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Abstract—The stability of power production in photovoltaics
(PV) power plants is an important issue for large-scale grid-
connected systems. This is because it affects the control and
operation of the electrical grid. An efficient forecasting model
is proposed in this paper to predict the next-day solar photo-
voltaic power using the Levenberg-Marquardt (LM) and Bayesian
Regularization (BR) algorithms and real-time weather data. The
correlations between the global solar irradiance, temperature,
solar photovoltaic power, and the time of the year were studied
to extract the knowledge from the available historical data for
the purpose of developing a real-time prediction system. The
solar PV generated power data were extracted from the power
plant installed on-top of the faculty of engineering building at
Applied Science Private University (ASU), Amman, Jordan and
weather data with real-time records were measured by ASU
weather station at the same university campus. Huge amounts
of training, validation, and testing experiments were carried out
on the available records to optimize the Neural Networks (NN)
configurations and compare the performance of the LM and
BR algorithms with different sets and combinations of weather
data. Promising results were obtained with an excellent real-
time overall performance for next-day forecasting with a Root
Mean Square Error (RMSE) value of 0.0706 using the Bayesian
regularization algorithm with 28 hidden layers and all weather
inputs. The Levenberg-Marquardt algorithm provided a 0.0753
RMSE using 23 hidden layers for the same set of learning inputs.
This research shows that the Bayesian regularization algorithm
outperforms the reported real-time prediction systems for the PV
power production.
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I. INTRODUCTION

The rising fuel costs and increasing energy demands with
the ongoing industrial growth and environmental awareness
have engaged to the importance of new renewable energy
sources such as the solar Photovoltaic (PV) systems [1, 2].
As one of the most important renewable energy sources, PV
energy is becoming the dominant clean and reliable energy
source that is widely used around the world without caus-

ing any damage to the environment. Mentioning the light-
electricity process, the term “Photovoltaic” is first used by
Alfred [3], as the light conversion process into electricity.
There are two modes of installation for solar PV power plants:
grid-tied and off-grid systems [4]. The first mode is widely
used and proven to be hugely beneficial. It depends on the
variable weather conditions according to the geographical area
of the system which is the reason why it was known as
uncertain, uncontrollable, and non-scheduling power source
[5]. The second mode, off-grid systems, is used for isolated or
remote areas that are normally on a smaller scale.

Many studies were reported in the literature suggesting
different modeling, simulation, and prediction methods for the
expected power production of solar PV plants for the purpose
of improving the investment feasibility and maintaining a sta-
ble power quality and scheduling [6, 7]. Fonseca [8], compared
the accuracy of one-day ahead prediction for the power pro-
duced by 1MW PV System using two methods: Support Vector
Machines (SVM) and Multilayer Perceptron (MP) Artificial
Neural Networks (ANNs). It was found that the two algorithms
approximately obtained almost the same accuracy with 0.07
KWh/m2 and 0.11 KWh/m2 Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE), respectively.

Various forecasting methods of PV power output were
reviewed in [9]. It was demonstrated that any model uses
numerically predicted weather data will not take into account
the effect of cloud cover and cloud formation when initial-
izing, therefore sky imaging and satellite data methods used
to predict the PV power output with higher accuracy. The
article also outlined some key factors affecting the accuracy
of prediction, such as forecast horizon, forecasting interval
width, system size and PV panels mounting method (fixed or
tracking). A model using multilayer perceptron-based ANN
was proposed in [5] for one day ahead forecasting. The daily
solar power output and atmospheric temperature for 70 days
used for training the ANN. For the different settings of the
ANN model (number of hidden layers, activation function, and
learning rule), the minimum MAPE achieved was 0.855%.
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The aim of the work published in [10] was to study the
effect of forecast horizon on the accuracy of the method
used to predict the PV power production, which was Support
Vector Regression (SVR) using numerically predicted weather
data. Two forecast horizons studied: up to 2 and 25 hours
ahead. As expected, the forecasting of up to 2 hours ahead
was more accurate with RMSE and MAE increased 13% and
17%, respectively, when the forecast horizon was up to 25
hours ahead. Cococcioni [11], developed and validated a model
that adapted an ANN with tapped delay lines and built for
one day ahead forecasting. The inputs were the irradiation
and the sampling hours. The model achieved seasonal MAE
ranging from 12.2% to 26% in spring and autumn, respectively.
Monteiro [12], compared two short-term forecasting models:
the analytical PV power forecasting model (APVF) and the MP
PV forecasting model (MPVF), with both of the models using
numerically predicted weather data and past hourly values
for PV electric power production. The two models achieved
similar results (RMSE varying between 11.95% and 12.10%)
with forecast horizons covering all daylight hours of one day
ahead, thus the models demonstrated their applicability for PV
electric power prediction.

Leva [13], proposed a new Physical Hybrid ANN
(PHANN) method to improve the accuracy of the standard
ANN method. The hybrid method is based on ANN and clear
sky curves for a PV plant. The PHANN method reduced the
Normalized MAE (NMAE) and the Weighted MAE (WMAE)
by almost 50% in many days compared to the standard ANN
method. In [14], the PV energy production for the next day
with 15-minutes intervals was accurately predicted with an
SVM model that uses historical data for solar irradiance,
ambient temperature, and past energy production. The method
demonstrated very good accuracy with R2 correlation coef-
ficients of more than 90%, and the coefficient was strongly
dependent on the quality of the weather forecast.

In our previous work [15], we proposed an initial real-time
forecasting model for the PV power production using ANNs
based on the available solar irradiation records for the last few
days. In this research work, ANNs were optimized comparing
the Levenberg-Marquardt (LM) and Bayesian Regularization
(BR) algorithms to analyze and correlate the available data of
temperature, solar irradiance, timing, and the generated solar
PV power. The suggested system provides real-time PV energy
forecasts for the next 24 hours based on real-time weather data
for the last week.

II. PV AND WEATHER DATA

A. PV Systems

There are four separate PV systems installed at the univer-
sity campus for a total generation capacity of 550KWp:

• PV ASU00 (The Test Field): This system was installed
in 2013 with a capacity of 56.4KWp including a
CPV tracker, a Polycrystalline tracker, Poly-crystalline
and Mono-crystalline panels (South and East/West
oriented), and thin film panels.

• PV ASU08 (The Library): A rooftop-mounted
130.1KWp system of Yingli Solar panels and SMA
sunny tripower inverters.

Fig. 1. Rooftop mounted Solar panels on top of the engineering building.

• PV ASU09 (Faculty of Engineering): This is the
largest rooftop-mounted PV system at ASU that is
installed on top of the faculty of engineering building
with a capacity of 264KWp [16]. It consists of 14
SMA sunny tripower inverters (17KW and 10KW)
connected with Yingli Solar (YL 245P-29b-PC) pan-
els that are tilted by 11°and oriented 36°(S to E)
(see Fig. 1).

• PV ASU10 (Deanship of Student Affairs): A rooftop
mounted 117.4KWp system of Yingli Solar panels and
SMA sunny tripower inverters.

B. ASU Weather Station

ASU’s weather station was installed in 2015 to be the first
of its kind in Jordan providing a wide range of weather data
measured by the latest sensors and devices [17]. It is located
about 175m from the engineering building as shown on the
map of Fig. 2. The station is equipped with many instruments
to measure:

• The wind speed and direction (4 altitudes between 10-
36m).

• Ambient temperature (3 altitudes between 1-35m).

• Relative humidity (at altitudes 1m and 35m).

• Global solar irradiance (including separate direct ra-
diation and diffuse radiation records).

• Subsoil and soil surface temperature.

• Barometric pressure.

• Precipitation amounts.

The real-time weather measurements obtained by the sta-
tion are updated continuously and published on the website:
http://energy.asu.edu.jo as depicted in Fig. 3.

In this research work, we created a two years dataset using
the available hourly records of weather and PV energy data
for the duration between 16 May 2015 and 15 May 2017.
This dataset for 731 days includes 17544 weather records and
17544 PV power values. PV power records were obtained only
from the PV ASU09 system as it is the largest and most stable
system on campus.
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Fig. 2. A map showing part of ASU’s campus.

Fig. 3. Real-time weather station data available at [17].
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III. FORECASTING SYSTEM

The suggested forecasting system can be represented by
the block diagram of Fig. 4 and is described in the following
subsections.

A. Data Filtering and Association

The collected weather and PV power data are first filtered,
as shown in Fig. 4, to filter out any missing records which
guarantee the consistency of the dataset. This includes any
weather information with no PV power values associated at the
same time or any PV power records with a missing weather
data.

Based on the timing data, associations were found by
matching solar PV power records with weather records includ-
ing the record time, temperature, and global solar irradiance.
To obtain homogeneous data and reliable machine learning
experiments, the final dataset was normalized between 0 and
1.

B. LM and BR ANNs

Compared with similar algorithms [18, 19, 20], ANNs
are known as one of the most powerful machine learning
techniques with a wide range of applications [21, 22, 23].
ANNs map non-linear inputs through adjustable weights into
the desired targets. The network is created by three layers:
the input, hidden, and output layers [24] as illustrated in the
example of Fig. 5 for a network of 11 inputs, 23 hidden layers,
and one output.

ANNs showed excellent learning and classification perfor-
mances while dealing with real-world sensor data [25, 26, 27].

Fig. 4. Implementation flowchart for the proposed forecasting system.

Fig. 5. An example for the structure of ANNs with 23 hidden layers.

In this work, we applied the LM and BR to neural networks
and compared the learning performances using different train-
ing configurations.

The LM backpropagation optimization algorithm has been
initially reported in [28] and has been applied later to neural
networks in [29, 30]. The LM ANNs algorithm is implemented
in MATLAB and it is known as the fastest backpropagation
supervised algorithm especially while training feedforward
ANNs with moderate sizes [31]. The BR backpropagation
algorithm has been introduced in [32] and [33] and it is
implemented in MATLAB [34]. Both of the LM and BR ANNs
calculate the neural network errors’ derivative functions with
respect to weights and biases to obtain a Jacobian matrix that
is used for calculations which means that the performance can
only be measured by the mean squared errors [29].

C. Training and Testing Experiments

Data of the global solar irradiance (Radd(t)) and the
temperature (Tempd(t)) at the altitude of 1m are used to form
the weather information vector Wd(t) at time t of day d. Two
neural network models were created based on the LM and
BR algorithms with the target function of the mean PV power
Pd(t). The inputs to these models are the current time stamp
from the beginning of the current year (Td(t)) and the available
weather vectors Wd(t) at the same time t over the previous
five days before day d. So, as depicted in Fig. 6, each input
sample of the training dataset consists of:

Td(t),Wd−1(t),Wd−2(t),Wd−3(t),Wd−4(t),Wd−5(t) (1)

and one output value Pd(t) with

Wd−i(t) = {Radd−i(t), T empd−i(t)}, i = 1, 2, ..., 5 (2)

In this work, the MATLAB Neural Networks toolbox was
used for huge amounts of training, validation, and testing
experiments while using different input combinations and
varying the number of hidden layers from 1 to 30. The used
set of inputs are:

• ALL inputs (1 time value, 5 radiation values, and 5
temperature values).

• Only 5 radiation values.

• Only 5 temperature values.

• 6 inputs (1 time value and 5 radiation values).

• 6 inputs (1 time value and 5 temperature values).

• 3 inputs (1 time value, 1 radiation value, and 1
temperature value).
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Fig. 6. Next-day PV forecasting based on the weather data of the previous five consecutive days.

• 10 inputs (5 radiation values and 5 temperature val-
ues).

Ten experiments were handled at each value for the number
of hidden layers. At each experiment, the samples of the
dataset were randomly mixed to generate the sub-datasets: 80%
for training, 5% for validation, and 15% for testing. Then, the
performance was evaluated by calculating the average RMSE
for each of ten experiments using:

RMSE =

√√√√ N∑
n=1

D2
n (3)

The network configurations that provided the best per-
formances are listed in Table I. It can be concluded from
the results that the best training/testing experiments provided
an average RMSE of 0.0706 and a best testing correlation
coefficient of R=0.9660 and mean square error of 0.00485
while using all inputs to the BR ANNs with 28 hidden layers
for the testing performance illustrated in Fig. 7 and 8.

A histogram of 20 Bins is depicted in Fig. 9 for the overall
errors. These results are very low compared to the methods and
measures reported in the literature and related to the current
research as summarized in Table II.

IV. CONCLUSION

In this research, a predictive forecasting model is proposed
by applying the Levenberg-Marquardt and Bayesian Regu-
larization algorithms to neural networks for the purpose of
correlating historical weather data to photovoltaic outputs. Two
years of hourly data were processed to associate the available

Fig. 7. Correlation coefficients calculations for the best performance.

Fig. 8. Best ANN training performance using 28 hidden layers.
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TABLE I. RESULTS OBTAINED USING DIFFERENT SETS OF INPUTS

Levenberg-Marquardt Bayesian Regularization
Inputs Hidden Neurons Average RMSE Testing R Hidden Neurons Average RMSE Testing R
ALL 23 0.0753 0.9532 28 0.0706 0.9660
Rad 23 0.0828 0.9417 30 0.0797 0.9514

Temp 23 0.2340 0.9034 28 0.2285 0.8911
Time, Rad 24 0.0819 0.9420 26 0.0774 0.9501

Time, Temp 27 0.2107 0.9041 30 0.2061 0.8921
Time, Rad, Temp 23 0.0935 0.9271 14 0.0941 0.9384

Rad, Temp 27 0.0969 0.9385 15 0.0966 0.9295

TABLE II. A COMPARISON BETWEEN THE FORECASTING PERFORMANCE FOR DIFFERENT METHODS AND MEASURES RELATED TO THE CURRENT
RESEARCH

Reference Forecasts Method Measure Result
[5] One day ahead MP-ANNs MAPE 0.855%
[8] One day ahead SVM MAE, RMSE 0.07 KWh/m2, 0.12 KWh/m2

[8] One day ahead MP-ANNs MAE, RMSE 0.11 KWh/m2, 0.12 KWh/m2

[10] 2 hours ahead SVR MAE 0.065 MWh
[10] 25 hours ahead SVR MAE 0.076 MWh
[11] One day ahead ANN MAE 0.122
[12] One day ahead APVF RMSE, MAE 0.121, 0.0597
[12] One day ahead MPVF RMSE, MAE 0.1195, 0.0646
[13] One day ahead PHANN NMAE, WMAE 50% error reduction
[14] One day ahead SVM R2 correlation coefficients 90%
[15] One day ahead ANN RMSE, R2 correlation coefficients 0.0721, 96.7%

This work One day ahead LM-ANN RMSE, R2 correlation coefficients 0.0753, 95.32%
This work One day ahead BR-ANN RMSE, R2 correlation coefficients 0.0706, 96.60%

Fig. 9. Error histogram of 20 Bins.

temperature and global radiation records to the generated PV
power. The associated datasets were used as a source of
learning for a neural network model that use real-time weather
data to provide PV power forecasts for the next 24 hours.

After a vast amount of training/testing experiments, excel-
lent prediction results were obtained using the BR ANNs based
on time, temperature, and radiation inputs. These predictions
can be used by many energy management systems and power
control systems of grid-tied PV plants. The proposed model is
being developed into a real-time online application in our near
future work.
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