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Abstract—BCH codes have high error correcting capability 

which allows classing them as good cyclic error correcting codes. 

This important characteristic is very useful in communication 

and data storage systems. Actually after almost 60 years passed 

from their discovery, their weights enumerators and therefore 

their analytical performances are known only for the lengths less 

than or equal to 127 and only for some codes of length as 255. 

The Partial Weights Enumerator (PWE) algorithm permits to 

obtain a partial weights enumerators for linear codes, it is based 

on the Multiple Impulse Method combined with a Monte Carlo 

Method; its main inconveniece is the relatively long run time. In 

this paper we present an improvement of PWE by integration of 

Hash techniques and a part of Automorphism Group (PWEHA) 

to accelerate it. The chosen approach applies to two levels. The 

first is to expand the sample which contains  codewords of the 

same weight from a given codeword, this is done by adding a part 

of the Automorphism Group. The second level is to simplify the 

search in the sample by the use of hash techniques. PWEHA has 

allowed us to considerably reduce the run time of the PWE 

algorithm, for example that of PWEHA is reduced at more than 

3900% for the BCH (127,71,19) code. This method is validated 

and it is used to approximate a partial weights enumerators of 

some  BCH codes of unknown weights enumerators. 

Keywords—Partial weights enumerator; PWEHA; 

automorphism group; hash function; hash table;  BCH codes 

I. INTRODUCTION 

The growth use of computer networks, telecommunication 
systems and data storage in our societies shed lights on the 
problem of digital transmission of information where a major 
problem is the preservation of the entire initial information 
through its transmission process. Many examples illustrate this 
problematic; starting with a message transmission via 
communication systems, where the message can be changed 
by noise in transmission channels. A second example 
concerning storage this time; is the alter of data obtained from 
an optical disk because of stripes or reading lens jump (when 
there is a sudden movement). 

A binary linear code is generally denoted by C (n, k, d) 
where n is its length, k is its dimension and d is its minimum 

distance and by its rate R= 
 

 
 . The BHC codes [1-2], as a class, 

are one of the most known powerful error-correcting cyclic 
codes due to their error-correcting capability and efficient 

coding and decoding algorithms. The most common BCH 
codes are characterised as follows: specifically, for any 
positive integer m ≥ 3, and t<2

m-1
, there exists a binary BCH 

code with the following parameters: 

 Block length: n=2
m
 -1 

 Number of message bits: k ≤ n-mt 

 Minimum distance: d ≥2t+1 

These BCH codes are called primitive because they are 
built using a primitive element of GF(2

m
). 

Error-correcting codes are more used to detect and correct 
data transmission errors. Before using a correcting code it is 
important to know its analytical performances which require 
prior determination of its weights enumerator represented by 

the polynomial A(x)=∑    
  

   
, where Ai is the number of 

codewords of length n and weight i over C(n,k,d). 

The enumeration of codewords is not easy, especially for 
codes with a relatively large dimension. Despite of all the 
methods developed by researchers in this field, the weights 
enumerators  are availables only for relatively small 
dimensions and/or co-dimensions. For example the weights 
enumerators of BCH (Bose, Ray-Chaudhuri et Hocquenghem) 
codes are determined only for lengths less than or equal to 127 
and only for some codes of length 255. 

The channel coding technique is based on information 
redundancy added to detect or correct errors that might be 
generated by a less reliable communication channel. Decoding 
algorithms try to find the transmited codeword as illustrated in 
Fig. 1. 

 
Fig. 1. Communication system model. 
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The importance of weight distribution is that it allows 
measuring the probability of  non-detection of an error of the 
code [3]. The polynomial A gives important information about 
analytical performances of C in terms of errors detection and 
correction [4]. For a linear block code over a Binary 
Symmetric Channel (BSC) with an inversion probability p, the 
upper bound of decoding error probability [5] is given by the 
expression (1). 

  ( )  ∑ ( 
 
) 

       (   )                     (1) 

Where, t is the code correcting capacity. 

Proakis [6] exposes that the inversion probability p can be 
formulated as in (2): 

p= (√  
  

  
) and Q(x) =

 

√  
∫      ⁄    

 

 
         (2) 

Where, R represent the code rate (R= 
 

  
)  and 

  

  
 represents 

the ratio signal/noise. 

On a Gaussian channel AWGN (Additive white Gaussian 
noise), an upper bound about decoding error probability [5] is 
given by (3). 

  ( )  ∑    (√   
  

  
) 

                                (3) 

Where, Aw represent the number of codewords of weight 
w, we note that always A0=An=1. 

Moreover, Fossorier et al. [7] demonstrated that for a 
systematic linear block code over a decoded AWGN channel 
by the Maximum Likelihood Decoder (MLD) algorithm, the 
binary error probability Pe(C) has the following upper 
bound (4): 

  ( )     ∑
   

 
 (√   

  

  
)             

    (4) 

The bound    represents the analytic performances over 
the AWGN channel for the code C. 

The polynomial (5) is called the partial weight enumerator 
of radius p of the code C having the weight enumerator A, 
where p is a positive integer less than n-d [8]. 

A
p
(x) =1+∑    

    
                                              (5) 

The remainder of this paper is organized as follows. In the 
next section, we present some related works. In Section 3, we 
present the proposed method PWEHA.  In Section 4, we 
validate the method PWEHA, we compare it with PWE, we 
give their results for the BCH (255, 191, 17), BCH (255, 187, 
19), BCH (255, 179, 21) and BCH (255, 171, 23) codes of 
unknown weights enumerators and we plot their 
corresponding analytical performances. Finally, a conclusion 
and a possible future direction of this research are outlined in 
Section 5. 

II. RELATED WORKS 

In [9], the authors determine the dimension, the minimum 
distance and the weight enumerators for BCH codes under 
some conditions and for well-defined cases; in an other work 
[10], the authors gave a study of dimension for three type of 

BCH codes over a finite field of order q (GF(q)). In [11], the 
authors propose a study of the minimum distance of a binary 
cyclic code of length n=2

m
-1 and the weight divisibility of its 

dual code. Based on directed graphs, the authors of [12] have 
developed combinatorial algorithms for computing parameters 
of extensions of BCH codes. In [13], [14] the authors propose 
the use of the complete weights enumerator in order to deduce 
the weights enumerators for linear codes; also they employed 
these codes to construct systematic authentication codes with 
new parameters. 

In [8], the authors used genetic algorithms combined with 
a Monte Carlo method to find the weights enumerator for 
some residue quadratic codes. In a second work [15], the 
authors have combined the Monte Carlo  method with the 
multiple error impulse (MIM) technique [16], [17] to find the 
partial weights enumerator (PWE) for some binary linear 
codes, in consequences they obtained an upper bound of error 
probability for MLD decoder for   a shortened BCH codes: 
BCH (130, 66), BCH (103, 47) and BCH (111, 55). 

In [18] we have defined a new method called PWEH, this 
method has obtained by integration of the hash techniques in 
the PWE [15] in order to reduce its run time; with PWEH we 
have found the partial weights enumerator of BCH (255, 199, 
15) code. 

Monte Carlo methods are generally used to approximate a 
value which is difficult or even impossible to calculate with a 
mathematical formula. Let X, be a random variable that 
admits an average  ̅ and a variance   . When the list of all 
possible values of X is very large, the compute of  ̅ is 
practically impossible and Monte Carlo methods [19] allows 
to estimate its unknown value by a random process. 

The average value of   ̅can be calculated by (6). 

 ̅  
 

 
∑   

 
        (6) 

Where (X1, X2,…,Xq) are the samples of the same law. 

The confidence interval   ̅       ̅    ] contains the 

value of   ̅ with the precision µ where: 

   
  ( )

√ 
                                              (7) 

The standard deviation of X is 

 ( )  √
 

   
∑ ( ̅    )

  
                (8) 

β is the solution of the equation: 

 

√  
∫   

  

   
 

 
                       (9) 

The partial weight enumerator of order p of a linear code C 
can be obtained by finding for each weight w (d≤w≤d+p) the 
number Aw= |Cw| of all codewords of weight w in C. Where 
the symbol | . | denotes the cardinal. 

The main idea in [15] is to look for a list Lw of codewords 
of the same weight w by using the error impulse method [16], 
[17] with the ordered statistic decoder [20] as given in the 
algorithm A1. The list Lw is used to approximate the value Aw 
by a Monte Carlo method as given in the algorithm A2. 
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Algorithm A1: Construction of a list Lw of codewords of weight w 

1 Inputs:  

2 G: The generator matrix of the code C(n, k, d) 

3 w: The corresponding weight. 

4 L: The number of codewords to find 

5 Outputs:  

6 Lw : a random set of codewords of the weight w 

7 Begin 

8     S0;  

9      LwEmpty list; 

10     While (S <L) do:  

11            Drawn at random a codeword c of weight w by using the MIM method on the matrix G 

12            For i=1 to n do 

13                        If c not in Lw then 

14                                  insert c in the list Lw 

15                                  SS+1 

16                                  ccyclic permutation of c 

17                        End If 

18            End For 

19     End While 

20 End 

The following algorithm gives an approximation of number Aw: 

Algorithm A2: Approximation of the number Aw 

1 Inputs:  

2 w: the corresponding weight. 

3 Lw : a random set of codewords of the weight w 

4 M : minimum number of intern code words 

5 Outputs:  

6 Approximate value of the number Aw of all codewords of weight w in C 

7 Begin 

8 S0;  

9 i0;  

10 While (S < M) do:  

11              ii+1;  

12              Drawn at random a codeword c of weight w 

13                      If c in Lw then 

14                        SS+1; 

15               End If 

16 End While 

17        R (Lw) 
 

 
    

18 Aw
    

 (  )
    ; 

19 End 

III. PROPOSED METHOD PWEHA 

In order to decrease the run time of the algorithm A1 we 
propose to use a large part of the Automorphism Group 
instead of only cyclic permutations in the line number 16. The 
algorithm A1 becomes A3. 

The automorphism group of BCH codes [21] contains the 
sub group generated by the following permutations: 

 V: y→y+1 

 S:  y→2
i
.y, with i=1,2,...,m-1. 

Each element of this group is called a stabilizer of the 
corresponding BCH code. 
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Algorithm A3: Construction of a list Lw of codewords of weight w using a part of the Automorphism Group 

1 Inputs:  

2 G: The generator matrix of the code C(n,k,d) 

3 w: The corresponding weight. 

4 L: The number of codewords to find 

5 Laut: a set of z permutations from the Automorphisms Group of C. 

6 Outputs:  

7 Lw : a random set of codewords of the weight w 

8 Begin 

9       S0;  

10       LwEmpty list; 

11       While (S <L) do:  

12             Drawn at random a codeword c of weight w by using the MIM method on the matrix G 

13             For i=1 to Laut do 

14                     If c not in Lw then 

15                            insert c in the list Lw 

16                            SS+1 

17                             c(c), with  is the ith element of Laut 

18                     End If 

19            End For 

20       End While 

21 End 

In the algorithm A2 the hardest step (HS) is that 
presented in the line 13 to verify if the Lw list contains or not 
the codeword c randomly pull out in the step represented in 
the line 12. The step HS is repeated many times and therefor 
it increases the PWE run time. In order to decrease this run 
time we have proposed to use the Hash methods for 
accelerating the research in the step HS [18]. 

The Hash method [22], [23] is based on the definition of 
a Hash function and a Hash table.A Hash function is a 
particular function that, from given information in the input 
(key), calculates a Hash value that allowed to gives the 
position of the element we are looking for in the Hash table. 
The Hash table is a data structure that permits an association 
between the key and the corresponding value. 

Generating a Hash value from a key can causes a 
collision problem; we can find that two different keys, 
maybe more, could have the same Hash value which means 
the same element of the table. To decrease such risks, we 
should carefully define the Hash function. 

Let N be a positive integer that represents the size of the 
Hash table. The set Lw presented in the algorithm A3 
contains many codewords (only information part) of weight 
w. This set is divided on N sub-sets; each one contains the 
words of the same Hash value given by the Hash function 
presented in the algorithm A4. 

Algorithm A4: The used Hash function 

Function hash (word, N) 

           Pos0 

           For i=1 to the dimension k of the code 

                        If word [i] =1 then 

                               PosPos + i ; 

                        End If 

          End For 

          Return (Pos modulo N) 

End Function 

After the use of Hash techniques the algorithm A2 has 
become algorithm A5. In Fig. 2 we explains the Hash 
process used in A5 algorithm. In the construction step of the 
set Lw, for each found codeword c of weight w, the hash 
value h=Hash(c, N) is computed. The information part of c 
is therefore inserted in the sub-set number h. So, the set Lw 
is implemented as table of three dimensions in practice. 

Remark 1: When the encoding is systematic, only the 
information parts of codewords are stored in the list Lw. 

Remark 2: In the construction step of Lw in the line 
number 13 of the A1 algorithm, before adding a word c it 
should verify that c doesn’t already exists in Lw. Here also 
the use of the hash technique permits to decrease 
considerably the run time of this construction. 

Algorithm A5: Approximation of the number Aw with 
Hash techniques 

1 Inputs:  

2 w: the corresponding weight. 

3 Lw: a random set of codewords of the weight w divided on N 

sub-sets. 

4 M :minimum number of intern code words 

5 Outputs:  

6 Approximate value of the number Aw of all codewords of 

weight w in C 

7 Begin 

8     S0;  

9     i0;  

10     While (S < M) do:  

11           ii+1;  

12           Drawn at random a codeword c of weight w 

13           hhash(c,N) 

14           If c in the sub-set Lw of number h  then 

15       SS+1; 

16           End If 

17     End While 

18     R (Lw) 
 

 
  ; 
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19     Aw
    

 (  )
    ; 20 End 

 

Fig. 2. Example of the Hash process with a hash table of dimension 100.

IV. VALIDATION OF THE PROPOSED METHOD PWEHA, 

NEW RESULTS AND DISCUSSION 

A. Validation of the Proposed Method PWEHA 

To validate the proposed PWEHA method, we have used it 
to find partial weights enumerator of the BCH(127, 78) code 
using 889 stabilizers. Table 1 summarizes the obtained results. 
The weights enumerator of this code is known and it is 

available at [24]. The comparison between the approximate 
values of Aw obtained by PWEHA and the corresponding 
exact values given in the browser [24] shows that all 
approximate values found are in the confidence interval which 
allows us to validate the proposed method successfully. 
Therefore PWEHA can be used to approximate the weights 
enumerator of other BCH codes for which theses metrics are 
still unknown. 

TABLE I. VALIDATION OF THE PWEHA METHOD 

Code w |Lw| 
The recovery rate 

R 

The standard 

deviation σ 

The exact value 

of Aw 

The approximate 

value of Aw by 

PWEHA 

I (Aw) 

B
C

H
(1

2
7
, 7

8
) 

15 20 000 0.403 0.449 48 387 49567 [34 045;56 098] 

16 30 000 0.089 0.064 338 709 335908 [290 878; 430 234] 

17 30 000 0.038 0.019 768 096 772987 [678 435;879 087] 

TABLE II. COMPARISON BETWEEN THE METHODS PWEHA AND PWE 

Code Weight 

Run time of the PWE  

method(in seconds) 

Run time of the PWEHA  

method(in seconds) 

Time required to 

complete the listLw 

Time required to 

estimate the value 

of Aw 

Total execution 

time of the PWE 

algorithm 

Time required to 

complete the list 

Lw 

Time required to 

estimate the value 

of Aw 

Total execution 

time of the PWE 

algorithm B
C

H
(1

2
7
, 7

1
) 

19 24704.01 19202.22 43906.23 96.23 1019.63 1115.86 

20 55649.78 119567.89 175217.67 285.57 18856.5 19142.07 

21 62765.89 618917.78 681683.67 936.91 142347.5 143284.41 

B. Comparison between the Methods PWEHA and PWE 

Table 2 gives a comparison between the run time of 
PWEHA and PWE for BCH (127, 71) using a simple 
configuration computer: Intel (R) Core(TM) 2 Duo CPU 
T9600 @2.8GHz, 2 GB of RAM. 

With M=10, β=2.57, q=100, z=889, N=100 and 
|Lw|=100 000. From the results presented in Table 2, we note 
that the time required to fill the list Lw is much reduced (more 
than 256 times for the weight 19) with the use of a part of the 
Automorphism Group, this is justified by: 
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In the case where cyclic permutations (algorithm A1) are 
used and from a codeword of length n extracted (n = 127 in 
this case), just  n other codewords can be deduced. 
Contrariwise, using a part of the Automorphism Group 
(algorithm A3) and from a codeword of length n, we can 
deduce up to n * m (889 in this case) other codewords, which 
justifies the large difference between the execution time of the 
two algorithms. 

Similarly, a simple comparison between the run time of the 
algorithm for estimating the value of Aw with and without 
hash techniques shows that there is a large difference in favor 
of the algorithm A5 where there is the hash techniques 
(reduction at more than 18 times for the weight 19). This 
rapidity is quite normal, since that without using hash and for 
every found codeword it is necessary to browse the list Lw to 
check if it contains it or not. The repetition of this task at 
several times makes the algorithm A2 very heavy and 
influences its run time. On the other hand, with the use of the 
hash techniques, for each found codeword, it will not be 
necessary to traverse the entire list Lw each time, but only the 
part of Lw which corresponds to the value returned by the hash 
function. 

The comparison of the total run time of the two algorithms 
shows that the use of the PWEHA method allows to 
considerably reduce the run time, for example for the weight 
19, this is reduced by more than 3900% comparing to the 
PWE. 

C. New Results of theMethod PWEHA 

The integration of Hash techniques and the use of a large 
part of the Automorphism Group that we added in the PWE 
method allowed us to reduce considerably the run time. In this 
section we present the results of PWEHA for the BCH(255, 
191, 17), BCH(255, 187, 19), BCH(255, 179, 21) and 
BCH(255,171,23) codes where the weights enumerators are 
still unknown. Table 3 summarizes the results corresponding 
to the parameters M=10, β=2.57, q=100, z=2040 and N=1000. 

The obtained partial weights enumerators of the 
BCH(255,191,17), BCH(255,187,19), BCH(255,179,21) and 
BCH(255,171,23) codes are used to plot their analytical 
performances given in Fig. 3 corresponding to (4) and (5).

TABLE III. RESULTS FOR BCH(255,191,17), BCH(255,187,19), BCH(255,179,21) AND BCH(255,171,23) CODES 

Code w |Lw| 
The recovery 

rate R 

The standard 

deviation σ 

The approximate value of 

Aw by PWEHA 
I (|Aw|) 

B
C

H
 (

2
5
5

,1
9
1

) 17 1 000 000 0.579 0.125 1 724 773 [1 633 701 ; 1 826 598] 

18 7 000 000 0.460 0.116 15 188 984 [14 261 044 ; 16 246 087] 

19 7 255 001 0.445 0.103 16 298 008 [15 381 826 ; 17 330 243] 

B
C

H
 (

2
5
5

,1
8
7

) 19 3 318 639 0.426 0,112 7 779 558 [7 284 318 ; 8 347 050] 

20 4 469 231 0.129 0,041 34 548 438 [31 926 905 ; 37 638 994] 

21 2 746 038 0.007 0,002 382 761 276 [347 838 417 ; 425 479 248] 

B
C

H
 (

2
5
5

,1
7
9

) 21 1 254886 0.565 0.100 2 220 330 [2 123 233 ; 2 326 734] 

22 2 865 315 0.386 0.103 7 411 309 [6 934 650 ; 7 958 332] 

23 6 000 001 0.149 0.183 40 095 792 [30 503 715 ; 58 487 553] 

B
C

H
 (

2
5
5

,1
7
1

) 23 1 069 174 0.533 0.429 1 660 080 [1 417 324 ; 2 003 181] 

24 3 218 071 0.583 0.125 5 517 063 [ 5 228 811; 5 838 950] 

25 6 000 001 0.351 0.202 17 085 515 [14 883 174 ; 20 052 838] 
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Fig. 3. The analytical performances obtained by PWEHA for the BCH(255,191,17), BCH(255,187,19), BCH(255,179,21) and BCH(255,171,23) codes.

V. CONCLUSION AND PERSPECTIVES 

In this work, we have studied the impact of using Hash 
techniques and adding a large part of the Automorphism 
Group in the PWE algorithm. The found results are very 
important in terms of run time and solution quality. This 
important improvement will help us to find the weights 
enumerators of many other linear codes of unknown weights 
distribution. In the perspectives, we will expand the used part 
of the Automorphism Group in BCH codes and other linear 
codes like Quadratic Residue and LDPC codes. 
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