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AbstractðRecently, location based services (LBSs) have 

become increasingly popular due to advances in mobile devices 

and their positioning capabilities. In an LBS, the user sends a 

range of queries regarding his k-nearest neighbors (kNNs) that 

have common points of interests (POIs) based on his real 

geographic location. During the query sending, processing, and 

responding phases, private information may be collected by an 

attacker, either by tracking the real locations or by analyzing the 

sent queries. This compromises the privacy of the user and risks 

his/her safety in certain cases. Thus, the objective of this paper is 

to ensure comprehensive privacy protection, while also 

guaranteeing the efficiency of kNN query processing. Therefore, 

we propose an agent-based system for  dealing with these issues. 

The system is managed by three software agents (ἻἭἴἭἫἼἷἺἎἘ, 

ἮἺἩἯἵἭἶἼἷἺἝ, and ἸἺἭἬἱἫἼἷἺ). The ἻἭἴἭἫἼἷἺἎἘ agent executes a 

Wise Dummy Selection Location (WDSL) algorithm to ensure 

the location privacy. The mission of the ἻἭἴἭἫἼἷἺἎἘ agent is 

integrated with the mission of the ἮἺἩἯἵἭἶἼἷἺἝ agent, which is 

to ensure the query privacy based on Left-Right Fragmentation 

(LRF) algorithm. To guarantee the efficiency of kNN processing, 

the ἸἺἭἬἱἫἼἷἺ agent executes a prediction phase depending on a 

Cell Based Indexing (CBI) technique. Compared to similar 

privacy protection approaches, the proposed WDSL and LRF 

approaches showed higher resistance against location 

homogeneity attacks and query sampling attacks. In addition, the 

proposed CBI indexing technique obtains more accurate answers 

to kNN queries than the previous indexing techniques. 

KeywordsðAgents; attacks; dummies; fragmentation; 

indexing; privacy protection; resistance 

I. INTRODUCTION 

Location Based Services (LBSs) are services that are 
customized according to the location of the user. In recent 
years, LBSs have received substantial attention, especially 
since GPS-enabled devices (such as smart phones) became 
popular. One of the most important advantages of LBS-enabled 
applications is their ability to search for the nearest Point of 
Interests (POIs). Searching for the nearest POIs requires 
construction of a query on the LBS user side. Table I 
summarizes the units of the constructed query. 

TABLE I. GENERAL FORM OF THE LBS QUERY 

Symbol <X, Y> POI R ID 

Description 
Coordinates of 

the real location 

Queried 

interests 

Queried 

range 

The identity 

of the LBS 

user 

 
Fig. 1. Classical scenario of using LBS applications. 

As a general example of LBS usage, Fig. 1 illustrates the 
classical scenario of using LBS-enabled applications based on 
the query units that are listed in Table I. 

In Fig. 1, the LBS user constructs a query regarding a 
desired POI and sends it to the LBS server. Then, the LBS 
server processes the query and sends back the results. 
However, this classical scenario involves risk since the LBS 
user is forced to construct the query based on his/her real 
geographic location. This risk is directly related to the privacy 
issue of the LBS user. The reason behind this risk is that an 
attacker can track the real location of the LBS user [1] or 
intercept the sent query for analysis purposes [2]. In both cases, 
the attacker can collect sensitive or personal information about 
the LBS user, such as customs, habits, religion, or politic 
leanings. Then, this personal information can be misused to 
conduct attacks in real life, such as mugging, extortion or 
stealing. According to [3], these two methods of personal data 
collection can lead to branches of two kinds of privacy: 
location privacy and query privacy. Therefore, if we want to 
achieve full privacy protection, we need to protect these two 
kinds of privacy. However, achieving comprehensive privacy 
protection requires protecting the query privacy (in addition to 
the location privacy) at the sending, processing, and 
responding levels. Comprehensive LBS privacy protection has 
not been addressed previously to the best of our knowledge. 

The queried POI, are either static POIs (such as the nearest 
hotels, hospitals, or sports clubs in a defined range) or moving 
POIs (such as the nearest taxis that will enter a defined range). 
When an LBS user searches for a moving POI, it is referred to 
as a range query or k-nearest neighbor (kNN) query [4]-[7]. In 
manipulating kNN queries, two major issues arise: The first is 
related to ensuring the privacy protection of the kNN queries, 
which in turn ensures the privacy of the LBS user. The second 
is related to guaranteeing the accuracy of the retrieved results 
(i.e., the retrieved locations of the queried moving POI) [8], 
[9]. Fig. 2 illustrates the uncertainty problem, which is 
considered a real-time problem. 
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Fig. 2. Real-time uncertainty problem for k-NN queries. 

According to Fig. 2, the first Moving Object (MO), as a 
query issuer, searches for a second MO. Because of the 
continuous updating of the locations of both the 1st MO and 
the 2nd MO in the real-time temporal and spatial domains, the 
query issuer will receive an unmatched value that is related to 
the exact location of the queried MO. The correct response to 
the query is (location + ȹ), which must be delivered to the 
query issuer location (location + ị). 

Motivation.  Many efforts have been proposed to protect 
the privacy of continuous kNN queries and overcome the real-
time uncertainty problem. One of the most important proposed 
approaches is the use of dummies. In the context of LBS 
privacy protection, a dummy is a query that is constructed 
based on a fabricated location or fabricated properties. If the 
LBS user surrounds his/her real location by some fabricated (or 
false) locations, location privacy protection will be achieved 
[10]-[12]. If the LBS user tampers with the properties of the 
query itself (changing the queried interest or POI, for 
example), query privacy protection will be asserted [13]. In 
both cases, the current query (real query) is mixed with a 
number of false queries (dummies) so that the attacker cannot 
recognize the real query among the dummies. This process 
(i.e., mixing process) aims at achieving k-anonymity in which 
the attacker cannot identify the real query among k-1 dummies. 
However, achieving full privacy protection (i.e., location 
privacy and query privacy) by using dummies has not been 
addressed. Moreover, generating weak dummies allows an 
attacker to filter these dummies, thereby determining the 
accurate location of the LBS user. Beyond generating weak 
dummies, some inference attacks, such as location 
homogeneity attack [14] (which targets location privacy) and 
query analysis attack, such as query sampling attack [15] 
(which targets query privacy), can be applied by an attacker to 
circumvent the privacy protection methods. In both inference 
attacks and query analysis attacks, the attacker does not need to 
know the accurate location of the LBS user to infer the 
personal data. This, in turn, means that achieving robust 
privacy protection is a pressing need. Rregarding the 
manipulation of kNN queries, many techniques have been 
proposed, such as R*-tree [16], D-tree [17], and Grid-partition 
[18]. However, these techniques rely on Euclidean space to 
manipulate the kNN queries, whereas, in many real-life 
applications, the objects' movements are constrained in a road 
network. Moreover, these techniques cannot be applied in road 
networks because the network distance (i.e., the shortest path 
distance) cannot be computed using the boundary of the 

minimum bounding rectangle (MBR) or grid cell. This, in turn, 
leads to a poor manipulation of the real-time uncertainty 
problem for kNN queries. Therefore, an efficient technique for 
manipulating kNN queries is a top requirement. 

In this paper, based on agent software technology, we 
propose an agent-based system architecture for privacy 
protection of LBS users. Three main missions are assigned to 
three software agents, which are integrated with one another to 
ensure comprehensive privacy protection of kNN queries and 
overcome the real-time uncertainty problem. The main 
contributions of this work are as follows: 

¶ To protect the location privacy of LBS users, we 
introduce a novel Wise Dummy Selection Location 
(WSDL) algorithm. The objective of our WSDL 
algorithm is to select strong dummy locations that 
cannot be distinguished from the real location of the 
LBS user. The power of the proposed WSDL algorithm 
comes from taking into consideration two main factors: 
1) selecting the dummy locations based on the historical 
query probability of each cell; and 2) selecting dummy 
locations that are far away from one another based on 
the products of the distances among the selected 
dummies. This, in turn, gives the WSDL algorithm 
strong resistance against location homogeneity attack. 

¶ To protect the query privacy, we introduce a novel Left-
Right Fragmentation (LRF)-based algorithm. Our LRF-
based algorithm extracts the sensitive units of the 
constructed query, encrypts them, and randomizes them 
to ensure resistance to query sampling attacks. 

¶ To enhance the real-time uncertainty problem, we 
introduce a novel indexing technique called Cell-Based 
Indexing (CBI). Our indexing technique performs 
efficient motion modeling with a prediction phase to 
ensure that the exact locations of the queried MOs are 
retrieved. 

The rest of this paper is structured as follows: Section II 
discusses related work. The threat model is provided in 
Section III . Our proposed agent-based architecture is provided 
in Section IV. Section V discusses the security analysis. In 
Section VI, we present the metrics that are used. Section VII 
presents our experimental results and the conducted 
evaluations. Finally, we conclude the paper in Section VII I. 

II. RELATED WORK 

This section reviews some of the related work on privacy 
protection approaches in the LBS research field. In addition, 
we discuss some of the related work on techniques that are 
used to manipulate kNN queries. 

A. LBS Privacy Protection Approaches 

Many efforts have been made to classify the privacy 
protection approaches in the domain of LBS, such as [3], [19], 
[20]. There are two major categories of LBS privacy protection 
approaches: server-based approaches and user-based 
approaches. In this subsection, we review some existing 
approaches from the user-based category that aim at protecting 
location privacy or query privacy. 
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The authors of work [10] proposed a dummy data array 
(DDA) algorithm for generating dummy locations to protect 
the location privacy of LBS users. For a given region, which is  
divided into a grid of cells, the key idea of the DDA algorithm 
is to calculate both the vertices and the edges of each cell in the 
grid. Then, the DDA algorithm randomly selects some of the 
cells as dummy locations. To select strong dummy locations 
and achieve k-anonymity, the DDA algorithm selects k cells of 
equal area. Similarly, [11] uses dummies to protect the location 
privacy of LBS users, but with a different dummy generation 
method. The authors proposed two algorithms. The first is 
called CirDummy, which generates dummies based on a virtual 
circle that contains the real location of the LBS user. The 
second is called GridDummy, which generates dummies based 
on a virtual grid that covers the real location of the LBS user. 
In [12], a dummy generation method called the Destination 
Exchange (Dest-Ex) method was proposed. In this method, 
historical motion trajectories are used to generate the dummies. 
To ensure that the generated dummies are strong, the Dest-Ex 
method chooses the historical trajectories that intersect with the 
current trajectory of the LBS user. Therefore, the attacker is 
confused when trying to determine the correct LBS user, who 
has several motion trajectories with different destinations. 
However, the main objective of all of these previous 
approaches was location privacy protection. To achieve query 
privacy protection, the authors of [13] proposed an approach 
called DUMMY-Q. The DUMMY -Q approach depends on the 
strategy of generating dummies, but the strategy is applied to 
the query, rather than the location. Therefore, dummy queries 
of different attributes from the same location are generated to 
hide the real query. To make the generated dummies stronger, 
two aspects are taken into consideration: 1) the query context; 
and 2) the motion model. 

Encryption techniques have been employed to protect the 
privacy of LBS users. The authors of [21] proposed the idea of 
using buddies to protect both location privacy and query 
privacy against the LBS server (a malicious party). This 
approach depends on notifying the friends (buddies) of an LBS 
user who are located in the vicinity, thereby avoiding the 
revelation of any personal data to the LBS server. This 
approach assumes that each user shares a secret with each of 
his buddies and uses symmetric encryption techniques. 
Another approach was proposed based on using Private 
Information Retrieval (PIR) [22] to achieve full privacy 
protection. The key idea of the PIR technique depends on the 
quadratic residuosity assumption, which states that it is 
computationally hard to find the quadratic residues in modulo 
arithmetic of a large composite number for the product of two 
large primes. Therefore, the LBS server can process and 
answer the query without knowing any sensitive information 
about the query. 

B. Techniques of kNN Query Manipulation 

The Global Positioning System (GPS), which is integrated 
with the mobile devices of the LBS users, allows the users to 
obtain their locations from the satellite and send them to the 
LBS server. During movement, the locations of the LBS users 
are continuously updated on the LBS server side. This results 
in inaccurate retrieved locations when the LBS user asks for 
the kNN MOs as POIs. Therefore, the final goal of any 

techniques that is used for manipulating the kNN queries is to 
retrieve approximate locations of the MOs as responses to the 
kNN queries. 

Many techniques have been proposed for manipulating the 
kNN queries. In [16], a traditional method called P*-tree was 
proposed for supporting range queries. The P*-tree technique 
efficiently manipulates range queries with static POIs, but not 
moving POIs. Another technique was provided in [17], which 
is called D-tree. The key idea of D-tree is to index the data 
regions based on the divisions among them so that a binary D-
tree index is constructed. For a given kNN query, two main 
phases are used to find and retrieve the queried POIs: region 
partitioning and location-dependency query processing based 
on paging the D-tree index. The authors of [18] developed the 
D-tree technique, proposing a Grid-partitioning technique. The 
authors used the Voronoi Diagram to partition the service area 
into disjoint Voronoi cells (VCs), with each corresponding to 
one object. An object a, is guaranteed to be the nearest 
neighbor to any client that is located inside the same VC. In 
[23], a new kNN query processing technique was proposed by 
Jang et al. based on the density of the POIs. A PIR protocol 
was used to search for the POIs within a clocking region, so 
that the clocking region was expanded to overlap other regions 
based on the k-d overlap index. However, in all the previous 
techniques, the index is constructed for large regions, thereby 
ignoring the cells that are included in the divided regions. 

III.  THREAT MODEL 

In this section, we define the threat model, which specifics 
the attacker and his/her objective. In addition, we determine the 
ways that are used by the attacker to collect personal 
information about the victim, in addition to inference and 
analysis attacks. 

A. Attacker and His/Her Objective 

The objective of the attacker is to obtain privacy 
information about a particular LBS user, including location, 
POI and queried range. To achieve his/her objective, the 
attacker can track the location of the LBS user or analyze the 
sent query, as shown in Fig. 3 below. 

In the context of the threat model, we define two terms: 
passive attack and active attack. In a passive attack, any LBS 
user can act as an attacker. In an active attack, the LBS server 
(or its maintainer) is an attacker and all the information (related 
to the trajectories of the LBS user's motion) that is stored in the 
LBS server is accessible. Since an active attack is stronger than 
a passive attack, we only address active attack. 

 
Fig. 3. Attacking the privacy of LBS users. 
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B. Inference Attacks and Query Analysis Attacks 

The LBS server (an attacker) can apply inference attacks, 
such as location homogeneity attack, and query analysis 
attacks, such as query sampling attack. 

In a location homogeneity attack, the attacker analyzes the 
locations of all LBS users. If their positions are almost 
identical, then the position information of each member is 
revealed. For instance, if the users are located in a place that 
represents a landmark such as a hospital, the attacker can infer 
that those users (including the victim) have problems related to 
their health, without needing to accurately identify their 
locations. Fig. 4 illustrates a location homogeneity attack. 

 
Fig. 4. Location homogeneity attack: (H) hospital or medical area, (S) sprot 

cub or athletic area, (R) restaurant or rest area. 

In a query sampling attack, the attacker employs the uneven 
location distribution of the LBS users for his own malicious 
purposes. This attack targets isolated users in sparse regions, as 
illustrated in Fig. 5. Therefore, it relies on the traffic statistics 
of the environment where the users are located. In detail, the 
attacker tries to calculate a probability distribution function of 
the user location over a given area. If the distribution is not 
uniform, then the attacker can determine the areas where the 
user is located with a high probability. Once the location of the 
victim is determined, the attacker focuses on analyzing the sent 
queries. 

 
Fig. 5. Query sampling attack. 

IV. OUR PROPOSED PRIVACY PROTECTION ARCHITECTURE 

In this section, we provide our agent-based privacy 
protection architecture, followed by the roles of the agents. The 
details of the architecture are represented by a sequence 
diagram. 

The framework of the proposed architecture consists of an 
untrusted LBS server (a malicious party) and a group of mobile 
devices, which are connected via a network. The system is 
managed by three agents (ίὩὰὩὧὸέὶ, ὪὶὥὫάὩὲὸέὶ, and 

ὴὶὩὨὭὧὸέὶ), as shown in Fig. 6. 

Table II  lists the agents and identifies the main mission of 
each one, its type, and where it is installed. 

 
Fig. 6. Our agent-based architecture. 

TABLE II.  AGENTS 

Agent Name Type  Main M ission Location 

3ÅÌÅÃÔÏÒ Stationary 
Location privacy 

protection 

Each mobile 

device 

&ÒÁÇÍÅÎÔÏÒ Mobile 
Query privacy 

protection 

Each mobile 

device 

0ÒÅÄÉÃÔÏÒ Stationary  
Uncertainty real-time 

problem solution 
LBS server 

A. Roles of the Agents 

╢▄■▄╬◄▫►╓╛: This stationary agent executes the Wise 
Dummy Selection Location (WSDL) approach. It targets the 
location privacy protection against the untrusted LBS server, 
which can apply location homogeneity inference attack, as 
described below. 

1) Wise Dummy Selection Location (WDSL) approach 
The final objective of the WSDL approach is to generate 

strong dummy locations to protect the location privacy of the 
LBS user. In the dummy generation process, suitable locations 
are selected that cannot be distinguished from the real location 
of the LBS user. Consider a region ' divided into a grid of 
cells. Each cell has a probability of being queried, which is 
based on past queries. This is referred to as the query 
probability. For a given LBS user in a cell within ', randomly 
selecting cells to be the dummy locations, as proposed in the 
DDA approach [10], for an example, it is a poor strategy. In 
contrast, selecting the cells (to be a dummy locations) that have 
the same query probabilities as the cell where the LBS user is 
located is an efficient solution. Fig. 7 illustrates this solution, 
where ' is divided according to the coordinates 8ȟ9. 

 
Fig. 7. Dummy locations selection in the WSDL approach. 
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In Fig. 7, if the LBS user who is located in the cell that is 
identified by row number five and column number three (i.e., 
the coordinates C[5, 3]) wants to protect his/her location 
privacy by achieving 4-anonymity level (i.e., k=4), he/she can 
select three of the cells that are marked by the ã symbol. Since 
the query probability of any of the three selected cells equals 
the query probability of the original cell, the attacker cannot 
determine the real location of the LBS user among the k-1 
dummy locations. 

In a formal way, for a given region ' that is divided into 
ὲ ὲ cells, let ÑÐ refers to the query probability of a cell. 

Then, В ÑÐ ρ. Each of the Ë locations (i.e., cells) that are 
contained in a query, which include one real location and 
Ë ρ dummies, has a conditional probability of being the 

real location. Let Ðǲ É ρȟςȟȣȟË denote the probability that 

the É location is the real location. Then, Ðǲ  
В

 . 

The entropy % of identifying the real location out of the 
dummy set is defined as: 

Ὁ   В ὴǲ  ὰέὫ  ὴǲ             (1) 

The first factor that is taken into consideration is the 
maximization of the entropy value in the dummy selection 
process. 

-ÁØ В Ðǲ  ÌÏÇ  Ðǲ              (2) 

2) Danger of location homogeneity inference attack 
If the LBS user selects cells C[5, 1], C[4, 2], and C[6, 3], as 

shown in Fig. 8, some personal information can be inferred by 
the attacker without the need to determine the real location of 
the LBS user. This occurs because the three selected dummy 
locations are close to one another. If these selected dummy 
locations belong to a medical area (which includes hospitals as 
a POIs, for example), then the attacker can infer that the LBS 
user has a health problem. Therefore, it is better to select the 
following three cells, for example, C[3, n], C[n-1, n-1], and 
C[1, 6]. 

To defend against location homogeneity attacks, a second 
factor is taken into consideration in the process of dummy 
location selection: ñthe selected dummy locations must be far 
away from one anotherò. In this context, the question arises as 
to how to determine the furthest dummy location from the real 
location of the LBS user and spreads away from the other 
dummy locations. This can be accomplished by calculating the 
distance between the real location of the LBS user and each 
dummy location based on the product distance rather than the 
normal sum distance. Fig. 8 illustrates the strategy of wise 
dummy location selection. 

 
Fig. 8. Wise dummy location selection. 

In Fig. 8, 2  represents the real location of the LBS user, 
and $ρȟ$ςȟ and $σ  represent the dummy locations, 
where the query probability of each dummy location equals the 
query probability of the real location. Let the distance between 
two points 04 and 04 be given by  В  ÄÉÓ04ȟ04. $ρ  is 

the first dummy location that can be directly selected since it is 
the furthest location from 2 . If we want to achieve σ
ÁÎÏÎÙÍÉÔÙ ÌÅÖÅÌ, we can choose $ς  or $σ . If we 
consider the sums of distances between pairs of dummy 
locations, we can choose either of them $ς  or $σ  
because ( ȿ$ς2 ȿ ȿ$ς$ρȿ= ( ȿ$σ2 ȿ
ȿ$σ$ρȿ). However, to achieve higher resistance $ς  is 
preferred over $σ since it spreads dummy locations farther. 
Therefore, instead of using the sum of distances between pairs 
of dummy locations, we can use their product. Note 
that ȿ$ς2 ȿ ȿ$ς$ρȿ > ( ȿ$σ 2 ȿ
ȿ$σ $ρȿ. This leads to the choice of $ς  as the second 
dummy location. 

Mathematically, the two previous factors form two 
objectives in a Multi-Objective Optimization Problem (MOP). 
Let $, $ρȟ$ςȟ$σȟȣȟ$Ë  denote the set of real 
and dummy locations. The MOP is defined as: 

&$

          ÁÒÇ ÍÁØ В Ðǲ  ÌÏÇ  Ðǲ ȟБ ÄÉÓ$Éȟ$Ê     (3) 

Where, &$  represents the final selected dummy 
locations. 

The first objective of the MOP was previously optimized in 
formula 2 because, from all the given dummy locations (i.e., all 
cells that form the region '), we select a set of dummy 
locations based on similarity of query probability. This set is 
called the set of candidate dummy locations #$ , which 
yields the maximum entropy value. Out of the candidate 
dummy locations, we optimize the second objective of the 
MOP as follows, which determines the final selected dummy 
locations: 

&$ ÁÒÇ ÍÁØ Б ÄÉÓ$Éȟ$Ê            (4) 

In steps, we first sort the cells according to their query 
probabilities. Second, we select τË cells from outside the 
queried range 2 of the real query (Ë cells from each direction 
around the real location of the LBS user 2 ). All  τË selected 
cells have the same query probability as the cell of the real 
location of the LBS user. The τË selected cells form the 
candidate set of dummy locations. Third, out of the candidate 
set, we randomly select the furthest Ë ρ cells as the actual 
and final dummy locations. Algorithm 1 provides details of the 
WSDL approach. 

Algorithm 1:  Wise Dummy Selection Location (WDSL)  

Input:  ήὴ (query probability of each cell), Ὑ  (the real 

location of the LBS user), Ὧ (anonymity level). 

Output:  ὊὈ . 

1: sort cells based on their query probabilities; 

2:  for  (direction=1; direction <4; direction ++) 

3:            ὅὈ ὊὈ ;ɲ 

4:             select Ë cells from each direction around Ὑ ; 

5:             Count N πȠ 
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6:            while ÃÏÕÎÔ ÃÁÎÄÉÄÁÔÅ Ë  
7:                    if  ήὴὅ ήὴὙ  then 

8:                               ὅὈ ᴺὅὈ  ᷾ ὅ;     

9:                              CountN count + 1;  

10:                 end if 

11:          end while  

12:          for  (Ὥ ρȠὭ ὰὩὲὫὸὬ ὅὈ ȠὭ  

13:              Dis-Array-core[i]  Ncalculate ὨὭίὸὥὲὧὩ ὅȟὙ ; 

14:          core candidate N max (Dis-Array-core);     

15:         for  (Ὦ ρȠὮ ὰὩὲὫὸὬ ὅὈ ȠὮ  

16:                ὨὭίὨὭίὧέὶὩ ὧὥὲὨὭὨὥὸὩȟὧὥὲὨὭὨὥὸὩȠ 

17:                ὨὭίὨὭίὙ ȟὧὥὲὨὭὨὥὸὩȠ 

18:                Dis-Array[j]   NὨὭίὨὭί; 
19:          end for 

20:          Selected-Dummies [direction]  N   

21:                       {Top (Sort (Dis-Array) , )  ᷾ core candidate}; 

22: end for  

23: ὊὈ  Nẕ 3ÅÌÅÃÔÅÄ$ÕÍÍÉÅÓ ÄÉÒÅÃÔÉÏÎ; 

24: output ὊὈ             

After generating the final Ë ρ  dummy locations, the 
ίὩὰὩὧὸέὶ agent delivers them (as a set of coordinates) to the 
ὪὶὥὫάὩὲὸέὶ agent to start its mission, as described below. 

╕►╪▌□▄▪◄▫►╠: The final goal of this mobile agent is to 

protect the privacy of the issued query during the sending and 
processing phases. To complete this mission, the 
ὪὶὥὫάὩὲὸέὶ agent constructs Ë queries (Ë ρ queries based 

on the Ë ρ dummy locations that are received from the 
ίὩὰὩὧὸέὶ agents, plus the query based on the real location of 
the LBS user). Then, it executes a fragmentation approach 
called Left-Right-Fragmentation (LRF) to protect the privacy 
of each constructed query. After that, it migrates to the LBS 
server, carrying the protected queries, which are manipulated 
and answered there with the help the ὴὶὩὨὭὧὸέὶ agent. After 
the queries are answered on the LBS server side, the 
ὪὶὥὫάὩὲὸέὶ migrates back to the home machine (i.e., the 

mobile device of the LBS user) to deliver the results. 

3) Left-Right-Fragmentation (LRF) approach 

The ὪὶὥὫάὩὲὸέὶ agent receives the set of actual dummy 

locations that were generated by the ίὩὰὩὧὸέὶ agent. Each 
dummy location has its own coordinates 8ȟ9. Let &$  
denote the set of the coordinates of the generated dummy 
locations, where: 

&$ ộ8ȟ9Ớȟộ8ȟ9Ớȟộ8ȟ9Ớȟȣȟộ8 ȟ9 Ớ (5) 

For each coordinate ộ8ȟ9Ớɴ &$ ÉȟÊ ρȟςȟȣȟË
ρ, a query is built according to the format that is specified in 
Table I, which consists of the following units: coordinates of 
the LBS user ộ8ȟ9Ớ, queried interest 0/), queried range 2, and 
identity of the LBS user )$. Each constructed query is referred 
to as an original query. 

The key idea of the fragmentation technique is to extract 
the sensitive data from the query, encrypt them, and then 
randomize them, as shown in Fig. 9. 

 
Fig. 9. Fragmentation technique. 

In the context of fragmentation, we address the sensitive 
units of the query and the sensitive associations among the 
units because the attacker focuses on either one unit or the 
associations among two or more units to infer personal 
information. For instance, if the LBS user always queries the 
nearest hospitals as POIs, then the attacker can infer that the 
LBS user has a health problem. Meanwhile, if the attacker 
associates the ID of the LBS user with the queried POIs, then 
he/she can accurately identify the LBS user who has a health 
problem. Therefore, protecting the sensitive association is more 
important than protecting the sensitive units. 

In this paper, the sensitive units of a given query are 
(ộ8ȟ9Ớ, 0/), and 2). For the LBS user )$, it is not considered a 
sensitive unit because the attacker cannot gain any private 
information from the )$ unit alone. Moreover, even if the 
attacker associates the )$ unit with any of the other units, 
he/she will fail to gather private information due to the 
encryption and randomization processes. Thus, if the attacker 
applies a query analysis attack, he/she will obtain, for instance, 
the following information: "the LBS user whose )$ is (Bob-1) 
issues a query from an unknown location that asks for 
nameless 0/)Ó that are located in non-existent range 2". This 
statement does not reveal any private information. 

In detail, the sensitive units are protected by public key 
infrastructure (PKI) and the sensitive associations are protected 
by a randomization phase. This forms our proposed Left-Right-
Fragmentation (LRF) algorithm. 

Formally, for a given set of queries 
1 ÑȟÑȟȣȟÑȟ×ÈÅÒÅ É ρȟςȟȣȟË ρ , encoding a 
query Ñ  consists of splitting it into two main parts: the left 

part 0  and the right part 0 . Both parts are necessary for 

reconstructing the original query Ñ. 

Ñ 0  0                 (6) 

In the first step of the randomization phase, we place the ID 
unit in the middle since it is not considered a sensitive data, as 
shown in Fig. 10. 

 
Fig. 10. First step in the randomization phase of the LRF-based algorithm. 
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Fig. 11. Marking step in the randomization phase of the LRF-based 

algorithm. 

The left part of the query includes one unit, which consists 
of two sub-units (X, Y). As for the right part query, it includes 
two units: (POI and R). In the second step of the randomization 
phase, we mark each unit or sub-unit by a (letter-number) pair 
that indicates the correct order in the original query, as shown 
in Fig. 11. 

In Fig. 11, for instance, R-1 indicates that the encrypted 
unit (POI) must be placed directly to the right of the ID unit. 

Since we have five different sites for ordering the units of 
the original query, there are ρ ς σ τ υ ρς probable 
sites) for randomizing the original units. Thus, the 
ὪὶὥὫάὩὲὸέὶagent can periodically change the randomization 

strategy, which prevents the attacker from discovering the 
correct order of the original query's units. Fig. 12 illustrates one 
possible choice and the reconstruction process. 

 
Fig. 12. Left-Right-Fragmentation (LRF) algorithm and reconstruction. 

Reconstructing the original query is necessary for the 
stationary ÐÒÅÄÉÃÔÏÒ agent to perform its mission (i.e., 
manipulating and answering the queries). The reconstruction 
process is carried out in four steps: 

1) Putting the ID unit in the middle. 

2) Decrypting the units of the query based on the shared 

encryption key between the ὪὶὥὫάὩὲὸέὶ agent and the 

ὴὶὩὨὭὧὸέὶ agent. 

3) Performing the marking step. 

4) Moving the ID unit to the end. 

Algorithm 2 illustrates the details of the left-right 
fragmentation approach. 

Algorithm 2:  Left-Right Fragmentation (LRF) 

Input:  kNN  ộὢȟὣỚȟὖὕὍȟὙȟὍὈ query.  

Output:  protected kNN  ộὢȟὣỚȟὖὕὍȟὙȟὍὈ query. 

1: units{} = extract ὢȟὣȟὖὕὍȟὙ ;obtaining the sensitive data. 

2: units{} = encrypt (units )using 3DES algorithm; 

3: new-units{}=null;  

// randomization 

4: count =0; rand-array [5] ={-1}; 

5: while (count <5) 

6:             random-value = rand(4); 

7:             if  (! contains (rand-array, random-value)) 

8:                        rand-array[count] = random-value; 

9:                          Count ++; 

10:           end if 

11: end while 

12: for (i=0; i<5;i++) 

13:    new-units {i}=  units{ rand-array[i] }; 

14: Return new-units; 

By the LRF-based algorithm, all queries that are 
constructed on the LBS user side are protected before being 
sent to the LBS server. Then, all the queries are packaged and 
carried together by the ὪὶὥὫάὩὲὸέὶ agent to the LBS server, 

which in turn means that the queries are protected during the 
sending phase. Because the LRF-based algorithm mixes the 
real query with Ë ρ dummy queries (which are constructed 
based on the Ë ρ dummy locations and selected by the 
ίὩὰὩὧὸέὶ agent) and the mission of manipulating the queries 
is assigned to the ὴὶὩὨὭὧὸέὶ agent, the queries are protected 
during the processing phase. The task of protecting the queries 
during the responding phase is included in the role of the 
ὴὶὩὨὭὧὸέὶ agent. 

╟►▄▀░╬◄▫►ȡ This stationary agent receives the Ë queries 
that were constructed and carried by the ὪὶὥὫάὩὲὸέὶ mobile 

agent. Then, it manipulates each query individually. After 
answering the received queries, the results are delivered to the  
ὪὶὥὫάὩὲὸέὶ mobile agent, which, in turn, migrates back to 

the mobile device of the LBS user (i.e., the home machine). 
The process of manipulation requires the reconstruction of the 
Ë protected queries. This is performed according to the four 
steps that are listed above, where the same shared encryption 
key as was used to encrypt the units of the queries is used for 
decryption. After reconstructing the queries, the ὴὶὩὨὭὧὸέὶ 
agent manipulates each query according to an indexing 
technique, as described below. 

4) Cell-Based Indexing (CBI) technique 
In the kNN queries, the LBS user asks for the nearest Ë 

moving POIs that are located within a specified range 2 of the 
LBS user. Because of the continuous updatings of the locations 
of the moving POIs, the locations of the queried moving POIs 
are updated during the sending and processing of the queries. 
In addition, the location of the query issuer is also updated 
since it is considered an MO. Therefore, we need to retrieve the 
new exact locations of the queried moving POIs, and these new 
locations must be delivered to the new exact location of the 
query issuer. To achieve this, we model the motion of the 
moving POIs first. Then, the ὴὶὩὨὭὧὸέὶ agent indexes the 
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moving POIs and, based on their indices, predicts their new 
locations. 

The given region 'ȟ which is divided into ὲ ὲ cells 
of equal size, is modeled as an undirected graph '2(ȟ! , 
where ( represents the headers, and ! represents the arms. The 
numbers that are associated with the arms denote weights 7 , 
which represent the physical distances between two headers, as 
shown in Fig. 13. 

 
Fig. 13. Modeling the motion of the POIs. 

In the context of the model, the terms path, boundary path, 
and MO are defined as follows: 

Definition 1. For a given undirected graph '2(ȟ! , a 
path  0 between a start header È and end header È, which is 
illustrated as a black line in Fig. 13, is expressed by the 
following formula: 

0ÈȟÈ  ÈȟÈ ȟÈ ȟȣȟÈ ȟÈ            (7) 

where, È  represents a sub path in the case in which there 

exist many headers from the start to the end. 

Definition 2. For a given path 0, a path is called a 
boundary path, if its start header È  ɴ# and its end header 

È  ɴ#ȟ where # represents a cell and É Ê (i.e., passing 

from one cell to another). Boundary paths are shown as red 
lines in Fig. 13. 

Definition 3. For a given path 0, an MO that is located on a 
path at time Ô is expressed by the following triple: 

ÍÏ  ÃÌȟÐȟÄ              (8) 

where ÃÌ denotes the current location of the MO, Ð denotes 
the path that is linked to the MO, and Ä denotes the direction of 
the MO from the start header to the end header. 

Based on the previous three definitions, four neighboring 
cells are shown in Fig. 13. The MOs are illustrated as black 
boxes. #  contains three boundary paths ÈȟÈ ȟÈȟÈ ȟ
ÈȟÈ , which are weighted as 1, 1, and 3, respectively. The 

moving object ÍÏ resides in # on the path between È and 
È  , and moves in the direction of È ȟ with a distance of 0.4. 

Based on the model that was presented above, the 
ὴὶὩὨὭὧὸέὶ agent creates and manages an index at the cell level. 
This index includes two parts: an index part and a data part, as 
shown in Fig. 14. 

 
Fig. 14. General structure of CBI. 

 

Fig. 15. Data part structure of  #. 

The data part holds detailed information about both the cell 
and the MOs that are located within the cell. This information 
mainly includes headers, paths, numbers of MOs on the paths, 
and data about the MOs, as illustrated in Fig. 15. 

Two tables are shown in Fig. 15. The first record in the left 
table indicates that there are 4 headers that are linked to the 
header È  and contained in # , which form two paths 
ÈȟÈ ȟÈȟÈ  and two boundary paths ÈȟÈ ȟÈȟÈ . 

The rest of the records carry information about the physical 
distances (or weights) of the formed paths/boundary paths and 
the number of MOs on each. For example, the second record 
states that ×ÈȟÈ ρ, and this path has one moving object. 
The right table states that moving object /  moves on path 
Ð ÈȟÈ  towards È, and its current location is a distance 
of 0.2 from  È. 

Based on the information that is related to the MO (/  in 
the right table of Fig. 15), the ὴὶὩὨὭὧὸέὶ agent can calculate 
the speed of the MO based on its two previous consecutive 
locations and moments, as follows: 

ÓÐÅÅÄ
 
 
ȿ          ȿ

     (9) 

After calculating the speed, the ὴὶὩὨὭὧὸέὶ agent can 
estimate the future location of the MO by calculating the ȹ 
distance (illustrated in Fig. 2 in the introduction section) and 
adding it to the current location of the MO, taking into 
consideration the direction of the MO. 

The index part of a given cell contains the cell identifier 
#ȟ ; the area of the cell, which is represented by the width of 

the cell ×ÔÈ; and the number of MOs that are located in the 
cell. In addition, it includes the same previous information 
about the eight cells that surround the given cell, as shown in 
Fig. 16. 
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Fig. 16. Index part structure of  #. 

The index part will be the input of a bloom filter [24]. The 
benefit of the bloom filter is that it can give a direct answer 
regarding the existence or non-existence an element within a 
set. We exploit this to determine whether there is an MOs 
within the cells that are covered by the range 2, which is 
specified in the kNN query. If  no MOs are found in a cell, it is 
not necessary to search inside the cell. Thus, we can move to 
the next cell. Thisgreatly speeds up both the response time and 
the processing time of kNN queries since time is not wasted on 
examining empty cells. 

In detail, for a given kNN query with a range Ὑ, we first 
determine which cells are covered by ὙȢ Then, the index part of 
each cell is used to determine which contain the queried MOs 
using the bloom filter. For only the cells that have MOs, the 
actual search is performed on the data part of each limited cell 
with a prediction phase; to retrieve the future locations of the 
queried MOs. Algorithm 3 illustrates the steps of processing a 
kNN query based on the proposed CBI technique. 

After retrieving the results (i.e., the predicted locations of 
the queried MOs), the ὴὶὩὨὭὧὸέὶ agent encrypts the results and 
delivers them to the ὪὶὥὫάὩὲὸέὶ agent. The ὪὶὥὫάὩὲὸέὶ 

mobile agent migrates back to the home machine to deliver the 
results to the LBS user. The process of encrypting the results 
ensures the privacy protection of the queries during the 
responding phase. Algorithm 4 describes the itinerary of the 
ὪὶὥὫάὩὲὸέὶ mobile agent. 

Algorithm 3:  CBI based kNN query processing 

Input:  cells,  Ὑ  real location , range Ὑ.  

Output:  POIs []  //moving objects. 

1: covered-cells[]=null; 

2: for  (i=1; i<=count(cells); i++) 

3:        ÄÉÓÔÁÎÃÅ ȟ = Ὑὼ ὅὩὰὰὼ Ὑώ ὅὩὰὰώ; 

4:        if (ÄÉÓÔÁÎÃÅ ȟ Ὑ 

5:                  add (cell[i], covered-cells); 

6:  end for 

7: foreach cell in covered cells  

8:         if  (bloom (index-part of cell)) 

9:                  fetch (data-part of cell)  

10:                 foreach path in data-part 

11:                        if  (path contains MO) 

12:                             future-cell=prediction (MO);  

13:                              add(future-cell, POIs);  

14:                        end if 

15:                 end foreach 

16:       end if 

17: end foreach 

18: return POIs; 

Algorithm 4:  Trip of ὪὶὥὫάὩὲὸέὶ mobile agent 

Input:  Ὧὔὔ query.  

Output:  report results. 

1: agent = new ὪὶὥὫάὩὲὸέὶȠ (create an agent) 

2: itinerary = new itinerary (); 

3: itinerary.Adddistenation ( "LBS server", "execute 

     encryption method"); 

4: itinerary.Adddistenation ( "LBS mobile device", "execute 

     report results method"); 
5: output:  report results; 

Since the query issuer (i.e., the LBS user) is an MO, his/her 
location changes during the sending and processing the query. 
Therefore, the results must be delivered to the query issuer 
according to his/her new location. Because the ὪὶὥὫάὩὲὸέὶ 

is a mobile agent that is created in the mobile device of the 
LBS user, which represents the home machine, it must return 
back to the same home machine without any additional 
predictions on the location of the query issuer, as shown in 
Algorithm 4. Therefore, the future locations of the queried 
MOs are calculated in the prediction phase, while the future 
location of the query issuer is naturally obtained due to the 
returning step in the itinerary. In other words, it is not 
necessary to compute the ị distance. As a result, the two parts 
of the real-time uncertainty problem are solved, as shown in 
Fig. 17. 

 
Fig. 17. Solved uncertainty real-time problem. 

B. Details of Our Proposed Architecture 

We use sequence diagrams to illustrate the general scenario 
of our proposed agent-based architecture. Fig. 18 shows the 
steps for processing a kNN query with comprehensive privacy 
protection. 

 
Fig. 18. Sequence diagram of processing a kNN query. 
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V. SECURITY ANALYSIS 

In this section, we discuss two main security issues. The 
first is related to the agents themselves and the second is 
related to the WSDL and LRF-based algorithms, which were 
proposed for privacy protection. 

A. Security of Agents 

The main obstacle to the widespread deployment of the 
mobile agent technology is the security issue, in particular, the 
problem of protecting a mobile agent from malicious hosts that 
may completely block the agent or modify its carried data. 
Since the scope in this paper is privacy protection, security is 
out of scope. Therefore, we assume that all the agents are 
secure. Specifically, the approach that was proposed in [25] is 
followed. The integrating of privacy protection with security 
agents will be considered in future work. 

B. Security against Inference Attacks and Query Analysis 

Attacks 

In this subsection, we prove that our proposed architecture 
is robust by discussing the resistance of the WSDL algorithm 
and the LRF-based algorithm against location homogeneity 
attack and query sampling attack, respectively. Since we 
consider active attack (as discussed in Section III), Table III  
lists the capabilities of the LBS server (the attacker). 

TABLE III.  CAPABILITI ES OF THE ATTACKER (LBS SERVER) 

Cap-

No 
Description  

1 Can eavesdrop on the wireless channel. 

2 Can monitor the current queries of LBS users. 

3 
Can obtain all the stored information that is related to the LBS 

users. 

4 Can obtain the historical location data of the LBS users. 

5 
Knows the query privacy protection method (LRF-based 

algorithm). 

6 
Knows the location privacy protection method (WDSL 

algorithm). 

We follow the definition-theorem-proof style in discussing 
resistance against inference attacks. 

Definition 1. An algorithm is query sampling attack 
resistant if the units of the sent query cannot be obtained and 
correctly reordered. 

Theorem 1. The proposed LRF-based algorithm is query 
sampling attack resistant. 

Proof 1. Obtaining the units of a query requires 
eavesdropping on the wireless channel. Since a cryptographic 
technique (PKI) is used to protect the sensitive data (the units 
of the query), the attacker cannot obtain the units. Moreover, 
even if the attacker were to successfully break the encryption 
phase, he/she would need to form the query in a correct order 
due to the randomization phase. Furthermore, if the attacker 
tries to reverse the LRF-based algorithm, he/she will fail 
because of the periodic changing of the query's units in the 
LRF-based algorithm, which confuses the attacker and forces 
him/her to randomly guess the correct order of the units to 
form the original query. This means that the query sampling 
attack fails. 

Definition 2. An algorithm is location homogeneity attack 
resistant if the probability of successfully guessing the real 
location of an LBS user is very low. 

Theorem 2. The proposed WSDL algorithm is location 
homogeneity attack resistant. 

Proof 2: We assume that the attacker completely breaks the 
LRF-based algorithm, thereby obtaining the location of the 
LBS user. In addition, the information that the attacker holds is 
the query probability of each individual cell ÑÐ and all the 
submitted Ë locations ÌȟÌȟȣȟÌ (i.e., the mixture of real and 
dummy locations). Let 03  refer to the probability of the 

attacker successfully guessing whether ÅÖÅÎÔ is true. The 
WDSL algorithm is resistant to location homogeneity attack if 
the following two conditions are satisfied: 

1) ὖὛ ὖὛ  ᶅ π Ὥ Ὦ Ὧ          (10) 

2) ὨὭί ὰȟὰ Ὥί ὰέὲὫ. 

First, since the dummy locations are selected based on the 
query probabilities ÑÐ of the cells being similar to the query 
probability of the LBS user's cell (i.e., his/her real location), the 
attacker can obtain no benefit from employing the query 
probabilities to determine the real location of the LBS user. 
Second, since we have Ësubmitted locations, the probability of 

successful guessing the real location is . The previous 

probability value is the same for all Ë submitted locations 
because no benefit is obtained from knowing the query 
probabilities of the locations. This means that the first 
condition is satisfied. Third, since the dummy locations are 
selected based on the product of the distances rather than the 
sum of the distances, the second condition is satisfied. 
Moreover, even if the attacker tries to reverse the WDSL 
algorithm, he/she will fail to determine the real locations of the 
dummies. That is because of the random selection of the final 
and actual dummy locations, which leads to uncertainty in the 
dummy selection results. Therefore, the attacker can only 
randomly guess the real location of the LBS user. As a result, 
the location homogeneity attack fails. 

VI. METRICS 

In this section, we provide the metrics that are used for 
evaluation purposes. In this paper, two kinds of metrics are 
employed: privacy metrics and performance metrics. 

A. Privacy Metrics 

We use two privacy metrics: the entropy % and a metric that 
is derived from the entropy. To evaluate the location privacy, 
we employ % to quantify the privacy. It is better to achieve a 
higher % value. % is defined by formula 1. 

Suppose an LBS user sends a query to dummy locations to 
protect his/her privacy. The highest entropy value that can be 
achieved is ÌÏÇË, which is achieved when all the submitted 
locations have the same probability of being treated as the real 
location of the query issuer (LBS user). Therefore, if the LBS 
user achieves an entropy value that is less than ÌÏÇË, the 
extent to which the privacy was breached by the attacker (LBS 
server) will be ÌÏÇË %.  As time progresses, the attacker 
achieves a small success with each sent query. The sum of 
these small successes represents the degree of danger that the 
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privacy will be compromised, which represents the second 
privacy metric. 

More formally, let ȟ ȟ ȟȣȟ  refer to the 
moments at which the LBS user issues queries, where each 
query is protected by Ë ρ dummy locations. The degree of 
danger $  is defined as: 

$   В ÌÏÇË %  ȟ×ÈÅÒÅ   ɴ     (11) 

When an encryption technique is used to protect the 
privacy, no privacy metric is used to quantify the privacy. This 
is clearly stated in the survey in [3]. Therefore, we rely on a 
performance metric for evaluating the query privacy 
protection. 

B. Performance Metrics 

Since we used encryption in the proposed LRF-based 
algorithm to protect the query privacy, we introduce the 
computation time 4  for evaluation. Here, the computation 

time refers the time that is spent on both sides (the LBS mobile 
device's side and the LBS server side). On the LBS mobile 
device's side, the computation includes the time spent 
constructing a query based on a dummy location and passing 
sensitive units, which is equal to the sum of the durations of the 
extraction, encryption, randomization, and marking phases. 

4 4 4 4 4           (12) 

On the LBS server side, the computation time is the time 
that is spent preparing the query (i.e., reconstructing the query), 
which is equal to the sum of the durations of the decryption, 
marking, unit ordering, and processing phases. 

4 4 4 4 4       (13) 

Thus, the computation time is defined as: 

4 4 4           (14) 

To evaluate the proposed indexing technique, we use two 
times as performance metrics: access latency and tuning time. 
Access latency 4  refers the elapsed time between the 
moment when a query is issued and the moment when it is 
satisfied. Therefore, it depends on 4  as follows: 

4 4 4 4           (15) 

The tuning time 4  is the time that the mobile LBS user 
stays active to receive the requested data. 

VII.  EXPERIMENTAL RESULTS AND EVALUATIONS  

A. Simulation Setup 

In this paper, Matlab software is used to implement the 
proposed algorithms, with the help of Java Agent 
DEvelopment Framework (JADE). The performance 
evaluation is simulated on a Genuine Intel(R) 2.4 GHz PC with 
4.00 G RAM, running Microsoft Windows 7 Ultimate. 
Table IV lists the parameter settings. A data base is constructed 
for the moving POIs, where timestamps are attached to each 
POI and each query. The query probability is generated 
randomly with the help of the Google Maps API. 

TABLE IV.  PARAMETER SETTINGS 

Parameter  Setting  

Number of cells Î Î ρφπρφπ 
Number of headers (  21,103 

Number of arms ! 21,246 

Number of users 10,000 

Number of moving POIs 500 

For comparison, we selected three dummy-based 
approaches for location privacy protection: DDA [10], 
CirDummy [11], and Dest-Ex [12]. The Buddies [21] and PIR 
[22] approaches are selected for query privacy protection. As 
kNN query processing techniques, we selected D-tree [17] and 
density [23]. 

B. Evaluations of Resistance Against Aattacks 

There is a direct correlation between the Ë ÁÎÏÎÙÍÉÔÙ 
level and the resistance against attacks because a higher 
Ë ÁÎÏÎÙÍÉÔÙ level provides higher resistance. Increasing the 
Ë ÁÎÏÎÙÍÉÔÙ level requires increasing the number of 
generated dummies. Therefore, based on the entropy value, we 
first measure the privacy protection level against the Ë
ÁÎÏÎÙÍÉÔÙ level, assuming that the defenses of the 
fragmentation technique have been broken. Then, we calculate 
the number of LBS users that reach dangerous states based on 
the $  privacy metric. 

Fig. 19 below shows a snapshot at a time progress of 120 
minutes. Among the approaches, the DDA approach performs 
the worst because DDA fills the array of dummies by selecting 
locations in a random way based on the principle that ñthe 
dummy locations must be equal in areaò. Thus, the entropy of 
the dummy locations mainly relies on the current query 
probabilities of the grid of cells. The CirDummy approach 
slightly outperforms the DDA approach. That is because the 
selected dummy locations are limited by a virtual circle. Since 
the variation of the query probabilities is not large within the 
circle, which covers only a few cells (a small region), the 
corresponding entropy value is only slightly higher. The Dest-
Ex approach outperforms both DDA and CirDummy. The main 
factor that contributes to the enhancement of the entropy values 
is the direction, which may be changed to include more cells 
with the same query probability. Compared to the previous 
approaches, the WDSL approach performs the best. The 
underlying reason is that the dummy locations are selected 
based on having similar query probabilities to the real location. 
This guarantees much higher entropy values and higher 
corresponding privacy levels. 

Regarding to the evaluation based on the $  privacy 

metric, we evaluated the situations of LBS users under location 
homogeneity attack. In this context, a threshold is defined 
ÔÈÒπȢχυ at which the LBS user is considered vulnerable 

to attack by the LBS server. The level of anonymity is fixed to 
Ë φ (i.e., at any moment, the sent query is protected by 

five queries, which are built based on dummy query locations). 
Twenty LBS users are randomly selected from each of the 
compared approaches and a snapshot at Ô ρςπ is taken, as 
shown in Fig. 20. 
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Fig. 19. Entropy vs. Ë, Ô ρςπȢ 

 

Fig. 20. $  values for 20 LBS users, Ë φ, Ô ρςπȢ 

TABLE V. COMPARISON OF VULNERABILITY  STATUSES OF LBS USERS 

Settings: Ἴ , ἳ ȟἼἰἺ Ȣ Ȣ 

                            Term 

 Approach  

Number of users that 

exceed the threshold 

Percentage of 

encroachment 

WDSL 3 0.15 

Dest-Ex  10 0.5 

CirDummy  16 0.8 

DDA  20 100 

Table V shows that all LBS users in the DDA approach 
exceeded the threshold. That is because all the selected dummy 
locations are close to one another since they are formed by the 
vertices and the edges of the grid. More than three-quarters and 
half of the LBS users exceeded the threshold in CirDummy and 
Dest-Ex, respectively. Compared to DDA, the CirDummy has 
higher resistance against location homogeneity attack since the 
radius of the circle may be enlarged to include some dummy 
locations that are far away from the real location of the LBS 
user. Dest-Ex achieved a higher resistance than CirDummy 
because the directions can be changed to include dummy 
locations that are further away from the real location. The 
proposed WDSL approach performs the best since it has the 
minimum number of LBS users that exceeded the threshold, 
and, consequently, the highest resistance against the location 
homogeneity attack. That is because the dummy locations are 
selected based on the product of their distances. 

Under different threshold values, snapshots, and numbers 
of LBS users, Table VI  supports the results in Table V. 

TABLE VI.  PERCENTAGE OF ENCROACHMENT OF THE PREDEFINED 

THRESHOLDS 

Try  

NO 

NO of LBS 

 users 
◄ ◄▐► 

Percentage of encroachment 

WDSL Dest Cir DDA 

1 40 130 0.7 0.11 0.5 0.62 100 

2 60 140 0.65 0.12 0.53 0.78 100 

3 80 150 0.6 0.2 0.4 0.61 100 

4 100 160 0.55 0.18 0.41 0.55 100 

5 120 170 0.5 0.13 0.34 0.53 100 

C. Evaluations of Computation Costs 

We use the 4  performance metric to evaluate the 

efficiency of the proposed LRF-based approach against the 
buddy and PIR approaches. Two aspects are considered in the 
evaluation: the impact of increasing the Ë value that is 
associated with a query and the impact of increasing the 
number of sent queries. 

In general, the computation time increases as Ë increases. 
Fig. 21 shows a snapshot at Ô ρςπ, where we randomly 
selected an LBS user who sends a privacy-protected query at 
different levels of Ë. The PIR-based approach performs the 
worst since it performs many computations to protect the 
privacy of the query. Despite the times spent in the various 
phases (i.e., the extraction, encryption, randomization, and 
marking phases), our proposed LRF fragmentation technique 
performs the best. The reason behind this is the efficient 
employment of the bloom filter to enhance the processing time 
of the query. Specifically, the help that is provided by the 
ὴὶὩὨὭὧὸέὶ agent through the proposed CBI technique 
efficiently contributes to the shortening of the query processing 
time. In depth, the process of encapsulating the index part by 
the bloom filter has a positive impact on the search time, as it 
avoids searching in the empty cells. 

The results that are shown in Fig. 21 are supported by those 
in Fig. 22, in which the number of protected queries increased. 
Again, the bloom filter is the underlying feature that 
accelerates the answering of the queries, which is not utilized 
by the other approaches. 

 

Fig. 21. 4  vs. Ë, Ô ρςπȢ 
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Fig. 22. 4  vs. Number of sent queries, Ë φȟÔ ρςπȢ 

D. Access Latency Ὕ  and Tuning Time Ὕ  Evaluations 

In the previous subsection, the sending time of the query 
(from the mobile device of the LBS user to the LBS server) 
and the receiving time of the query's answer (from the LBS 
server to the mobile device of the LBS user) are completely 
ignored. When evaluating 4  and 4 , the two previous times 
must be taken into account. We assume that the sending time 
of the query is the same for all of the compared techniques 
(i.e., D-tree, Density, and the proposed CBI). Fig. 23 shows the 
access times for different numbers of sent queries. 

As shown in Fig. 23, the proposed CBI technique 
outperforms the Density and D-tree techniques. The main 
factor in this is the migration of the ὪὶὥὫάὩὲὸέὶ mobile 

agent back to the home machine, to deliver the answers to the 
sent queries. Meanwhile, in both the Density and D-tree 
techniques, a significant amount of time is needed to search for 
the queriesô issuer (since it is considered an MO) to deliver the 
answers. In other words, the receiving time of the queriesô 
answers is longer for these two methods than for the proposed 
CBI technique. The access latency time reflects the efficiency 
of the proposed CBI technique in solving the second part of the 
real-time uncertainty problem (see Fig. 17). 

 

Fig. 23. 4  vs. Number of sent queries, Ë φȟÔ ρςπȢ 

 

Fig. 24. 4  vs. Number of sent queries, Ë φȟÔ ρςπȢ 

The results that are shown in Fig. 24 support those that are 
illustrated in Fig. 23, but with higher tuning time values since 
the LBS user spends additional time preparing the queries and 
exploring the received answers. However, the proposed CBI 
technique provides the minimum tuning time values. Since the 
tuning time refers the time that mobile device of the LBS user 
stays active, the proposed CBI technique reduces the battery 
consumption of the mobile device. Short battery life is a main 
drawback of user-based privacy protection approaches. 

E. Evaluations of the Prediction Phase of the CB Technique 

The migration of the ὪὶὥὫάὩὲὸέὶ mobile agent back to 

the home machine contributes to solving the second part of the 
real-time uncertainty problem, and the prediction phase in the 
proposed CBI technique contributes to solving the first part of 
the real-time uncertainty problem (see Fig. 17 above). In this 
context, we evaluate the number of retrieved moving POIs and 
the precisions of the locations of the retrieved moving POIs. 

Fig. 25 shows the number of retrieved moving POIs when 
the LBS user searches for the nearest 6 taxis that are located 
within a 0.5 km range around different real locations of the 
LBS user. For instance, in response to the query χπȟχπ
ȟÔÁØÉÓȟπȢυȟ"ÏÂȟ 3, 6, and 11 moving taxis were retrieved by 
the D-tree, Density, and CBI techniques, respectively. The 
Density technique outperforms the D-tree technique since it 
uses the overlap among the cells to build the index. The 
proposed CBI technique outperforms the Density technique 
due to two factors: First, the index is built on the level of cells, 
which accurately covers all the cells that are included in the 0.5 
km range. Second, in the prediction phase, because of the 
motion of the queried POIs, many additional POIs may enter 
the cells (covered by the given range) from the surrounding 
cells. Therefore, the prediction phase can include the POIs that 
entered the range in the answer to the query. 

Since the number of the retrieved POIs does not accurately 
reflect the efficiency of the proposed indexing technique, we 
evaluate the precision of the retrieved locations of the moving 
POIs. Here, the precision term is the degree of matching 
between the current location (i.e., the exact future location of 
the moving POI) and the predicted one. From Fig. 25, we 
select the nine retrieved taxis that are related to the query 
ωπȟωπȟÔÁØÉÓȟπȢυȟ"ÏÂ for evaluation. 
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Fig. 25. Number of retrieved POIs, Ë φȟ2 πȢυ ËÍȟÔ ρςπȢ 

 
Fig. 26. Locations precision of the retrieved moving POIs. 

As shown in Fig. 26, the precision of the retrieved locations 
is variable for both the D-tree and Density techniques. In 
contrast, the stability of the precision of the locations that were 
retrieved by the proposed CBI technique high: it varies 
between 100% and 98%. This is due to the prediction phase. 

VIII.  CONCLUSION 

With the impressive development of both wireless 
networks and mobile devices, Location Based Services (LBSs) 
have become popular. LBSs enable network users to perform 
range queries or k-Nearest Neighbor (kNN) queries. However, 
it is extremely important to ensure comprehensive privacy 
protection, in addition to guaranteeing the efficiency of kNN 
query processing. We propose a Wise Dummy Selection 
Location (WDSL) approach for ensuring the location privacy 
of kNN queries. To ensure a high protection level of location 
privacy, the WDSL approach selects dummy locations that 
satisfy two conditions: (1) the query probabilities of the 
selected dummy locations are the same as that of the real 
location of the LBS user and (2) the selected dummy locations 
are distributed over a wide region to ensure resistance against 
location homogeneity inference attack. Resistance against 

query sampling attack, which targets the query privacy, is 
considered. Extracting, encrypting, and randomizing the 
sensitive units of the sent query based on a Left-Right 
Fragmentation (LRF) technique results in robust defense 
against the query sampling attack and ensures the query 
privacy. The integration of the WDSL approach and the LRF 
technique ensures the kNN query privacy during the sending, 
processing, and responding phases. To manipulate the kNN 
query efficiently, an index is built based on an efficient motion 
model at the level of cells, in which the moving POIs are 
moving. The index consists of two parts: a data part and an 
index part. The data part is supported by a prediction phase, 
which estimates the future locations of the queried moving 
POIs. The index part is encapsulated by a bloom filter to speed 
up the response to the KNN query. In terms of resistance 
against inference attacks and query analysis attacks, 
computational cost, and number and accuracy of retrieved 
moving POI locations, the proposed system outperforms 
similar approaches and techniques. 

In future work, we intend to ensure the integrating of agents 
security and privacy. In addition, we intend to develop 
defenses against other inference attacks, such as map matching 
attacks and semantic location attacks. 
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