
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

257 | P a g e

www.ijacsa.thesai.org

A Fast Method to Estimate Partial Weights

Enumerators by Hash Techniques and Automorphism

Group

Moulay Seddiq EL KASMI

ALAOUI

TIM Lab, Faculty of Sciences Ben

M'sik, Hassan II University

Casablanca, Morocco

Saïd NOUH

TIM Lab, Faculty of Sciences Ben

M'sik, Hassan II University

Casablanca, Morocco

Abdelaziz MARZAK

TIM Lab, Faculty of Sciences Ben

M'sik, Hassan II University

Casablanca, Morocco

Abstract—BCH codes have high error correcting capability

which allows classing them as good cyclic error correcting codes.

This important characteristic is very useful in communication

and data storage systems. Actually after almost 60 years passed

from their discovery, their weights enumerators and therefore

their analytical performances are known only for the lengths less

than or equal to 127 and only for some codes of length as 255.

The Partial Weights Enumerator (PWE) algorithm permits to

obtain a partial weights enumerators for linear codes, it is based

on the Multiple Impulse Method combined with a Monte Carlo

Method; its main inconveniece is the relatively long run time. In

this paper we present an improvement of PWE by integration of

Hash techniques and a part of Automorphism Group (PWEHA)

to accelerate it. The chosen approach applies to two levels. The

first is to expand the sample which contains codewords of the

same weight from a given codeword, this is done by adding a part

of the Automorphism Group. The second level is to simplify the

search in the sample by the use of hash techniques. PWEHA has

allowed us to considerably reduce the run time of the PWE

algorithm, for example that of PWEHA is reduced at more than

3900% for the BCH (127,71,19) code. This method is validated

and it is used to approximate a partial weights enumerators of

some BCH codes of unknown weights enumerators.

Keywords—Partial weights enumerator; PWEHA;

automorphism group; hash function; hash table; BCH codes

I. INTRODUCTION

The growth use of computer networks, telecommunication
systems and data storage in our societies shed lights on the
problem of digital transmission of information where a major
problem is the preservation of the entire initial information
through its transmission process. Many examples illustrate this
problematic; starting with a message transmission via
communication systems, where the message can be changed
by noise in transmission channels. A second example
concerning storage this time; is the alter of data obtained from
an optical disk because of stripes or reading lens jump (when
there is a sudden movement).

A binary linear code is generally denoted by C (n, k, d)
where n is its length, k is its dimension and d is its minimum

distance and by its rate R=

 . The BHC codes [1-2], as a class,

are one of the most known powerful error-correcting cyclic
codes due to their error-correcting capability and efficient

coding and decoding algorithms. The most common BCH
codes are characterised as follows: specifically, for any
positive integer m ≥ 3, and t<2

m-1
, there exists a binary BCH

code with the following parameters:

 Block length: n=2
m
 -1

 Number of message bits: k ≤ n-mt

 Minimum distance: d ≥2t+1

These BCH codes are called primitive because they are
built using a primitive element of GF(2

m
).

Error-correcting codes are more used to detect and correct
data transmission errors. Before using a correcting code it is
important to know its analytical performances which require
prior determination of its weights enumerator represented by

the polynomial A(x)=∑

, where Ai is the number of

codewords of length n and weight i over C(n,k,d).

The enumeration of codewords is not easy, especially for
codes with a relatively large dimension. Despite of all the
methods developed by researchers in this field, the weights
enumerators are availables only for relatively small
dimensions and/or co-dimensions. For example the weights
enumerators of BCH (Bose, Ray-Chaudhuri et Hocquenghem)
codes are determined only for lengths less than or equal to 127
and only for some codes of length 255.

The channel coding technique is based on information
redundancy added to detect or correct errors that might be
generated by a less reliable communication channel. Decoding
algorithms try to find the transmited codeword as illustrated in
Fig. 1.

Fig. 1. Communication system model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

258 | P a g e

www.ijacsa.thesai.org

The importance of weight distribution is that it allows
measuring the probability of non-detection of an error of the
code [3]. The polynomial A gives important information about
analytical performances of C in terms of errors detection and
correction [4]. For a linear block code over a Binary
Symmetric Channel (BSC) with an inversion probability p, the
upper bound of decoding error probability [5] is given by the
expression (1).

 () ∑ (

)

 () (1)

Where, t is the code correcting capacity.

Proakis [6] exposes that the inversion probability p can be
formulated as in (2):

p= (√

) and Q(x) =

√
∫ ⁄

 (2)

Where, R represent the code rate (R=

) and

 represents

the ratio signal/noise.

On a Gaussian channel AWGN (Additive white Gaussian
noise), an upper bound about decoding error probability [5] is
given by (3).

 () ∑ (√

)

 (3)

Where, Aw represent the number of codewords of weight
w, we note that always A0=An=1.

Moreover, Fossorier et al. [7] demonstrated that for a
systematic linear block code over a decoded AWGN channel
by the Maximum Likelihood Decoder (MLD) algorithm, the
binary error probability Pe(C) has the following upper
bound (4):

 () ∑

 (√

)

 (4)

The bound represents the analytic performances over
the AWGN channel for the code C.

The polynomial (5) is called the partial weight enumerator
of radius p of the code C having the weight enumerator A,
where p is a positive integer less than n-d [8].

A
p
(x) =1+∑

 (5)

The remainder of this paper is organized as follows. In the
next section, we present some related works. In Section 3, we
present the proposed method PWEHA. In Section 4, we
validate the method PWEHA, we compare it with PWE, we
give their results for the BCH (255, 191, 17), BCH (255, 187,
19), BCH (255, 179, 21) and BCH (255, 171, 23) codes of
unknown weights enumerators and we plot their
corresponding analytical performances. Finally, a conclusion
and a possible future direction of this research are outlined in
Section 5.

II. RELATED WORKS

In [9], the authors determine the dimension, the minimum
distance and the weight enumerators for BCH codes under
some conditions and for well-defined cases; in an other work
[10], the authors gave a study of dimension for three type of

BCH codes over a finite field of order q (GF(q)). In [11], the
authors propose a study of the minimum distance of a binary
cyclic code of length n=2

m
-1 and the weight divisibility of its

dual code. Based on directed graphs, the authors of [12] have
developed combinatorial algorithms for computing parameters
of extensions of BCH codes. In [13], [14] the authors propose
the use of the complete weights enumerator in order to deduce
the weights enumerators for linear codes; also they employed
these codes to construct systematic authentication codes with
new parameters.

In [8], the authors used genetic algorithms combined with
a Monte Carlo method to find the weights enumerator for
some residue quadratic codes. In a second work [15], the
authors have combined the Monte Carlo method with the
multiple error impulse (MIM) technique [16], [17] to find the
partial weights enumerator (PWE) for some binary linear
codes, in consequences they obtained an upper bound of error
probability for MLD decoder for a shortened BCH codes:
BCH (130, 66), BCH (103, 47) and BCH (111, 55).

In [18] we have defined a new method called PWEH, this
method has obtained by integration of the hash techniques in
the PWE [15] in order to reduce its run time; with PWEH we
have found the partial weights enumerator of BCH (255, 199,
15) code.

Monte Carlo methods are generally used to approximate a
value which is difficult or even impossible to calculate with a
mathematical formula. Let X, be a random variable that
admits an average ̅ and a variance . When the list of all
possible values of X is very large, the compute of ̅ is
practically impossible and Monte Carlo methods [19] allows
to estimate its unknown value by a random process.

The average value of ̅can be calculated by (6).

 ̅

∑

 (6)

Where (X1, X2,…,Xq) are the samples of the same law.

The confidence interval ̅ ̅] contains the

value of ̅ with the precision µ where:

 ()

√
 (7)

The standard deviation of X is

 () √

∑ (̅)

 (8)

β is the solution of the equation:

√
∫

 (9)

The partial weight enumerator of order p of a linear code C
can be obtained by finding for each weight w (d≤w≤d+p) the
number Aw= |Cw| of all codewords of weight w in C. Where
the symbol | . | denotes the cardinal.

The main idea in [15] is to look for a list Lw of codewords
of the same weight w by using the error impulse method [16],
[17] with the ordered statistic decoder [20] as given in the
algorithm A1. The list Lw is used to approximate the value Aw
by a Monte Carlo method as given in the algorithm A2.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

259 | P a g e

www.ijacsa.thesai.org

Algorithm A1: Construction of a list Lw of codewords of weight w

1 Inputs:

2 G: The generator matrix of the code C(n, k, d)

3 w: The corresponding weight.

4 L: The number of codewords to find

5 Outputs:

6 Lw : a random set of codewords of the weight w

7 Begin

8 S0;

9 LwEmpty list;

10 While (S <L) do:

11 Drawn at random a codeword c of weight w by using the MIM method on the matrix G

12 For i=1 to n do

13 If c not in Lw then

14 insert c in the list Lw

15 SS+1

16 ccyclic permutation of c

17 End If

18 End For

19 End While

20 End

The following algorithm gives an approximation of number Aw:

Algorithm A2: Approximation of the number Aw

1 Inputs:

2 w: the corresponding weight.

3 Lw : a random set of codewords of the weight w

4 M : minimum number of intern code words

5 Outputs:

6 Approximate value of the number Aw of all codewords of weight w in C

7 Begin

8 S0;

9 i0;

10 While (S < M) do:

11 ii+1;

12 Drawn at random a codeword c of weight w

13 If c in Lw then

14 SS+1;

15 End If

16 End While

17 R (Lw)

18 Aw

 ()
 ;

19 End

III. PROPOSED METHOD PWEHA

In order to decrease the run time of the algorithm A1 we
propose to use a large part of the Automorphism Group
instead of only cyclic permutations in the line number 16. The
algorithm A1 becomes A3.

The automorphism group of BCH codes [21] contains the
sub group generated by the following permutations:

 V: y→y+1

 S: y→2
i
.y, with i=1,2,...,m-1.

Each element of this group is called a stabilizer of the
corresponding BCH code.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

260 | P a g e

www.ijacsa.thesai.org

Algorithm A3: Construction of a list Lw of codewords of weight w using a part of the Automorphism Group

1 Inputs:

2 G: The generator matrix of the code C(n,k,d)

3 w: The corresponding weight.

4 L: The number of codewords to find

5 Laut: a set of z permutations from the Automorphisms Group of C.

6 Outputs:

7 Lw : a random set of codewords of the weight w

8 Begin

9 S0;

10 LwEmpty list;

11 While (S <L) do:

12 Drawn at random a codeword c of weight w by using the MIM method on the matrix G

13 For i=1 to Laut do

14 If c not in Lw then

15 insert c in the list Lw

16 SS+1

17 c(c), with is the ith element of Laut

18 End If

19 End For

20 End While

21 End

In the algorithm A2 the hardest step (HS) is that
presented in the line 13 to verify if the Lw list contains or not
the codeword c randomly pull out in the step represented in
the line 12. The step HS is repeated many times and therefor
it increases the PWE run time. In order to decrease this run
time we have proposed to use the Hash methods for
accelerating the research in the step HS [18].

The Hash method [22], [23] is based on the definition of
a Hash function and a Hash table.A Hash function is a
particular function that, from given information in the input
(key), calculates a Hash value that allowed to gives the
position of the element we are looking for in the Hash table.
The Hash table is a data structure that permits an association
between the key and the corresponding value.

Generating a Hash value from a key can causes a
collision problem; we can find that two different keys,
maybe more, could have the same Hash value which means
the same element of the table. To decrease such risks, we
should carefully define the Hash function.

Let N be a positive integer that represents the size of the
Hash table. The set Lw presented in the algorithm A3
contains many codewords (only information part) of weight
w. This set is divided on N sub-sets; each one contains the
words of the same Hash value given by the Hash function
presented in the algorithm A4.

Algorithm A4: The used Hash function

Function hash (word, N)

 Pos0

 For i=1 to the dimension k of the code

 If word [i] =1 then

 PosPos + i ;

 End If

 End For

 Return (Pos modulo N)

End Function

After the use of Hash techniques the algorithm A2 has
become algorithm A5. In Fig. 2 we explains the Hash
process used in A5 algorithm. In the construction step of the
set Lw, for each found codeword c of weight w, the hash
value h=Hash(c, N) is computed. The information part of c
is therefore inserted in the sub-set number h. So, the set Lw
is implemented as table of three dimensions in practice.

Remark 1: When the encoding is systematic, only the
information parts of codewords are stored in the list Lw.

Remark 2: In the construction step of Lw in the line
number 13 of the A1 algorithm, before adding a word c it
should verify that c doesn’t already exists in Lw. Here also
the use of the hash technique permits to decrease
considerably the run time of this construction.

Algorithm A5: Approximation of the number Aw with
Hash techniques

1 Inputs:

2 w: the corresponding weight.

3 Lw: a random set of codewords of the weight w divided on N

sub-sets.

4 M :minimum number of intern code words

5 Outputs:

6 Approximate value of the number Aw of all codewords of

weight w in C

7 Begin

8 S0;

9 i0;

10 While (S < M) do:

11 ii+1;

12 Drawn at random a codeword c of weight w

13 hhash(c,N)

14 If c in the sub-set Lw of number h then

15 SS+1;

16 End If

17 End While

18 R (Lw)

 ;

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

261 | P a g e

www.ijacsa.thesai.org

19 Aw

 ()
 ; 20 End

Fig. 2. Example of the Hash process with a hash table of dimension 100.

IV. VALIDATION OF THE PROPOSED METHOD PWEHA,

NEW RESULTS AND DISCUSSION

A. Validation of the Proposed Method PWEHA

To validate the proposed PWEHA method, we have used it
to find partial weights enumerator of the BCH(127, 78) code
using 889 stabilizers. Table 1 summarizes the obtained results.
The weights enumerator of this code is known and it is

available at [24]. The comparison between the approximate
values of Aw obtained by PWEHA and the corresponding
exact values given in the browser [24] shows that all
approximate values found are in the confidence interval which
allows us to validate the proposed method successfully.
Therefore PWEHA can be used to approximate the weights
enumerator of other BCH codes for which theses metrics are
still unknown.

TABLE I. VALIDATION OF THE PWEHA METHOD

Code w |Lw|
The recovery rate

R

The standard

deviation σ

The exact value

of Aw

The approximate

value of Aw by

PWEHA

I (Aw)

B
C

H
(1

2
7
, 7

8
)

15 20 000 0.403 0.449 48 387 49567 [34 045;56 098]

16 30 000 0.089 0.064 338 709 335908 [290 878; 430 234]

17 30 000 0.038 0.019 768 096 772987 [678 435;879 087]

TABLE II. COMPARISON BETWEEN THE METHODS PWEHA AND PWE

Code Weight

Run time of the PWE

method(in seconds)

Run time of the PWEHA

method(in seconds)

Time required to

complete the listLw

Time required to

estimate the value

of Aw

Total execution

time of the PWE

algorithm

Time required to

complete the list

Lw

Time required to

estimate the value

of Aw

Total execution

time of the PWE

algorithm B
C

H
(1

2
7
, 7

1
)

19 24704.01 19202.22 43906.23 96.23 1019.63 1115.86

20 55649.78 119567.89 175217.67 285.57 18856.5 19142.07

21 62765.89 618917.78 681683.67 936.91 142347.5 143284.41

B. Comparison between the Methods PWEHA and PWE

Table 2 gives a comparison between the run time of
PWEHA and PWE for BCH (127, 71) using a simple
configuration computer: Intel (R) Core(TM) 2 Duo CPU
T9600 @2.8GHz, 2 GB of RAM.

With M=10, β=2.57, q=100, z=889, N=100 and
|Lw|=100 000. From the results presented in Table 2, we note
that the time required to fill the list Lw is much reduced (more
than 256 times for the weight 19) with the use of a part of the
Automorphism Group, this is justified by:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

262 | P a g e

www.ijacsa.thesai.org

In the case where cyclic permutations (algorithm A1) are
used and from a codeword of length n extracted (n = 127 in
this case), just n other codewords can be deduced.
Contrariwise, using a part of the Automorphism Group
(algorithm A3) and from a codeword of length n, we can
deduce up to n * m (889 in this case) other codewords, which
justifies the large difference between the execution time of the
two algorithms.

Similarly, a simple comparison between the run time of the
algorithm for estimating the value of Aw with and without
hash techniques shows that there is a large difference in favor
of the algorithm A5 where there is the hash techniques
(reduction at more than 18 times for the weight 19). This
rapidity is quite normal, since that without using hash and for
every found codeword it is necessary to browse the list Lw to
check if it contains it or not. The repetition of this task at
several times makes the algorithm A2 very heavy and
influences its run time. On the other hand, with the use of the
hash techniques, for each found codeword, it will not be
necessary to traverse the entire list Lw each time, but only the
part of Lw which corresponds to the value returned by the hash
function.

The comparison of the total run time of the two algorithms
shows that the use of the PWEHA method allows to
considerably reduce the run time, for example for the weight
19, this is reduced by more than 3900% comparing to the
PWE.

C. New Results of theMethod PWEHA

The integration of Hash techniques and the use of a large
part of the Automorphism Group that we added in the PWE
method allowed us to reduce considerably the run time. In this
section we present the results of PWEHA for the BCH(255,
191, 17), BCH(255, 187, 19), BCH(255, 179, 21) and
BCH(255,171,23) codes where the weights enumerators are
still unknown. Table 3 summarizes the results corresponding
to the parameters M=10, β=2.57, q=100, z=2040 and N=1000.

The obtained partial weights enumerators of the
BCH(255,191,17), BCH(255,187,19), BCH(255,179,21) and
BCH(255,171,23) codes are used to plot their analytical
performances given in Fig. 3 corresponding to (4) and (5).

TABLE III. RESULTS FOR BCH(255,191,17), BCH(255,187,19), BCH(255,179,21) AND BCH(255,171,23) CODES

Code w |Lw|
The recovery

rate R

The standard

deviation σ

The approximate value of

Aw by PWEHA
I (|Aw|)

B
C

H
 (

2
5
5

,1
9
1

) 17 1 000 000 0.579 0.125 1 724 773 [1 633 701 ; 1 826 598]

18 7 000 000 0.460 0.116 15 188 984 [14 261 044 ; 16 246 087]

19 7 255 001 0.445 0.103 16 298 008 [15 381 826 ; 17 330 243]

B
C

H
 (

2
5
5

,1
8
7

) 19 3 318 639 0.426 0,112 7 779 558 [7 284 318 ; 8 347 050]

20 4 469 231 0.129 0,041 34 548 438 [31 926 905 ; 37 638 994]

21 2 746 038 0.007 0,002 382 761 276 [347 838 417 ; 425 479 248]

B
C

H
 (

2
5
5

,1
7
9

) 21 1 254886 0.565 0.100 2 220 330 [2 123 233 ; 2 326 734]

22 2 865 315 0.386 0.103 7 411 309 [6 934 650 ; 7 958 332]

23 6 000 001 0.149 0.183 40 095 792 [30 503 715 ; 58 487 553]

B
C

H
 (

2
5
5

,1
7
1

) 23 1 069 174 0.533 0.429 1 660 080 [1 417 324 ; 2 003 181]

24 3 218 071 0.583 0.125 5 517 063 [5 228 811; 5 838 950]

25 6 000 001 0.351 0.202 17 085 515 [14 883 174 ; 20 052 838]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

263 | P a g e

www.ijacsa.thesai.org

Fig. 3. The analytical performances obtained by PWEHA for the BCH(255,191,17), BCH(255,187,19), BCH(255,179,21) and BCH(255,171,23) codes.

V. CONCLUSION AND PERSPECTIVES

In this work, we have studied the impact of using Hash
techniques and adding a large part of the Automorphism
Group in the PWE algorithm. The found results are very
important in terms of run time and solution quality. This
important improvement will help us to find the weights
enumerators of many other linear codes of unknown weights
distribution. In the perspectives, we will expand the used part
of the Automorphism Group in BCH codes and other linear
codes like Quadratic Residue and LDPC codes.

REFERENCES

[1] Hocquenghem. Codes correcteursd’erreurs.Chiffres, 2 :147–156, sept
1959.

[2] R.C Bose, and D. K. Ray-Chaudhuri.“On a class of error correcting
binary group codes. Informationand Control”, 3 :68–79, mars 1960.

[3] BrocheroMartínez F.E.,Giraldo Vergara C.R.: “Weight enumerator of
some irreducible cyclic codes”, 2014.

[4] Clark G.C., and Cain J.B., “Error-Correction Coding for Digital
Communications”, first edition Springer, New York, 30 June, 1981.

[5] Robert H. Morelos-Zaragoza. “The art of error correcting coding, John
Wiley & Sons Second Edition”, 2006.

[6] J.G. Proakis. “Digital communications 5th edition”. 2001.

[7] M. P. C. Fossorier, S. Lin, and D. Rhee. “Bit-error probability for
maximum-likelihood decoding of linear block codes and related soft
decision decoding methods”. IEEE Transaction on Information Theory,
44: 3083-3090, November 1998.

[8] S. Nouh, and M. Belkasmi. “A genetic algorithm for finding the weight
enumerator of Binary linear block codes. International Journal of
Applied Research on Information Technology and Computing”. 2,
December 2011.

[9] C. Ding, C. Fan, and Z. Zhou, “The dimension and minimum distance
of two classes of primitive BCH codes”, pp 237-263, Vol. 45, 2017.

[10] H. Liu, C. Ding, and C. Li. “Dimensions of three types of BCH codes
over GF(q)”. pp 1910–1927, Vol. 340, 2017.

[11] X. Zeng, J. Shan, and L. Hu. “A Triple-Error-Correcting Cyclic Code
from the Gold and Kasami-Welch APN Power Functions”,
arXiv:1003.5993, 2012.

[12] A.V. Kelarev, “Algorithms for computing parameters of graph-based
extensions of BCH codes”, Journal of Discrete Algorithms Vol. 5, pp
553–563, 2007.

[13] Wang, X., Gao, J., and Fu, FW.”Complete weight enumerators of two
classes of linear codes”, Cryptogr. Commun. 9: 545.
doi:10.1007/s12095-016-0198-1, 2017.

[14] Yang, S. & Yao, ZA., “Complete weight enumerators of a family of
three-weight linear codes”, Des. Codes Cryptogr. 82: 663.
doi:10.1007/s10623-016-0191-x, 2017.

[15] S. Nouh, B. Aylaj, and M. Belkasmi. “A method to determine partial
weight Enumerator for linear block codes”. Computer Engineering and
Intelligent Systems 3, October 2012.

[16] M. ASKALI, S. NOUH, and M. Belkasmi.”An Efficient method to find
the Minimum Distance of Linear Codes”, International Conference on
Multimedia Computing and Systems proceeding, May 10-12, Tangier,
Morocco, 2012 .

[17] M. ASKALI, A. AZOUAOUI, S. NOUH, and M. BELKASMI. “On the
computing ofthe minimum distance of linear block codes by heuristic
methods”. International Journal of Communications,Network and
System Sciences, N° 11, Vol 5, 2012.

[18] S. El Kasmi Alaoui, S. Nouh, and A. Marzak. “Determination of partial
weight enumerators of BCH codes by Hash methods”, IEEE Wireless
Technologies, Embedded and Intelligent Systems (WITS), International
Conference on, 2017.

[19] D. P. Kroese, T. Taimre, and Z.I. Botev. “Handbook of monte carlo
methods”. 2011.

[20] Fossorier M.P.C. and lin S “Soft decision decoding of linear block
codes based on ordered statistics”, IEEE Trans. information theory Vol.
41, pp. 1379-1396. Sep, 1995.

[21] T. P. Berger and P. Charpin, “The automorphism groups of BCH codes
and of some affine-invariant codes over extension fields”, Design,
Codes and Cryptography. Vol. 18, Issue 1-3, pp 29-53, 1999.

[22] Cormen, C., Leiserson, C. E., Rivest, R. L., and Stein, C. 2001.
“Introduct. Algorithms”. 2nd Ed. MIT Press.

[23] A.Andoniand P.Indyk. “Near-optimal hashing algorithms for
approximate nearest neighbour in high dimensions”. In FOCS, pages
459–468. IEEE, 2006.

[24] http://www.ec.okayama-u-ac.jp/~infsys/kusaka/wd/index.html, created
by M. Terada, J. Asatani and T. Koumoto.

0 1 2 3 4 5 6
10

-20

10
-15

10
-10

10
-5

10
0

SNR

B
E

R

BCH(255,191,17)

BCH(255,187,19)

BCH(255,179,21)

BCH(255,171,23)

https://arxiv.org/find/cs/1/au:+Zeng_X/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Shan_J/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Hu_L/0/1/0/all/0/1
https://arxiv.org/abs/1003.5993
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7932335
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7932335
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7932335
https://scholar.google.com/scholar?hl=fr&as_sdt=0,5&as_vis=1&q=.+Cormen,+C.,+Leiserson,+C.+E.,+Rivest,+R.+L.,+and+Stein,+C.+2001.+Introduct.+Algorithms.+2nd+Ed.+MIT+Press.
https://scholar.google.com/scholar?hl=fr&as_sdt=0,5&as_vis=1&q=.+Cormen,+C.,+Leiserson,+C.+E.,+Rivest,+R.+L.,+and+Stein,+C.+2001.+Introduct.+Algorithms.+2nd+Ed.+MIT+Press.

