorizing any source code complexity into good or bad
will be helpful for code maintenance and evolution. Typically,
the source code with good complexity is more maintainable,
testable, understandable, and have less errors. On the other
hand, any source code with bad complexity will be complex to
be maintained, tested, understood by developers, and it will
have a lot of errors.

Shrivastava [3] presented a measurement to provide a
single ordinal number to be used to compare the program’s
complexity with other programs. This measurement used
McCabe Complexity measures to analyze the system and find
the complexity of the program, as follows:

CC=E – N+ P

where

CC = Cyclomatic Complexity

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

380 | P a g e

www.ijacsa.thesai.org

E = Number of edges of the graph

N = Number of nodes of the graph

P = Number of connected components

The following is an example

publicvoid ProcessPages()

{

while(nextPage !=true)

 {

if((lineCount<=linesPerPage) && (status !=

Status.Cancelled) && (morePages == true))

} }
As shown in the above example, the routine is starting by

adding 1 to the while loop, adding 1 to the if statement, and
adding1 to each && for a total calculated complexity of 5.

Davis and LeBlanc [4] studied a predictive value of various
syntax-based problem complexity measures; they discussed
McCabe and Halsted Complexity measures and analyzed the
system to find the complexity of the program. Sheppard et al
[5] compared three types of existing standard measures to find
the complexity of the program, they used Halstead, McCabe's,
and the length that measured by number of statements to
analyze the system and find the complexity of the program.

Prabhu [6] applies McCabe’s cyclomatic complexity and
the Halstead metrics to evaluate the complexity of Simulink
models. Prabhu notes that, the challenge of switching from
programming languages to models is that, metrics have to be
tailored and values obtained at the code or model level so that
computed values are different. Olszewska [7] introduced new
metrics specific to high-level design. They focus primarily on
model counting, such as the average number of blocks per
layer or the stability of the number of inputs/outputs across the
model. Toularkis [8] distinguished between two classes of
complexity measures which are: dynamic complexity measure
and static complexity measure. Dynamic complexity to
measure the amount of resources consumed during
computation and static complexity to measure the size (e.g.
program length) or structural complexity. Olabiyisi et al. [9]
applied different software complexity metrics to searching
algorithms, and the result showed that for both linear and
binary search techniques, the languages do not differ
significantly, therefore it is concluded that any of the
programming languages is good to code linear and binary
search algorithms.

Software complexity is different at the architecture level,
where it is defined by how components communicate and are
integrated, than at the code or behavior level, where it is
defined by how components are implemented [10]. Delange et
al. [11] demonstrate that maintaining low-complexity
components and delivering high-quality models reduce
maintenance activities and associated costs. Banker [12]
estimates that software complexity itself can increase
maintenance costs of commercial applications by 25% and
increase the total lifecycle costs by 17%. Considering not only
that safety-critical applications have stringent quality
requirements but also that both the software and models of
such applications must be maintained for decades, the real

costs could be higher than these estimates for critical
applications.

There is substantial evidence that cyclomatic complexity is
linearly correlated with product size [13]. Evidence shows that
software complexity has increased significantly over time not
only because of the increase in number of functions but also
because of a paradigm shift in which more functions are
realized using software rather than hardware [14]. The SEI’s
experience with high-reliability systems has been that a high-
quality process leads to a low number of defects and reduces
rather than increases cost [15], [16]. Nonetheless, actual
industry practice and estimates of cost for high-reliability
software vary widely [17]. Shull reports increases to
development costs ranging from 50% to 1,000% due to more
coding constraints and certification requirements (e.g., testing,
validation) [18].

To the best knowledge, most of the previous modules used
only one technique or one theory to measure the ratio of
complexity of the programs. So the contribution of this paper is
integrating two theories that are called Halstead and McCabe.
In this way, the ratio of complexity will be more accurate,
which helps programmers to make sure that their programs will
be better and their work is more efficient. Whenever the ratio
of complexity is more complex, then it will increase the
mistakes and errors in the program, thus, the difficulty in
maintenance and testing will be increased and the cost of the
program will also be increased [19], [20]. For this reason, the
ratio of complexity must accurately be measured to be more
efficient, contains less errors, easy to test, easy to understand,
easy to maintain and test, then this will decrease the cost of the
program.

 Microsoft visual studio 2010 with language (C#) are used
for building the program which has been written to allow users
to open any program written in Java, analyze the code, extract
all Operators and Operands, all number of edges, number of
nodes, and number of connected components, then finding the
complexity measurement that allows to identify both the
program and programmer levels is done.

This paper consists of five other sections organized as
follows: Section 2 discusses McCabe and Halstead complexity
measures, Section 3 includes the proposed approach, Section 4
contains the evaluation and discussion, Section 5 about the
related work, and finally, Section 6 presents the conclusion and
recommendations.

II. MCCABE AND HALSTEAD COMPLEXITY MEASURES

This paper focuses on McCabe [21] and Halsted Measures
[22], here each mechanism will be discussed in more details.

A. McCabe Complexity

This theory is being used widely since it was issued; it
depends on computing and controlling flow graph of the
program, and measuring the number of linearly-independent
paths [23]. Tables 1, 2 and 3 show an example about McCabe
along with the complexity, C = E − N + 2P, where E is the
number of edges, N is the number of nodes, and P is the
number of connected components.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Davis,%20J.S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.LeBlanc,%20R.J..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sheppard,%20S.B..QT.&newsearch=true

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

381 | P a g e

www.ijacsa.thesai.org

The following is an example of McCabe complexity
Measure as shown in Fig. 1.

public static void sort(int x []) {

 for (inti=0; i< x.length-1; i++) {

 for (int j=i+1; j <x.length; j++) {

 if (x[i] > x[j]) {

 int save=x[i];

 x[i]=x[j]; x[j]=save

 } } } }

Fig. 1. Main steps for McCabe complexity.

TABLE II. MCCABE EXAMPLE

Result Symbol Measure

10 E number of edges

8 N number of nodes

1 P number of connected components

C=E-N+2P

C=10-8+(2*1) = 4
4 mean a simple module without much risk

TABLE III. MCCABE EXAMPLE

Result Symbol Measure

13 E number of edges

11 N number of nodes

1 P number of connected components

C=E-N+2P

C=13-11+(2*1) = 4

4 mean a simple module without much risk

The following is an example about the ratio of nested
condition statements as shown in Table 4.

TABLE IV. NESTED CONDITION EXAMPLE

4 Over all condition statements

2 Nested condition statements

Ratio = Nested condition statements / Overall condition
statements

Ratio = 2/4

B. Halstead Complexity

This theory is used to analyze and measure the complexity
of the code; it relies on code division into two parts: Operators
and Operands. In this way, the theory of Halstead that he
believes can be interpreted as the followings: the program is a
collection of operations performed on data, so in this case, each
code in the program is either operation or operand. The
following notations are used:

By using these parameters, Halsted theory can be defined
as a set of complexity measures, including the program
volume, program difficulty, program development time, and
program bug fixing effort. Table 5 shows the symbol equation

for Halsted measure. Tables 6 and 7 show the operators and
operand example, respectively.

The following is an example for Halsted complexity.

public static void sort(int x []) {

 for (inti=0; i< x.length-1; i++) {

 for (int j=i+1; j <x.length; j++) {

 if (x[i] > x[j]) {

 int save=x[i];

 x[i]=x[j]; x[j]=save

 } } } }

TABLE V. SYMBOL EQUATION FOR HALSTED MEASURE

Formula Symbol Measure

N= N1 + N2 N Program length

n= n1 + n2 N Program vocabulary

V= N * (LOG n) V Volume

D= (n1/2) * (N2/n2) D Difficulty

E= D * V E Effort

TABLE VI. OPERATOR EXAMPLE

Operator Number of Occurrences

Public 1

Sort() 1

Int 4

[] 7

{} 4

for {;;} 2

if () 1

= 5

< 2

n1 = 17 N1 = 39

n1= number of unique or distinct operators appearing in

a program.

n2= number of unique or distinct operands.

n= n1+n2, this is the vocabulary.

N1= total number of operators (implementation).

N2= total number of operands (implementation).

N= N1+N2

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

382 | P a g e

www.ijacsa.thesai.org

TABLE VII. OPERAND EXAMPLE

Operand Number of Occurrences

X 9

Length 2

I 7

J 6

Save 2

0 1

1 2

n2 = 7 N2 = 29

Fig. 2. Flow chart for the complexity analysis of JAVA code system.

III. PROPOSED APPROACH

The goal of this paper is to build a tool that measures the
complexity of code to distinguish between the programs which
have a little or more complexity, this can be made for the
following reasons: to have a high-quality program, easy to be
understood by the other programmers, has few mistakes, easy
to use, easy to re-use, easy maintenance, easy to test, less of
execution time, and lower cost.

Fig. 2 displays a flow chart for the complexity analysis of
JAVA code system and working process. This system contains
the main process of the first screen which uploads the file that
contains Java code and then Enter, when the user start the code
is displayed in the report, then the user selects what he/she
needs. In this project there are 3 cases: Halsted Result, McCabe
Result, and Common Result.

In order to create database for this program, all constants in
the program must be selected, these constants such as all Java
reserved words, and all Operators used in Java. Table 8 lists all
words that are reserved, and Table 9 lists all Operators that are
used.

TABLE VIII. JAVA RESERVED WORDS

abstract Continue For new switch

assert*** Default goto* package synchronized

boolean Do If private this

Break Double implements protected throw

Byte Else import public throws

Case enum**** Instance of return transient

Catch Extends int short try

Char Final interface static void

Class Finally long strictfp** volatile

const* Float native super while

TABLE IX. JAVA OPERATORS

Category Operator Name/Description

Arithmetic

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

++ Increment

-- Decrement

Logical

&& Logical “and”

II Logical “or”

! Logical “not”

Comparison

== Equal

!= Not equal

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

String + Concatenation(join two string)

IV. EVALUATION AND DISCUSSION

The main objective of this paper is to build a tool that
measures the ratio of the complexity of JAVA programs.
Typically, the best way to test the program is to have an
example for it, in other words, a copy of the program must be
available to have full evaluation for the program. This analysis
is a dynamic based technique, where the program has been
traced and inspected at running time. An example along with
detailed steps about how the proposed approach works are
presented and explained in this section.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

383 | P a g e

www.ijacsa.thesai.org

Fig. 3 shows the Main window of the system which appears
after clicking Enter in the Welcome window. It contains many
buttons and empty space, these buttons such as: Browse of the
project, Browse by Class, Clear Code area, McCabe Result,
and Halsted Result. The main objectives of the buttons are as
follows:

Fig. 3. Main window.

 Browse of the project: to open new screen in order to
look for a folder containing some of classes written in
Java,

 Browse by Class: to open new screen to look for any
file containing some of codes written in Java.

 Select code: If you select a folder from (Browse of the
project), this folder contains some of classes (message
of number of file founded)

 Clear Code area: When the button is pressed, then any
code in the code area is deleted.

 McCabe Result: the results screen is as shown in Fig.
4. It is designed for the following reasons: 1) Extract all
number of edges, number of nodes, and number of
connected components, 2) Make the necessary
calculations, and 3) Find a level of complexity.

Fig. 4. Results screen.

In this window (Fig. 4), there are three main parts: Code
Statement Analysis, Overall Code Analysis, and Final Result.

1) Code Statement Analysis: to extract number of

comments, number of conditional statements, and number of

loop statements in the project.

2) Overall Code Analysis: to extract number of edges,

number of nodes, and number of connected components in the

project.

3) Final Result: to calculate the complexity of the project

using C=E-N+2P equation, then find the level of complexity

using Table 1.

 Halsted Result: is designed to extract all Operators and
Operands, make the necessary calculations, and find a
level of complexity.

In this window (Fig. 5) there are three main parts:
Operators, Operands, and result of Halted equation

1) Operators: to extract Operators with total number of

each one.

2) Operands: to extract Operands with total number of

each one.

3) Result of Halted equation: to calculate the Complexity

of the project.

Fig. 5. Halsted result window.

 Exit: In all previous windows, click on the exit button
to close the window or close the program.

Typically, code complexity correlates with the defect rate
and robustness of the application program. In practice, the
process of calculating the time complexity of a large program
would be unproductive. Therefore, the developers must just
focus on understanding the time complexity of the main
functions of the program. Since that the time complexity of any
program is considered as strong evidence and analysis for the
complexity.

As shown in the above result, the output of the tool gives a
detailed data about the undertaken code. Thus, by
comprehending this data, the developers can know the exact
complexity. This complexity can be used by the developers for
any update or maintenance over the code specially when
performing refactoring [24], [25]. The refactoring process over
any source code is considered as a challenge for the
developers, where the developers need to know previously the
exact complexity information for the code. By presenting this
information, the refactoring process will be easier and safer.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

384 | P a g e

www.ijacsa.thesai.org

Moreover, the presented tools give a very accurate
categorization for complexity risk. Furthermore, the presented
approach helps the developers to find coding errors and
programmers mistake if it exists. The presented approach was
also evaluated by 10 master students, the student tried and
evaluated the tool over two four open source software which
are OpenCms which is website content management, Gwen
view which is for 3D Modeling, K-3D which is for image
viewer, and OLAT which is for Online Learning and Training.
For each system, the students tried ten different test cases that
mainly contains nested if statement and loops with all
operators. The results show that having an analysis for Java
programs using McCabe and Halstead theories together is very
helpful for the developer. Moreover, the results can be used
efficiently as a guide for software refactoring process,
predicting effort, rate of error and time, and in scheduling
projects.

V. RELATED WORK

A survey about software testing was presented by [26]
which describes and presents the current approaches for
software testing; the paper also presents an overview about the
used models in software analysis and testing.

Fig. 6. McCABE example.

In 1976, Thomas McCABE used graph-theory to explain
programming complexity [27], this method made it easier to
trace the code paths within the program using algebraic
expression to solve the infinite backward loops as shown in
Fig. 6 as an example for a control graph.

On the other hand, Halstead [28] in 1977 has defined the
way that metrics should affect the software implementation or
expression despite of the type of the language that the
developers have been used, but at the same time it won’t affect
the platform that has been used on the code execution time.
The main idea was to find out a relation between all
measurable properties for the software, this will measure the
easiness of understanding the software code.

The complexity of coding issues has been raised especially
with the appearance of object-oriented programming
languages, Java was and still one of the most object-oriented
languages that is used especially with the arise of mobile
programming, mobile and other Java dependencies like Linux
and Unix repositories needs away to find out the reachability

issue for a dead repositories code [29] to reduce the time
missed in seeking a dead source.

VI. CONCLUSION

Complexity measures can be used to predict critical
information about testability, reliability and maintainability of
the software systems from automatic analysis of the source
code. There are many code complexity measurements as Lines
of Code metrics, McCabe, Halstead Metrics, Maintainability
Index, and other code complexity measurements. In this paper,
a tool has been developed to analyze the complexity of JAVA
code using two complexity measures, Halsted and McCabe.
The Halstead and McCabe theories has been explained, and the
way which used to analyze code and find the complexity rate.
The results show that the presented approach gave very useful
and understandable results that can be used for developers
assisting.

It has been concluded that this issue is very helpful to
distinguish between the program which has a complexity ratio
if it is high or not, because if there was less complexity ratio
then the program is in its best case, easier to be understood, and
easier to re-use and maintenance. Moreover, the focus in the
paper has been made on analyzing codes written in Java,
however in the future work there is a decision to expand this
project to be negotiable on programs written in other languages
such as C++, C# and/or any other languages.

In this paper, McCabe and Halstead theories have been
only used, there is a hope to extend the program and add other
metrics in the future work such as Zage metrics, McClure etc.
This program is widely used to help the instructor to check the
code, at the university for example, and compare codes written
by programmers or students at the university or company. This
program can be used by any person using Java to check his
work quality and performance. The plan is to make the
proposed technique useful for predicting the complexity of the
program while designing phase by adding new features and
statistical data.

REFERENCES

[1] Arnold, K., Gosling, J., Holmes, D., & Holmes, D. The Java
programming language (Volume 2). Reading: Addison-wesley. 2000.

[2] Sanchez, S. M., & Lucas, T. W. Exploring the world of agent-based
simulations: simple models, complex analyses: exploring the world of
agent-based simulations: simple models, complex analyses. In
Proceedings of the 34th conference on Winter simulation: exploring new
frontiers. 2002. Pages 116-126.

[3] Shrivastava, S. V., & Shrivastava, V. Impact of metrics based
refactoring on the software quality: A case study. In TENCON 2008-
2008 IEEE Region 10 Conference. 2008. Pages 1-6.

[4] Davis, J.S., & LeBlanc, R.J. A Study of the Applicability of Complexity
Measures. IEEE Transactions on Software Engineering, Volume 14.
Number 9. 1988.

[5] Sheppard, S. B., Curtis, B., Milliman, P., Borst, M. A., & Love, T. First-
year results from a research program on human factors in software
engineering. In afips (p. 1021). IEEE. 1899

[6] Prabhu, Jeevan. Complexity Analysis of Simulink Models to Improve
the Quality of Outsourcing in an Automotive Company. Manipal
University. 2010.

[7] Olszewska, Marga. Simulink-Specific Design Quality Metrics. TUCS
Technical Report 1002. Turku Centre for Computer Science. 2011.

[8] Tourlakis G. J. Computability, Reston, Virginia. Volume 12. 1984.
Pages 39-42.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

385 | P a g e

www.ijacsa.thesai.org

[9] Olabiyisi S.O, Omidiora E. O and Sotonwa K. A. Comparative Analysis
of Software Complexity of Searching Algorithms Using Code Based
Metrics. International Journal of Scientific & Engineering Research.
Volume 4. Number 6. 2013.

[10] Aiguier, Marc et al. Complex Software Systems: Formalization and
Applications. International Journal on Advances in Software. Volume 2.
Number 1. 2009. Pages 47–62.

[11] Delange, J., Hudak, J., Nichols, W., McHale, J., Nam, M. Y., (2015)
Evaluating and Mitigating the Impact of Complexity in Software
Models. CMU/SEI-2015-TR-013, Software Engineering Institute
Carnegie Mellon University.

[12] Banker, R. D. et al. A Model to Evaluate Variables Impacting the
Productivity of Software Maintenance Projects. Management Science.
Volume 37. Number 1. 1991. Pages 1–18.

[13] Jay, Graylin et al. Cyclomatic Complexity and Lines of Code: Empirical
Evidence of a Stable Linear Relationship. Journal of Software
Engineering and Applications. Volume 2. Number 3. 2009. Pages 137–
143.

[14] Nolte, Thomas. Hierarchical Scheduling of Complex Embedded Real-
Time Systems. Ecole d’Ete Temps-Réel 2009 (ERT09). Paris, France.
September 2009.

[15] Nichols, William R. Plan for Success, Model the Cost of Quality.
Software Quality Professional. Volume 14. Number 2. 2012. Pages 4–
11.

[16] Obradovic, Alex. Using TSP to Develop and Maintain Mission Critical
IT Systems. TSP Symposium. 2013.

[17] Banker, Rajiv D. et al. Software Complexity and Maintenance Costs.
Communications of the ACM. Volume 36. Number 11. 1993. Pages 81–
94.

[18] Shull, Forrest et al. What We Have Learned About Fighting Defects.
Proceedings of the 8th IEEE Symposium. 2002. Pages 249–258.

[19] Zage, W. M. & Zage, D. M. Evaluating Design Metrics on Large-Scale
Software. IEEE Software. Volume 10. Number 4. July 1993. Pages 75–
81.

[20] Nam, Min-Young. ERACES: Complexity Metrics Tool User Guide.
2015.

[21] McCabe T.J. A Complexity Measure. IEEE Transactions on Software
Engineering. Volume 2. Number 4. 1976. Pages 308-320.

[22] Halstead M.H. Elements of software science: Published by North
Holland Amsterdam and N.Y. 1977.

[23] Harrison, W. A., & Magel, K. I. A complexity measure based on nesting
level. ACM Sigplan Notices, Volume 16. Number 3. 1981. Pages 63-74.

[24] Meqdadi, O, Alhindawi, N, Collard, ML, Maletic, JI, “Towards
understanding large-scale adaptive changes from version histories” in
International Conference onSoftware Maintenance (ICSM), 2013 29th
IEEE.

[25] Alhindawi, N, Alsakran, J, Rodan, A, and Faris, H, “A Survey of
Concepts Location Enhancement for Program Comprehension and
Maintenance” in: Journal of Software Engineering and Applications, 7:5
(2014), pp. 413–421.

[26] Lee, J, Kang. S, and Lee. D "Survey on software testing practices,"
in IET Software, vol. 6, no. 3, pp. 275-282, June 2012.

[27] McCABE, T. J. (n.d.). A Complexity Measure - IEEE Xplore
Document. Retrieved August 26, 2017.

[28] Hamer, P. G. (1992). Advertisements. Environmental Science &
Technology,26(12).

[29] Buchsbaum, A, Yih-Farn Chen, Huale Huang, E. Koutsofios, J.
Mocenigo, A. Rogers, M. Jankowsky, S. Mancoridis, "Visualizing and
analyzing software infrastructures", Software IEEE, vol. 18, pp. 62-70,
2001.

