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Abstract—This study addresses an argument on the disconnec-
tion between the computational side of the robot navigation prob-
lem with the control problem including concerns on stability. We
aim to constitute a framework that includes a novel approach of
using quantizers for occupancy grids and vehicle control systems
concurrently. This representation allows stability concerned with
the navigation structure through input and output quantizers in
the framework. We have given the theoretical proofs of qLQR in
the sense of Lyapunov stability alongside with the implementation
details. The experimental results demonstrate the effectiveness of
the qLQR controller and quantizers in the framework with real-
time data and offline simulations.
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I. INTRODUCTION

Systems that contain both continuous dynamics and dis-
crete events are called hybrid or discontinuous dynamical
systems. The discontinuity in the system can be based on
the control system transitions like the operation of gearbox
shift pattern in vehicles or the steep system dynamics like a
change of direction or final stop of a bouncing ball. In the
early studies of control theory, this well-known phenomenon
in the system dynamics interpreted as a predictable disturbance
[1] or the noise on the signal [2]. After the widespread usage
of the pulse width modulation signals in electric drives at the
beginning of the 90s, sliding mode control techniques [3,4]
use this nonlinear switching behavior as a control method
for stabilizing nonlinear systems with an on-off(bang-bang)
controller. Following the broad range of industrial practices,
usage areas of sliding mode control reached many application
areas in robotics like stabilization of autonomous surface
vessels in rough open seas [5] and reactive position control
of quadrotors [6]. Sliding mode control frameworks define the
switching regions as discontinuity surfaces and aim to design
feedback controllers that direct the optimal solutions of system
states to settle around these surfaces. The near-optimal solu-
tions around discontinuity surfaces induce chattering problem,
which is high-frequency switching between various controllers
that designed for different set points originated by neglected
effects of actuator and system dynamics [7].

Projection of this chattering situation into robot navigation
problem can be seen in a seesaw movement of a vehicle
among attractive goal point and different repellent sources
like the obstacles around the vehicle. At this point, derivative

studies of artificial potential fields[8–10] and vector fields
[11,12] for navigation also tend to behave in the same manner
around this instability boundaries. Different approaches like
assigning coefficients for cost functions to stay away from
these regions as in the dynamical window approaches [13,14]
do not guarantee a stabilizing controller and works only the
predefined areas where the parameters are tuned for these spe-
cial cases. Decentralized cooperative control of swarm robots
as in [15] has related approaches but in a different context with
a switched control system. This phenomenon of using existing
control methods with different notation can be seen very often
in the robotics literature. Similarly, optimal control theory
literature dismisses antecedent study of Carathéodory’s [16]
and this leads up to related works on discontinuous dynamics
with Carathéodory’s solutions [17–19] and its variant Filippov
solutions [20]. These studies suggest the equivalent solutions
of Pontrayagin’s minimum principle [21] by inspecting the
vector fields of a specific operating point or neighborhood
of an operating point respectively. Cortés [22] contributes a
comprehensive review paper on discontinuous dynamics sys-
tems with Carathéodory’s and Filippov’s solutions. However,
these approaches take a rather different way by focusing on the
understanding of complex dynamics systems then discussing
the stability or design control laws on discontinuous dynamics.
The solutions of piecewise continuous vector fields are used
in the area of state-dependent switching dynamical systems. In
[23], the hybrid systems with sensor and actuator constraints
are studied with a different notion called quantizers. It is
evident that robotics applications are a perfect match for a
hybrid system both with sensor and actuator constraints.

Quantization term is used to describe the levels or sets
that are separated by discontinuous events like the change of
gear in a vehicle. Quantized sets have their unique continuous
dynamics, which may have similar properties like the shift
change between second and third gears or completely differ-
ent ones like switching between first and rear gears. Using
quantization effect not as an error source to be predicted with
white noise models, but rather as a stabilizer of an unstable
discrete-time system by introducing the usage of quantized
states as an input to state feedback mechanism is based on the
study of Delchamps [24]. This strategy changes the traditional
view of quantization from a simple rounding operator to a
system state to be utilized in control system design process.
The characteristics of quantization effects in hybrid systems
are extensively studied in [23,25]. The proposed study is
influenced by the idea of using the measurement quantization

www.ijacsa.thesai.org 362 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 1, 2018

as an information coding of the real data, which is used directly
by the controller. Also, in [26], quantization intervals are
associated with the stability of the system in an explicit relation
with the systems closed-loop unstable poles. This relation is
exhibited by the minimum number of quantization levels and
the system poles in the right-half plane (RHP). Therefore, it is
essential to determine the minimum information that is needed
for the higher levels of the control system after applying
quantizer.

In this paper, we propose a navigation framework with
input and output quantizers which are used to express sensor
data in grid segmentations and generate reference inputs within
motion planner to achieve asymptotic stability with quantized
LQR(Linear Quadratic Regulator) respectively. A new LQR
system namely qLQR is adapted from the quantizer defini-
tions of [27] to a navigation framework with theoretical and
simulation results. Using quantization on creating occupancy
grids from sensor data and in control system architecture is a
novel approach to robot navigation problem.

The paper organized as follows, first we give the quantiza-
tion concept in control theoretical sense with some illustrations
in Section II. In Section II-A, we introduce the general
framework of input and output quantization for navigation. In
Section II-B, the first quantizer in the framework, the input
quantizer, is explained in detail how to handle path chunks
from path planner with quantization. Following Section (II-C)
is about the second quantizer in the framework, which is the
output quantizer. In this section, we express how a quantizer
is implemented into a control system with motion planner,
which is responsible for generating reference control signals
from the output of input quantizer block. In Section III, we
derive the quantized LQR system for this framework, which
is used in previous sections. In Section III-A, the quantized
control structure is derived in classical control terms. In the
next Section (III-B) we derive stability boundaries of control
signals as the same structure in hybrid systems[23]. We show
the effectiveness of qLQR compared to the traditional LQR
system and qLQR usage in our framework both with real-time
and simulation results.

II. QUANTIZED FEEDBACK CONTROL

The standard method for sampling a continuous error signal
e(t) to a sequence of impulse functions es(t) achieved by a
sampling switch with appropriately chosen sampling time T .
The area of this impulse sequence is the sampling instant,
which is denoted as e(kT ). Through the property of the area of
Dirac-delta impulse function equals to 1 (i.e.,

∫
δ(t) dt = 1),

the sampled error signal es(t) is represented as,

es(t) =

∞∑
k=−∞

e(kT )δ(t− kT ) (1)

To convert this sampling instants to a physical signal, there
should be a holder which is engaged to hold the previous signal
value until the next signal is sampled. Zero-order Holder is the
simple and effective solution, denoted by h0,

h0(kT ) = e(kT ) (2)

This sample and hold mechanism obeys the superposition
rule. Thus, the linearity of the sampled continuous signal is not

affected at this stage. In addition to that, a quantizer, which
can also be interpreted as a nonlinear discontinuous sampler is
added just before the system. The quantization operation is a
mapping operator, that is directed from a Euclidean space <k
to a finite subset of this space Pfin(<k),

q : <k 7→ Pfin(<k) (3)

The operation introduced with a quantization operator q
sets the sampled values to corresponding quantized set values.
In Fig. 1 sampling, hold and quantization operations are illus-
trated together. Here, the quantizer operation for this example
defined as,

q(x) ..=


L1 0 6 h0(kT ) 6 l1 (setA)

L2 l1 6 h0(kT ) 6 l2 (setB)

L3 l2 6 h0(kT ) 6 l3 (setC)

Quantizer operator is arranged to switch between three
different sets A,B and C depending on the value of signal
against intervals l1, l2, l3 and get corresponding set values,
which are L1, L2, L3.

Fig. 1. Sampling, hold and quantization operations on a random error signal.
(a) Discrete sampler (b) Zero order hold operator (c) Quantization operator
applied on continuous signal (d) Quantizer operator applied on hold signal.

The unified framework considers quantization, time delay
and disturbance to handle nonlinearities in system dynamics
even the system is modeled or behaved like a linear system.
Thus, the first step is modeling the additive nonlinear effects in
deterministic error signals (e), such as Gaussian white noise.
The second step is to design a control law k disregarding
the error signals with static feedback. Generalized dynamic
equations for such a robotics system can be written as;

ẋ = f(x, u) (4)
y = h(x) (5)

where, x ∈ <n for system states, u ∈ <m is control
signal, y ∈ <l is the system output, f is the nonlinear
system characteristic function. h is the nonlinear measurement
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function. We aim to design a control law k that asymptotically
stabilizes the given system, u = k(x).

Now suppose that the state feedback x is quantized, hence
the control law becomes

u = k(q(x)) (6)
u = k(x+ e) (7)

here e := q(x) − x is quantization error. The goal is to
reduce the e with time goes to infinity;

G : lim
t→∞

e(t) = 0 (8)

A. General Navigation Framework with Quantized Feedback
Control System

The principal objective of using quantizers is the robustness
of the controllers under measurement and modeling errors.
This purpose is achieved via input to state stability(ISS),
which uses Lyapunov functions and small-gain theorem. The
quantized variable can be any signal like measurement output,
control input or state variable. The quantizer maps these con-
tinuous variables to their quantized conjugates. Next sections
explain that how we implement this quantization operator
to describe grid maps in input quantizer and generate ref-
erence values and control a stabilizable control system with
discontinuous dynamics of steering and throttle subsystems
through output quantizer. The generalized framework is shown
in Fig. 2.

Obstacle maps layer is used for pre-occupation of the
3D sensor data into initial grid layout in raw form or after
some outlier elimination process [28,29]. Traffic planner block
stands for the infrastructural decision logic and constraints like
a temporary stop in traffic lights and in the intersection points
or speed limits in different roads which are also resources of
discontinuity in navigation problem. Input quantizer samples
the input sensors as an input signal to path and motion planner
by taking the static and dynamic obstacles and the current
vehicle states into consideration. The output of the motion
planner gives a maneuverable path, which is formed from grid
cells. Each grid cell is a shaped reference input to the system.
At this point, the second quantizer becomes a part of the
system, which is called as output quantizer. Output quantizer
converts the motion planner outputs like linear and angular
velocities to the discrete levels available. Output quantizer
provides reference inputs to the low-level controllers in the
last layer. These controllers are typical PID controllers with
protections like anti-windup, saturation delimiters.

B. Input Quantizer

There are two stages here that need to be considered
for stabilization of the system under quantization. One of
them is the quantization levels, which are dynamic in the
creation of occupancy grids in Region of Interest(ROI) and
static in vehicle control systems. The second stage is to find
a feedback control law that stabilizes the system. First, we
derive the system model, which is the mathematical model
of Ackermann type autonomous guided vehicle(AGV). The
vehicle kinematics in Fig. 3 is given as a nonlinear function
f , subject to state and control variables(or constraints)

ẋ = f(x, u) (9)

The vehicle state variables are x, y, the locations in x-y
coordinates, θ orientation with linear velocity ν and steering
angle ϕ. Control variables of the vehicle are linear acceleration
a and angular velocity ω. In vector notation:

x =


x
y
θ
ν
ϕ

 , u =

[
a
ω

]

Eventually, the open form of the nonlinear system dynam-
ics given in (9) can be derived as follows:

ẋ =
d

dt


x
y
θ
ν
ϕ

 =


ν cos(θ)
ν sin(θ)
ν
θ tan(ϕ)

a
ω

 (10)

Quantization process on vehicle state variables expressed
as follows:

x← Gx(xc), y ← Gy(yc), z ← Gz(zc)

ψ ← arctan2 (my,mx) , φ← arctan2 (mz,mx) , (11)
θ ← arctan2 (mz,my)

In this assignment, state variables that hold the position
for every axes, get values from the current vehicle position in
corresponding Graph tree that is shaped from path and motion
planners. Roll, pitch, yaw angles of the vehicle get values from
the tangents of the path spline. This assignment visualized in
Fig. 4.

Input planner may also return feedback to the path planner
if the minimum gridding length is exceeded. The mission of
the input quantizer is to divide the region into grid partitions,
which are independent for each axis. The detailed input
quantizer block of the framework is given in Fig. 5.

Fig. 5. Input quantizer and path planning blocks.

Division starts with coarse parent grids. Grids are assigned
to the path (blue tetragons) if segmented path chunks (gen-
erated by using one of RRT planners in [30–33]) are located
in grid regions. Then, the obstacles are initiated to the system
with external sensors (in our case, a Kinect 3D sensor). Some
of the grids are occupied (red tetragons) if there is an obstacle
in grid region. In each step, the grids are become denser
with splitting a coarse grid into a new grid with the half size
(not necessary to be symmetrical in all axes). This division is
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Fig. 2. General framework of the quantized feedback control system.

Fig. 3. Ackermann type steering model of AGV.

repeated till the occupied obstacle grids, and grids associated
to the path chunks are not are not overlapped (Fig. 6). All
grids are symbolized with a graph tree data structure, which
is independent in each axis. If the overlapping still exists to
the minimum grid size allowed (which is determined by the
steering and throttle actuator constraints, vehicle dimensions,
etc.), then a feedback signal is generated to a new route among
the alternative solutions.

The first path is initiated through the internal processes of
the selected path planner algorithm. However, the afterward
process is executed with the cooperation of the input quantizer.
Grid segmentation logic is shown in Fig. 7.

C. Output Quantizer

The output quantizer of the controller takes reshaped
quantized reference inputs from motion planner and generates

Fig. 4. Assignment of the sensor inputs in input quantization block.

outputs with regard to controllers sampling levels.After finding
a non-overlapping grid segmentations through the selected
path, then the grids are used in the motion planner section
to generate velocity and steering angle references. Intuitively,
if the path goes through in a close neighborhood of an obstacle,
then the grids are denser in those areas. Also, the steering angle
has a value between the tangent of grids and the tangent of the
spline. Those references are selected from a suitable set of the
actuator capabilities. After the motion planner step, we obtain
the reference values to be tracked. However, we should also
maintain the stability of the system while sweeping through the
reference values. At this stage, the second quantizer type in the
system, the output quantizer becomes a part of the framework.
Connection between these blocks are illustrated in Fig. 8.
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Fig. 6. Representation of the obstacle grids and path grids with node graphs
in Input Quantizer.

Fig. 8. Motion planner and output quantizer blocks.

In the simplest case, with an Ackerman type vehicle, there
are two control variables ν, ω linear and angular velocities
respectively. If we need a smooth ride, then we need to use the
derivatives ν̇, ω̇. Linear velocity of the vehicle can be assigned
as a fixed value like the many approaches in the literature.
However, in this approach grid size of each axis promises a
throughput that can be used to select the optimal velocity. To
do this, we first define an expected mean value of the velocity

Fig. 7. Flow chart of the grid segmentation logic.

ν̄ in terms of grid structure,

ν̄ =

√
(dy0 + dy+)

2
+ (dx0 + dx+)

2

∆t
(12)

Here, dx0, dy0 are the spatial samplers of the current grid
and dx+, dy+ are the spatial samplers of the next grid that is
predicted in motion controller (Fig. 9).

Quantized value of the expected mean velocity is denoted
as bν̄c. This special floor operator is a direct consequence of
the vehicle throttle levels which is shown with an example
with a gear-shift mechanism in Fig. 10.
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Fig. 9. Visualization of the parameters in expected mean velocity calculation.

Fig. 10. Throttle with a gear-shifting is an example of switched system.

Heading angle of the vehicle is either can be found by using
the tangent of the curvature (i.e., ψ = barctan2 (my,mx)c) or
tangent of sequential grids (i.e., ψ = barctan2

(
dy0+dy

+

dx0+dx+

)
c).

The latter one is definitely a coarse estimation than the former
one. State space of the closed-loop system with these control
inputs can be found as follows:

xk+1 = Axk +Bqk (13)
Q(yk) = Cxk

Here, qk = Q(uk) is quantized output of the output
quantizer to the controller. Output quantizer signal with state
feedback is found as,

uk = rk +Kxk (14)

rk =

[
bν̄cVt

bψ̄cVs

]
(15)

K is gain matrix that gives us the flexibility in controller
design. Special floor functions b cVt

and b cVs
quantize the

reference output from motion planner to the system specific
set levels. Here the optimization criteria is minimizing the

quantized values of the system output(i.e., state variables
where C = I(n)) which is,

minimize
error

yk −Q(yk)

subject to ẋ = f(x, u).
(16)

Starting from this point of view, state space equations can
be written as follows:

xk+1 = Axk + Bqk
= Axk + B (rk + Kxk) (17)
= (A + BK)xk + Brk
= Aclxk + Brk

Here A is a constant valued system matrix and relates the
state changes with previous states. The term B is the control
matrix and has dependency on heading angle ψ. Apparently,
with static quantization levels of the controller denoted by rk
the only alternative that we can control is K gain matrix. By
changing values of the gain matrix, we can determine the
eigenvalues of the closed-loop system. The system which is
shown with linear state space model is asymptotically stable
if all eigenvalues of the A is negative. This condition is
equivalent to the following Lyapunov equation in terms of
Lyapunov stability.

ATP + PA = −Q (18)

Here P is positive definite Hermitian matrix and Q is
positive definite to make left hand side negative definite
equation. The corresponding Lyapunov function is,

V (x) = xT P x (19)

Consider a linear system,

ẋ = Ax+ Bu (20)

where x ∈ Rn, u ∈ Rm. Suppose this system is stabiliz-
able with a gain matrix K and with a feedback control law
u = Kx. State space model of the closed-loop system is now,

ẋ = Ax+ Bu

= Ax+ BKx

= (A + BK)x
..= Ac x (21)

Applying the Lyapunov stability equation in (18) to closed-
loop stabilizable control system under the conditions B 6= 0,
K 6= 0 gives,

AT
cP + PAc = −Q

(A + BK)
T
P + PA + BK = −Q (22)

Parameters λmin, λmax are the minimum and maximum
eigenvalues of the system respectively. These are decisive
parameters of the system boundaries and hold for following
inequality.

λmin (P ) |x|2 ≤ xTPx ≤ λmax (P ) |x|2 (23)
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The feedback law cannot be implemented directly because
of the quantization takes place in our system. Quantizer qµ(.)
is defined for a variable z as,

qµ(z) ..= µqµ

(
z

µ

)
(24)

µ here is a strictly positive scalar value (µ > 0). We can
think µ as a zoom variable as in [23]. Increasing µ yields
coarser quantization, which increases the ROI and at the same
quantization error. Conversely, decreasing µ leads to denser
quantization that decreases the quantization error but limits
the range. The range of quantizer defined as ROI = Rµ and
quantization error with ∆µ. Proof of asymptotic stability holds
for zoom-in/out cases given in Appendix.

The output quantizer can be formed as a state feedback,

u = Kqµ(x) (25)

For a closed-loop system, derivation of the quantized
version of (21) is as follows:

ẋ = Ax+ Bu

= Ax+ BKµqµ

(
x

µ

)
= (A + BK)x+ BKµ

(
qµ

(
x

µ

)
− x

µ

)
(26)

To inspect the behaviour of the system stability, we should
check the trajectories of the system given in (26). Principally,
we should define the overbounding polytope of stability re-
gions of the state space. This ball B1 is associated with the
state ranges which is defined with Rµ before.

B1
..= {x : |x| ≤ Rµ} (27)

Second polytope is defined to specify the lower boundary
of the state space. To define this, first one should use the
Lyapunov stability theorem. Suppose there is a Lyapunov
function V , which has the following gradient,

V̇ (x) ≤ 0, ∀x 6= 0, V̇ (0) = 0 (28)

The general interpretation of the Lyapunov function V
as a generalized energy function which is always loses en-
ergy(except at origin). For this system, Lyapunov function
defined as in (19).

V (x) = x> P x (29)

Substituting closed-loop system in (26) in (28) satisfies,

V̇ (x) = −x> Q x+ 2x>PBKµ

(
qµ

(
x

µ

)
− x

µ

)
≤ −λmin (Q) |x|2 + 2|x|‖PBK‖∆
≤ −|x|λmin (Q) (|x| −Θx∆)

where,

Θx
..=

2‖PBK‖
λmin (Q)

(30)

For a small ε > 0, we can set boundaries for the system
states,

Θx∆ (1 + ε) ≤ |x| ≤ Rµ (31)

Therefore, rate of change of the Lyapunov function in (30)
has a lower limit which is bounded by the lower thresholds
of the state variables. This lower limit constitutes the second
polytope B2,

B2
..= {x : |x| ≤ Θx∆ (1 + ε)} (32)

Ellipsoid for the operating point is constructed as,

R1 (µ) ..=

{
x : x>Px ≤ λmin (P)M2µ2

‖K‖2

}
(33)

Ellipsoids for attraction regions are defined as,

R2 (µ) ..=
{
x : x>Px ≤ λmax (P)Q2∆2 (1 + ε)

2
µ2
}

(34)

These regions are illustrated in Fig. 11

Fig. 11. Boundary polytopes of control variables for Lyapunov stability.
B1 region denotes the state minimum and maximum values(max velocity and
steering angles). R1 is the selected operating or linearization point of vehicle
dynamics. R2 is the attraction(both appear as discontinuity or stability surface)
region. B2 shows the rate of change constraints of the state variables, because
speed and steering angle are dependent variables in terms of stability analysis.

All solutions initialized in region R1(µ) will be entered to
inner region R2(µ) in finite dwell time given by the following
formula in [23]

T ..=
λmin (P)M2 − λmax (P)Q2‖K‖2∆2 (1 + ε)

2

Q2‖K‖∆2ε (1 + ε)λmin (Q)
(35)
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Asymptotic stability proof for a quantized feedback con-
troller is given in [23]. Adaptation of this proofs to our
framework is given in Appendix section.

Output quantizer layer is the most sophisticated part of the
framework in control theoretical way. In Section III, an adapta-
tion of hybrid control systems in [27] quantized LQR controller
is indroduced as a stabilizable controller for the framework,
when there is traditional LQR controller can be found for the
system (for a controllable and stabilizable system). The reason
behind that we use a quantized LQR controller instead of a
traditional LQR controller is to take account of the reference
levels that can be able to follow by the low-level actuators.
Without considering the low-level capability of the system, one
is always to be mistaken on the assumption of a perfect low-
level actuation system, and this causes undesirable results in
real life scenarios. One of the most faced situation is switching
systems, where from its nature, switching between two stable
modes of control operations may cause an unstable behavior.
Conversely, switching between two unstable modes may cause
a stable operation contrary to the instincts.

III. QUANTIZED LQR FOR OUTPUT QUANTIZER

In this section, we derive the control system which is
denoted as K in previous sections for output quantizer in
the framework. First, we explain the idea of stabilization
for traditional Linear Quadratic Regulator(LQR) in discrete
systems and expand it to the new approach of quantized
LQR(q-LQR) structure. Both theoretical results and simulation
results are given in order.

A. Optimal Control for Discrete System

Discrete time system with k sampling steps is defined as
follows,

xk+1 = Axk + Buk (36)

with given initial condition x0. The design objective is to
find an optimal control u∗k so that the performance index J ,
which is designed for the control demands,

J =
1

2
xTNSNxN +

1

2

N−1∑
k

xTkQxk + uTkRuk (37)

can be minimized. Here N is the final time, S, Q and
R are the weight coefficient matrices for the final state, run-
time states and the control inputs. To solve this optimization
problem, first we need to derive a Hamiltonian function Hk

with Lagrange multiplier p,

Hk(xk, pk+1, uk) =
1

2
xTkQxk+

1

2
uTkRuk+pTk+1Axk+pTk+1Buk

(38)

The necessary conditions where the performance index is
to be a minima or maxima (i.e. optimum) are given as follows:

∂Hk

∂u∗k
= 0 = Ru∗k +BT p∗k+1 (39)

∂Hk

∂p∗k
= x∗k+1 = Ax∗k +Bu∗k (40)

∂Hk

∂x∗k
= p∗k = Qx∗k +AT p∗k+1 (41)

Optimal control function for given discrete system can be
found from (39) as,

u∗k = −R−1BT pTk+1 (42)

Substituting the optimal control signal in (42) to (40) gives,

x∗k+1 = Ax∗k −BR−1BT p∗k+1 (43)

Using (41) and (43), we can show the feature states and
the Lagrange multipliers in left hand side,

x∗k+1 = Ax∗k −BR−1BT p∗k+1 (44)
AT p∗k+1 = p∗k −Qx∗k (45)

Conjugated equations (44) and (45) are difficult to solve.
However, there is a special solution for this case,

pk = Skxk (46)

Rearranging (44) with (46) gives,

x∗k+1 =
(
I −BR−1BTSk+1

)−1
Ax∗k (47)

It can be shown that the Sk+1 is positive semi-definite and
thus inverse will always exist. Substituting the pk term in (46)
into (45) brings us,

ATSk+1x
∗
k+1 = (Sk −Q)x∗k (48)

By using (48) with (47),

ATSk+1

(
I −BR−1BTSk+1

)−1
Ax∗k = (Sk −Q)x∗k (49)

If one inspect (49), that can bee seen the equation is
independent from the states i.e.,

ATSk+1

(
I −BR−1BTSk+1

)−1
A = (Sk −Q) (50)

Equation (50) is called as Discrete Riccati Equation. Here,
Sk is referred as Riccati. To find the optimal control, substi-
tuting (46) to (42) gives us,

u∗k = −R−1BTSk+1x
∗
k+1 (51)

with substitution xk+1 term of (47) into (51),

u∗k = −R−1BTSk+1

(
I −BR−1BTSk+1

)−1
Ax∗k

= −
(
R+BTSk+1

)−1
BTSk+1Ax

∗
k

= −Kkx
∗
k (52)

here Kk is the state feedback coefficient matrix for the
optimal controller,

Kk =
(
R+BTSk+1B

)−1
BTSk+1A (53)

Also, the Riccati term can be extracted using (53) and (50),

Sk = Q+ATSk+1 (A−BKk) (54)

Some rule of the thumb information for performance index
are,
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• Increasing the Q, increases the bandwidth.

• Increasing only the diagonals of the Q, increases the
damping ratio.

• Response of the state xj can be made faster by
increasing the diagonal entry qjj in the weight matrix
Q.

B. Quantized Linear Quadratic Regulator as Minimum Energy
Controller

If a LTI system [A,B] is stabilizable, it is also quadrically
stabilizable. Thus, there is a state-feedback control input u that
shapes the states, performs a decreasing Lyapunov function,
which is an indicator of the stabilization. These Lyapunov
functions are called control Lyapunov functions (CLF). A
quadratic CLF is constituted by,

V (x) = xTk Skxk (55)

The gradient of Lyapunov function is denoted as ∆V (x)
and it should always have a negative sign if V (x) is a
continuously decreasing function.

∆V (x) ..= V (x∗k+1)− V (x∗k) < 0 (56)

Now, we convert our problem to find a control set U that
minimizes the given CLF in (55),

U : {ui ∈ R; i ∈ Z}

a quantizer is a function that maps the state set X to the
control set U with one to one correspondence,

f : X 7→ U

where,

X : {xi ∈ R
∣∣f(x) = ui, i ∈ Z}

Substituting the quantizer into (56) and using the discrete
system equation xk+1 = Axk +Buk we have,

∆V (x) = V (Axk +Bf(xk))− V (xk) < 0 (57)

The problem of the quantization is to find the minimum
coarsest control level that stabilizes the system. So, let ρ a
multiplier on the unit control set U . Aim is to find the ρ value
that minimizes the performance index,

f : X 7→ βU, X : {xi ∈ R
∣∣f(x) = βui; i ∈ Z, β ∈ R, β > 0}

(58)

Equation (57) shows there is no loss of generality with the
scaling[26] and hereafter, the β value is assumed to be β = 1
and CLF is a robust CLF for these given fixed control values.
Like the expanded version of normal LQR controllers in (51),
same equation can be written for the quantized LQR controller;

u∗k = −
(
R+BTSk+1B

)−1
BTSk+1Ax

∗
k = Kkx

∗
k (59)

Close loop system transition matrix can be written using
new feedback matrix in (59),

Ac = A+BKk (60)

So, the new CLF gradient ∆V (x) becomes,

∆V (x) = V (xk+1)− V (xk) (61)
= xTAcSAcx− xTSx (62)
= xT (AcSAc − S)x (63)

The middle term (AcSAc − S) corresponds to the Q
term in the classical LQR performance index in (37). since
∆V (x) < 0, a positive Q matrix is constructed as,

Q = S −AcSAc
= S −ATSA− (64)

−
(
R+BTSk+1B

)−1
AT
(
Sk+1BB

TSk+1

)
A

After we form the quantized LQR law, we define the
control inputs with boundaries. Let V (x) = xTk SkXk a CLF
with Sk > 0 and positive semi-definite Riccati matrix. A
quantizer f : X 7→ U, f(x) = u is defined and the control
law is,

U = {±ui : ui+1 = ρui, i ∈ Z} (65)

Control law satisfies an interval, which is the solution of
the ∆V (x) = 0. If we extend (57),

∆V (x) = V (xk+1)− V (xk)

= xTk+1Sk+1xk+1 − xTk Sk+1xk

= xT
(
ATSkA− Sk

)
x+

+ 2xTATSkBuk + uTkB
TSkBuk (66)

u(1) and u(2) are the roots of the Eq. 66 and one can found
the solution as,

u(1),(2) =
BTSkAQ

−1ATSkB

BTSkB
±

√
BTSkAQ−1ATSkB

BTSkB
(67)

These roots are the control boundaries for the quantized
controller. Now, our optimization problem can be expressed
as follows. We are trying to find the coarsest quantizer that
satisfies the control boundaries [u

(1)
k , u

(2)
k ] and decreases the

performance index in every step( i.e. ∀k∆V (xk) < 0). We
define the performance criteria as the minimum energy control
that stabilizes the system.

min
xk+1=Axk+Buk

stable

∞∑
k=0

u2k (68)

Positive semi-define Riccati equation for this system is,

S∗k = ATS∗kA−
(
BTS∗kB + 1

)−1
ATS∗kBB

TS∗kA (69)

besides, (69) also gives the same solution of the following
LQR problem,

min
xk+1=Axk+Buk

stable

∞∑
k=0

u2k = xTRx (70)

where R = S∗k . State feedback gain is also evaluated as,

Klqr =
(
BTRkB

)−1
BTRkA (71)
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IV. RESULTS AND DISCUSSION

First simulation results are aimed to show the superiority of
the quantized LQR (qLQR) to the traditional LQR approach.
In Fig. 12 generated control inputs for the same system in
traditional LQR and qLQR are compared. While the control
inputs nearly have the same values, qLQR control signal has
an additional feature, which is the upper and lower boundary
stability thresholds from (67).

Fig. 12. Comparison between the LQR and qLQR control inputs. Control
signal of the qLQR has additional upper and lower boundaries.

System outputs for the controller inputs in Fig. 12 is
showed in Fig. 13. One can see that the system controlled
with qLQR controller is stabilized faster than the traditional
one.

Fig. 13. Comparison between the LQR and qLQR system outputs. System
controlled with qLQR is stabilized faster than the traditional one.

Red rectangles show the obstacle grids, and blue rectangles

show the path allocations like before. In the beginning, grid
graphs of both dimensions(Gx, Gy) have one root note with
two siblings. Thus, the ROI is separated into two halves,
and very coarse representation occurs for obstacles and the
path which is shown in Fig. 14(a). Using the algorithms that
are given in the proposed paper, dimensions are divided into
different partitions on the existence of obstacles in the path
route locations. This effect can be seen clearly in Fig. 14(b).
While the left half of the obstacle grids remain coarser, the
right half plane grids are denser due to the path route passes
nearby. This procedure proceeds continuously in real-time,
so it is convenient for representing both static and dynamic
objects in the framework. This approach has a disadvantage
when the ROI is selected with large scale with a long path. In
this case, further objects that intersect with the path may affect
the spatial sampling rate along their axes. This drawback can
be solved by using cascade ROI areas or setting the path spline
only in local waypoints. Final results are the given for the
implementation of the qLQR to the given path in the Fig. 14.
Linearized system states are specified as the x position, y
position and the heading angle xk = [xi, yi, φi]. All states are
gradually converged to the reference points. Gradual amplitude
changes in the system states for a small route is given in
Fig. 15. Besides, phase vector representation(position and the
heading angle) of the states is shown in Fig. 16

V. CONCLUSION

In this paper, we proposed a new framework for robot
navigation problem concerning the asymptotical stability of
the system with input and output quantizers. In control the-
ory, hybrid or switched systems literature produce multiple
approaches to solve stability and control under nonlinearity
for many industrial usages, including robotics. However, these
application areas on robotics restricted with only control
designs or optimizations on multi-robot swarm formations.
Using quantization for representing the occupancy grid maps
and control the discontinuous dynamics of robot systems are
novel to this study.

First, we have given theoretical backgrounds for quantiza-
tion as a projection to robot navigation problem. Quantized
control framework is represented in general and in detail as
input and output quantizers. We have explained the controller
used in output quantizer, denoted as qLQR, in detail. Next, we
have derived the upper and lower boundaries for the control
signal that ensures asymptotical stability for the system. The
results are given both in the simulation environment and real-
time experiments including the comparison between traditional
LQR and qLQR for an arbitrary run. In this particular appli-
cation of the framework with LQR derived qLQR quantizers
has limitations likely the same as the limitations in LQR
controllers. Obtaining an analytical solution for the Riccati
equation could be difficult in complex systems. The states
that are used in the state feedback could not be observed
in all situations. Thus, an observer design may have needed
to be implemented to the system. However, unbounded input
nature of traditional LQR methods is eliminated by using the
quantizers.

In further studies, we will show the equivalence of Markov
property with the state transitions between grids and redefine
the structure in the probabilistic framework. Besides, we want
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Fig. 14. Demonstration of the independent sampling rates in real life
example.(a)In the beginning, both visible dimensions divide the ROI into
two halves with two sibling nodes. (b) After algorithm runs, each visible
dimensions are separated into different partitions due to the existence of the
obstacles and intersected path splines.

Fig. 15. System state changes with qLQR controller in vehicle control system.

Fig. 16. Phase portrait of the qLQR controller system for x-y positions of
the vehicle.

to apply different state feedback methods like eigenstructure
assignment to examine the feasibility of the framework.

APPENDIX

Proof for Asymptotic Stability in Quantized Feedback Control
for Zoom-in/out Cases

Theorem V.1. Assume that we have the following inequality.√
λmin (P)

λmax (P)
> 2∆

‖PB‖‖K‖
λmin (Q)

Then there exists a quantized feedback control solution that
makes the system in (26) globally asymptotically stable.

Proof : Zoom-out case: Set u = 0, Let µ(0) = 1 And
increase µ fast enough to dominate the rate of growth of ‖eAt‖.
Then, there will be a time t0 ≥ 0 such that

‖x(t0)‖ ≤

√
λmin (P)

λmax (P)

Mµ(t0)

‖K‖

which implies that x(t0) belongs to ellipsoid R1 (µ(t0)).
Zoom-in case: Let’s pick a ε > 0 for t ≥ t0 that holds,√

λmin (P)M >
√
λmax (P)Qu‖K‖∆ (1 + ε)

where,

Qu ..=
2‖PB‖
λmin (Q)

Let µ(t) = µ(0) for t ∈ [t0, t0 + T ) where T is given
by (35). Then, we can x(t0 + T ) belongs to the ellipsoid
R2 (µ(t0)).
For t ∈ [t0 + T, t0 + 2T ) let µ(t) = Ωµ(t0) where,

Ω ..=

√
λmax (P)Qu‖K‖∆ (1 + ε)√

λmin (P)M
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Here we have µ(t0 + T ) < µ(t0) and R2 (µ(t0)) =
R1 (µ(t0 + T ))
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tems,” Automatica, vol. 42, no. 3, pp. 453–458, Mar.
2006.

[20] A. F. Filippov, “Existence and General Properties of So-
lutions of Discontinuous Systems,” in Differential Equa-
tions with Discontinuous Righthand Sides. Dordrecht:
Springer, 1988, pp. 48–122.

[21] J. M. Blatt and J. D. Gray, “An elementary derivation
of Pontrayagin’s maximum principle of optimal control
theory,” The Journal of the Australian Mathematical
Society. Series B. Applied Mathematics, vol. 20, no. 02,
pp. 142–156, Apr. 1977.

[22] J. Cortes, “Discontinuous dynamical systems,” IEEE
Control Systems Magazine, vol. 28, no. 3, pp. 36–73,
May 2008.

[23] D. Liberzon, Switching in Systems and Control.
Springer, Jul. 2003.

[24] D. F. Delchamps, “Stabilizing a linear system with quan-
tized state feedback,” Automatic Control, IEEE Transac-
tions on, vol. 35, no. 8, pp. 916–924, 1990.

[25] R. Brockett and D. Liberzon, “Quantized feedback sta-
bilization of linear systems,” IEEE Transactions on
Robotics, vol. 45, no. 7, pp. 1279–1289, 2000.

[26] N. Elia and S. K. Mitter, “Stabilization of linear systems
with limited information,” IEEE Transactions on Auto-
matic Control, vol. 46, no. 9, pp. 1384–1400, 2001.

[27] D. Liberzon, “Hybrid feedback stabilization of systems
with quantized signals,” Automatica, vol. 39, no. 9, pp.
1543–1554, 2003.

[28] S.-W. Yang, C.-C. Wang, and C.-H. Chang, “RANSAC
matching: Simultaneous registration and segmentation,”
in IEEE International Conference on Robotics and Au-
tomation (ICRA 2010). IEEE, 2010, pp. 1905–1912.

[29] R. Raguram, J.-M. Frahm, and M. Pollefeys, “A Com-
parative Analysis of RANSAC Techniques Leading to
Adaptive Real-Time Random Sample Consensus,” in

www.ijacsa.thesai.org 373 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 1, 2018

Computer Vision – ECCV 2008. Berlin, Heidelberg:
Springer, Berlin, Heidelberg, Oct. 2008, pp. 500–513.

[30] J. J. Kuffner and S. M. LaValle, “RRT-connect: An
efficient approach to single-query path planning,” 2000
ICRA. IEEE International Conference on Robotics and
Automation, vol. 2, pp. 995–1001 vol.2, 2000.

[31] N. Mukai and N. Ishii, “R-Tree Based Path Repre-
sentation for Vehicle Routing Problem,” in 2009 21st
IEEE International Conference on Tools with Artificial

Intelligence (ICTAI). IEEE, 2009, pp. 758–761.
[32] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and

S. Teller, “Anytime Motion Planning using the RRT*,”
in 2011 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2011, pp. 1478–1483.

[33] M. Otte and E. Frazzoli, “RRTX: Asymptotically opti-
mal single-query sampling-based motion planning with
quick replanning,” The International Journal of Robotics
Research, vol. 35, no. 7, pp. 797–822, 2015.

www.ijacsa.thesai.org 374 | P a g e


