
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

52 | P a g e

www.ijacsa.thesai.org

Agent-Based System for Efficient kNN Query

Processing with Comprehensive Privacy Protection

Mohamad Shady Alrahhal1, Maher Khemakhem2, Kamal Jambi3

King Abdulaziz University (KAU)

Jeddah, Saudi Arabia

AbstractðRecently, location based services (LBSs) have

become increasingly popular due to advances in mobile devices

and their positioning capabilities. In an LBS, the user sends a

range of queries regarding his k-nearest neighbors (kNNs) that

have common points of interests (POIs) based on his real

geographic location. During the query sending, processing, and

responding phases, private information may be collected by an

attacker, either by tracking the real locations or by analyzing the

sent queries. This compromises the privacy of the user and risks

his/her safety in certain cases. Thus, the objective of this paper is

to ensure comprehensive privacy protection, while also

guaranteeing the efficiency of kNN query processing. Therefore,

we propose an agent-based system for dealing with these issues.

The system is managed by three software agents (ἻἭἴἭἫἼἷἺἎἘ,

ἮἺἩἯἵἭἶἼἷἺἝ, and ἸἺἭἬἱἫἼἷἺ). The ἻἭἴἭἫἼἷἺἎἘ agent executes a

Wise Dummy Selection Location (WDSL) algorithm to ensure

the location privacy. The mission of the ἻἭἴἭἫἼἷἺἎἘ agent is

integrated with the mission of the ἮἺἩἯἵἭἶἼἷἺἝ agent, which is

to ensure the query privacy based on Left-Right Fragmentation

(LRF) algorithm. To guarantee the efficiency of kNN processing,

the ἸἺἭἬἱἫἼἷἺ agent executes a prediction phase depending on a

Cell Based Indexing (CBI) technique. Compared to similar

privacy protection approaches, the proposed WDSL and LRF

approaches showed higher resistance against location

homogeneity attacks and query sampling attacks. In addition, the

proposed CBI indexing technique obtains more accurate answers

to kNN queries than the previous indexing techniques.

KeywordsðAgents; attacks; dummies; fragmentation;

indexing; privacy protection; resistance

I. INTRODUCTION

Location Based Services (LBSs) are services that are
customized according to the location of the user. In recent
years, LBSs have received substantial attention, especially
since GPS-enabled devices (such as smart phones) became
popular. One of the most important advantages of LBS-enabled
applications is their ability to search for the nearest Point of
Interests (POIs). Searching for the nearest POIs requires
construction of a query on the LBS user side. Table I
summarizes the units of the constructed query.

TABLE I. GENERAL FORM OF THE LBS QUERY

Symbol <X, Y> POI R ID

Description
Coordinates of

the real location

Queried

interests

Queried

range

The identity

of the LBS

user

Fig. 1. Classical scenario of using LBS applications.

As a general example of LBS usage, Fig. 1 illustrates the
classical scenario of using LBS-enabled applications based on
the query units that are listed in Table I.

In Fig. 1, the LBS user constructs a query regarding a
desired POI and sends it to the LBS server. Then, the LBS
server processes the query and sends back the results.
However, this classical scenario involves risk since the LBS
user is forced to construct the query based on his/her real
geographic location. This risk is directly related to the privacy
issue of the LBS user. The reason behind this risk is that an
attacker can track the real location of the LBS user [1] or
intercept the sent query for analysis purposes [2]. In both cases,
the attacker can collect sensitive or personal information about
the LBS user, such as customs, habits, religion, or politic
leanings. Then, this personal information can be misused to
conduct attacks in real life, such as mugging, extortion or
stealing. According to [3], these two methods of personal data
collection can lead to branches of two kinds of privacy:
location privacy and query privacy. Therefore, if we want to
achieve full privacy protection, we need to protect these two
kinds of privacy. However, achieving comprehensive privacy
protection requires protecting the query privacy (in addition to
the location privacy) at the sending, processing, and
responding levels. Comprehensive LBS privacy protection has
not been addressed previously to the best of our knowledge.

The queried POI, are either static POIs (such as the nearest
hotels, hospitals, or sports clubs in a defined range) or moving
POIs (such as the nearest taxis that will enter a defined range).
When an LBS user searches for a moving POI, it is referred to
as a range query or k-nearest neighbor (kNN) query [4]-[7]. In
manipulating kNN queries, two major issues arise: The first is
related to ensuring the privacy protection of the kNN queries,
which in turn ensures the privacy of the LBS user. The second
is related to guaranteeing the accuracy of the retrieved results
(i.e., the retrieved locations of the queried moving POI) [8],
[9]. Fig. 2 illustrates the uncertainty problem, which is
considered a real-time problem.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

53 | P a g e

www.ijacsa.thesai.org

Fig. 2. Real-time uncertainty problem for k-NN queries.

According to Fig. 2, the first Moving Object (MO), as a
query issuer, searches for a second MO. Because of the
continuous updating of the locations of both the 1st MO and
the 2nd MO in the real-time temporal and spatial domains, the
query issuer will receive an unmatched value that is related to
the exact location of the queried MO. The correct response to
the query is (location + ȹ), which must be delivered to the
query issuer location (location + ị).

Motivation. Many efforts have been proposed to protect
the privacy of continuous kNN queries and overcome the real-
time uncertainty problem. One of the most important proposed
approaches is the use of dummies. In the context of LBS
privacy protection, a dummy is a query that is constructed
based on a fabricated location or fabricated properties. If the
LBS user surrounds his/her real location by some fabricated (or
false) locations, location privacy protection will be achieved
[10]-[12]. If the LBS user tampers with the properties of the
query itself (changing the queried interest or POI, for
example), query privacy protection will be asserted [13]. In
both cases, the current query (real query) is mixed with a
number of false queries (dummies) so that the attacker cannot
recognize the real query among the dummies. This process
(i.e., mixing process) aims at achieving k-anonymity in which
the attacker cannot identify the real query among k-1 dummies.
However, achieving full privacy protection (i.e., location
privacy and query privacy) by using dummies has not been
addressed. Moreover, generating weak dummies allows an
attacker to filter these dummies, thereby determining the
accurate location of the LBS user. Beyond generating weak
dummies, some inference attacks, such as location
homogeneity attack [14] (which targets location privacy) and
query analysis attack, such as query sampling attack [15]
(which targets query privacy), can be applied by an attacker to
circumvent the privacy protection methods. In both inference
attacks and query analysis attacks, the attacker does not need to
know the accurate location of the LBS user to infer the
personal data. This, in turn, means that achieving robust
privacy protection is a pressing need. Rregarding the
manipulation of kNN queries, many techniques have been
proposed, such as R*-tree [16], D-tree [17], and Grid-partition
[18]. However, these techniques rely on Euclidean space to
manipulate the kNN queries, whereas, in many real-life
applications, the objects' movements are constrained in a road
network. Moreover, these techniques cannot be applied in road
networks because the network distance (i.e., the shortest path
distance) cannot be computed using the boundary of the

minimum bounding rectangle (MBR) or grid cell. This, in turn,
leads to a poor manipulation of the real-time uncertainty
problem for kNN queries. Therefore, an efficient technique for
manipulating kNN queries is a top requirement.

In this paper, based on agent software technology, we
propose an agent-based system architecture for privacy
protection of LBS users. Three main missions are assigned to
three software agents, which are integrated with one another to
ensure comprehensive privacy protection of kNN queries and
overcome the real-time uncertainty problem. The main
contributions of this work are as follows:

¶ To protect the location privacy of LBS users, we
introduce a novel Wise Dummy Selection Location
(WSDL) algorithm. The objective of our WSDL
algorithm is to select strong dummy locations that
cannot be distinguished from the real location of the
LBS user. The power of the proposed WSDL algorithm
comes from taking into consideration two main factors:
1) selecting the dummy locations based on the historical
query probability of each cell; and 2) selecting dummy
locations that are far away from one another based on
the products of the distances among the selected
dummies. This, in turn, gives the WSDL algorithm
strong resistance against location homogeneity attack.

¶ To protect the query privacy, we introduce a novel Left-
Right Fragmentation (LRF)-based algorithm. Our LRF-
based algorithm extracts the sensitive units of the
constructed query, encrypts them, and randomizes them
to ensure resistance to query sampling attacks.

¶ To enhance the real-time uncertainty problem, we
introduce a novel indexing technique called Cell-Based
Indexing (CBI). Our indexing technique performs
efficient motion modeling with a prediction phase to
ensure that the exact locations of the queried MOs are
retrieved.

The rest of this paper is structured as follows: Section II
discusses related work. The threat model is provided in
Section III . Our proposed agent-based architecture is provided
in Section IV. Section V discusses the security analysis. In
Section VI, we present the metrics that are used. Section VII
presents our experimental results and the conducted
evaluations. Finally, we conclude the paper in Section VII I.

II. RELATED WORK

This section reviews some of the related work on privacy
protection approaches in the LBS research field. In addition,
we discuss some of the related work on techniques that are
used to manipulate kNN queries.

A. LBS Privacy Protection Approaches

Many efforts have been made to classify the privacy
protection approaches in the domain of LBS, such as [3], [19],
[20]. There are two major categories of LBS privacy protection
approaches: server-based approaches and user-based
approaches. In this subsection, we review some existing
approaches from the user-based category that aim at protecting
location privacy or query privacy.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

54 | P a g e

www.ijacsa.thesai.org

The authors of work [10] proposed a dummy data array
(DDA) algorithm for generating dummy locations to protect
the location privacy of LBS users. For a given region, which is
divided into a grid of cells, the key idea of the DDA algorithm
is to calculate both the vertices and the edges of each cell in the
grid. Then, the DDA algorithm randomly selects some of the
cells as dummy locations. To select strong dummy locations
and achieve k-anonymity, the DDA algorithm selects k cells of
equal area. Similarly, [11] uses dummies to protect the location
privacy of LBS users, but with a different dummy generation
method. The authors proposed two algorithms. The first is
called CirDummy, which generates dummies based on a virtual
circle that contains the real location of the LBS user. The
second is called GridDummy, which generates dummies based
on a virtual grid that covers the real location of the LBS user.
In [12], a dummy generation method called the Destination
Exchange (Dest-Ex) method was proposed. In this method,
historical motion trajectories are used to generate the dummies.
To ensure that the generated dummies are strong, the Dest-Ex
method chooses the historical trajectories that intersect with the
current trajectory of the LBS user. Therefore, the attacker is
confused when trying to determine the correct LBS user, who
has several motion trajectories with different destinations.
However, the main objective of all of these previous
approaches was location privacy protection. To achieve query
privacy protection, the authors of [13] proposed an approach
called DUMMY-Q. The DUMMY -Q approach depends on the
strategy of generating dummies, but the strategy is applied to
the query, rather than the location. Therefore, dummy queries
of different attributes from the same location are generated to
hide the real query. To make the generated dummies stronger,
two aspects are taken into consideration: 1) the query context;
and 2) the motion model.

Encryption techniques have been employed to protect the
privacy of LBS users. The authors of [21] proposed the idea of
using buddies to protect both location privacy and query
privacy against the LBS server (a malicious party). This
approach depends on notifying the friends (buddies) of an LBS
user who are located in the vicinity, thereby avoiding the
revelation of any personal data to the LBS server. This
approach assumes that each user shares a secret with each of
his buddies and uses symmetric encryption techniques.
Another approach was proposed based on using Private
Information Retrieval (PIR) [22] to achieve full privacy
protection. The key idea of the PIR technique depends on the
quadratic residuosity assumption, which states that it is
computationally hard to find the quadratic residues in modulo
arithmetic of a large composite number for the product of two
large primes. Therefore, the LBS server can process and
answer the query without knowing any sensitive information
about the query.

B. Techniques of kNN Query Manipulation

The Global Positioning System (GPS), which is integrated
with the mobile devices of the LBS users, allows the users to
obtain their locations from the satellite and send them to the
LBS server. During movement, the locations of the LBS users
are continuously updated on the LBS server side. This results
in inaccurate retrieved locations when the LBS user asks for
the kNN MOs as POIs. Therefore, the final goal of any

techniques that is used for manipulating the kNN queries is to
retrieve approximate locations of the MOs as responses to the
kNN queries.

Many techniques have been proposed for manipulating the
kNN queries. In [16], a traditional method called P*-tree was
proposed for supporting range queries. The P*-tree technique
efficiently manipulates range queries with static POIs, but not
moving POIs. Another technique was provided in [17], which
is called D-tree. The key idea of D-tree is to index the data
regions based on the divisions among them so that a binary D-
tree index is constructed. For a given kNN query, two main
phases are used to find and retrieve the queried POIs: region
partitioning and location-dependency query processing based
on paging the D-tree index. The authors of [18] developed the
D-tree technique, proposing a Grid-partitioning technique. The
authors used the Voronoi Diagram to partition the service area
into disjoint Voronoi cells (VCs), with each corresponding to
one object. An object a, is guaranteed to be the nearest
neighbor to any client that is located inside the same VC. In
[23], a new kNN query processing technique was proposed by
Jang et al. based on the density of the POIs. A PIR protocol
was used to search for the POIs within a clocking region, so
that the clocking region was expanded to overlap other regions
based on the k-d overlap index. However, in all the previous
techniques, the index is constructed for large regions, thereby
ignoring the cells that are included in the divided regions.

III. THREAT MODEL

In this section, we define the threat model, which specifics
the attacker and his/her objective. In addition, we determine the
ways that are used by the attacker to collect personal
information about the victim, in addition to inference and
analysis attacks.

A. Attacker and His/Her Objective

The objective of the attacker is to obtain privacy
information about a particular LBS user, including location,
POI and queried range. To achieve his/her objective, the
attacker can track the location of the LBS user or analyze the
sent query, as shown in Fig. 3 below.

In the context of the threat model, we define two terms:
passive attack and active attack. In a passive attack, any LBS
user can act as an attacker. In an active attack, the LBS server
(or its maintainer) is an attacker and all the information (related
to the trajectories of the LBS user's motion) that is stored in the
LBS server is accessible. Since an active attack is stronger than
a passive attack, we only address active attack.

Fig. 3. Attacking the privacy of LBS users.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

55 | P a g e

www.ijacsa.thesai.org

B. Inference Attacks and Query Analysis Attacks

The LBS server (an attacker) can apply inference attacks,
such as location homogeneity attack, and query analysis
attacks, such as query sampling attack.

In a location homogeneity attack, the attacker analyzes the
locations of all LBS users. If their positions are almost
identical, then the position information of each member is
revealed. For instance, if the users are located in a place that
represents a landmark such as a hospital, the attacker can infer
that those users (including the victim) have problems related to
their health, without needing to accurately identify their
locations. Fig. 4 illustrates a location homogeneity attack.

Fig. 4. Location homogeneity attack: (H) hospital or medical area, (S) sprot

cub or athletic area, (R) restaurant or rest area.

In a query sampling attack, the attacker employs the uneven
location distribution of the LBS users for his own malicious
purposes. This attack targets isolated users in sparse regions, as
illustrated in Fig. 5. Therefore, it relies on the traffic statistics
of the environment where the users are located. In detail, the
attacker tries to calculate a probability distribution function of
the user location over a given area. If the distribution is not
uniform, then the attacker can determine the areas where the
user is located with a high probability. Once the location of the
victim is determined, the attacker focuses on analyzing the sent
queries.

Fig. 5. Query sampling attack.

IV. OUR PROPOSED PRIVACY PROTECTION ARCHITECTURE

In this section, we provide our agent-based privacy
protection architecture, followed by the roles of the agents. The
details of the architecture are represented by a sequence
diagram.

The framework of the proposed architecture consists of an
untrusted LBS server (a malicious party) and a group of mobile
devices, which are connected via a network. The system is
managed by three agents (ίὩὰὩὧὸέὶ, ὪὶὥὫάὩὲὸέὶ, and

ὴὶὩὨὭὧὸέὶ), as shown in Fig. 6.

Table II lists the agents and identifies the main mission of
each one, its type, and where it is installed.

Fig. 6. Our agent-based architecture.

TABLE II. AGENTS

Agent Name Type Main M ission Location

3ÅÌÅÃÔÏÒ Stationary
Location privacy

protection

Each mobile

device

&ÒÁÇÍÅÎÔÏÒ Mobile
Query privacy

protection

Each mobile

device

0ÒÅÄÉÃÔÏÒ Stationary
Uncertainty real-time

problem solution
LBS server

A. Roles of the Agents

╢▄■▄╬◄▫►╓╛: This stationary agent executes the Wise
Dummy Selection Location (WSDL) approach. It targets the
location privacy protection against the untrusted LBS server,
which can apply location homogeneity inference attack, as
described below.

1) Wise Dummy Selection Location (WDSL) approach
The final objective of the WSDL approach is to generate

strong dummy locations to protect the location privacy of the
LBS user. In the dummy generation process, suitable locations
are selected that cannot be distinguished from the real location
of the LBS user. Consider a region ' divided into a grid of
cells. Each cell has a probability of being queried, which is
based on past queries. This is referred to as the query
probability. For a given LBS user in a cell within ', randomly
selecting cells to be the dummy locations, as proposed in the
DDA approach [10], for an example, it is a poor strategy. In
contrast, selecting the cells (to be a dummy locations) that have
the same query probabilities as the cell where the LBS user is
located is an efficient solution. Fig. 7 illustrates this solution,
where ' is divided according to the coordinates 8ȟ9.

Fig. 7. Dummy locations selection in the WSDL approach.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

56 | P a g e

www.ijacsa.thesai.org

In Fig. 7, if the LBS user who is located in the cell that is
identified by row number five and column number three (i.e.,
the coordinates C[5, 3]) wants to protect his/her location
privacy by achieving 4-anonymity level (i.e., k=4), he/she can
select three of the cells that are marked by the ã symbol. Since
the query probability of any of the three selected cells equals
the query probability of the original cell, the attacker cannot
determine the real location of the LBS user among the k-1
dummy locations.

In a formal way, for a given region ' that is divided into
ὲ ὲ cells, let ÑÐ refers to the query probability of a cell.

Then, В ÑÐ ρ. Each of the Ë locations (i.e., cells) that are
contained in a query, which include one real location and
Ë ρ dummies, has a conditional probability of being the

real location. Let Ðǲ É ρȟςȟȣȟË denote the probability that

the É location is the real location. Then, Ðǲ
В

 .

The entropy % of identifying the real location out of the
dummy set is defined as:

Ὁ В ὴǲ ὰέὫ ὴǲ (1)

The first factor that is taken into consideration is the
maximization of the entropy value in the dummy selection
process.

-ÁØ В Ðǲ ÌÏÇ Ðǲ (2)

2) Danger of location homogeneity inference attack
If the LBS user selects cells C[5, 1], C[4, 2], and C[6, 3], as

shown in Fig. 8, some personal information can be inferred by
the attacker without the need to determine the real location of
the LBS user. This occurs because the three selected dummy
locations are close to one another. If these selected dummy
locations belong to a medical area (which includes hospitals as
a POIs, for example), then the attacker can infer that the LBS
user has a health problem. Therefore, it is better to select the
following three cells, for example, C[3, n], C[n-1, n-1], and
C[1, 6].

To defend against location homogeneity attacks, a second
factor is taken into consideration in the process of dummy
location selection: ñthe selected dummy locations must be far
away from one anotherò. In this context, the question arises as
to how to determine the furthest dummy location from the real
location of the LBS user and spreads away from the other
dummy locations. This can be accomplished by calculating the
distance between the real location of the LBS user and each
dummy location based on the product distance rather than the
normal sum distance. Fig. 8 illustrates the strategy of wise
dummy location selection.

Fig. 8. Wise dummy location selection.

In Fig. 8, 2 represents the real location of the LBS user,
and $ρȟ$ςȟ and $σ represent the dummy locations,
where the query probability of each dummy location equals the
query probability of the real location. Let the distance between
two points 04 and 04 be given by В ÄÉÓ04ȟ04. $ρ is

the first dummy location that can be directly selected since it is
the furthest location from 2 . If we want to achieve σ
ÁÎÏÎÙÍÉÔÙ ÌÅÖÅÌ, we can choose $ς or $σ . If we
consider the sums of distances between pairs of dummy
locations, we can choose either of them $ς or $σ
because (ȿ$ς2 ȿ ȿ$ς$ρȿ= (ȿ$σ2 ȿ
ȿ$σ$ρȿ). However, to achieve higher resistance $ς is
preferred over $σ since it spreads dummy locations farther.
Therefore, instead of using the sum of distances between pairs
of dummy locations, we can use their product. Note
that ȿ$ς2 ȿ ȿ$ς$ρȿ > (ȿ$σ 2 ȿ
ȿ$σ $ρȿ. This leads to the choice of $ς as the second
dummy location.

Mathematically, the two previous factors form two
objectives in a Multi-Objective Optimization Problem (MOP).
Let $, $ρȟ$ςȟ$σȟȣȟ$Ë denote the set of real
and dummy locations. The MOP is defined as:

&$

 ÁÒÇ ÍÁØ В Ðǲ ÌÏÇ Ðǲ ȟБ ÄÉÓ$Éȟ$Ê (3)

Where, &$ represents the final selected dummy
locations.

The first objective of the MOP was previously optimized in
formula 2 because, from all the given dummy locations (i.e., all
cells that form the region '), we select a set of dummy
locations based on similarity of query probability. This set is
called the set of candidate dummy locations #$, which
yields the maximum entropy value. Out of the candidate
dummy locations, we optimize the second objective of the
MOP as follows, which determines the final selected dummy
locations:

&$ ÁÒÇ ÍÁØ Б ÄÉÓ$Éȟ$Ê (4)

In steps, we first sort the cells according to their query
probabilities. Second, we select τË cells from outside the
queried range 2 of the real query (Ë cells from each direction
around the real location of the LBS user 2). All τË selected
cells have the same query probability as the cell of the real
location of the LBS user. The τË selected cells form the
candidate set of dummy locations. Third, out of the candidate
set, we randomly select the furthest Ë ρ cells as the actual
and final dummy locations. Algorithm 1 provides details of the
WSDL approach.

Algorithm 1: Wise Dummy Selection Location (WDSL)

Input: ήὴ (query probability of each cell), Ὑ (the real

location of the LBS user), Ὧ (anonymity level).

Output: ὊὈ .

1: sort cells based on their query probabilities;

2: for (direction=1; direction <4; direction ++)

3: ὅὈ ὊὈ ;ɲ

4: select Ë cells from each direction around Ὑ ;

5: Count N πȠ

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

57 | P a g e

www.ijacsa.thesai.org

6: while ÃÏÕÎÔ ÃÁÎÄÉÄÁÔÅ Ë
7: if ήὴὅ ήὴὙ then

8: ὅὈ ᴺὅὈ ᷾ ὅ;

9: CountN count + 1;

10: end if

11: end while

12: for (Ὥ ρȠὭ ὰὩὲὫὸὬ ὅὈ ȠὭ

13: Dis-Array-core[i] Ncalculate ὨὭίὸὥὲὧὩ ὅȟὙ ;

14: core candidate N max (Dis-Array-core);

15: for (Ὦ ρȠὮ ὰὩὲὫὸὬ ὅὈ ȠὮ

16: ὨὭίὨὭίὧέὶὩ ὧὥὲὨὭὨὥὸὩȟὧὥὲὨὭὨὥὸὩȠ

17: ὨὭίὨὭίὙ ȟὧὥὲὨὭὨὥὸὩȠ

18: Dis-Array[j] NὨὭίὨὭί;
19: end for

20: Selected-Dummies [direction] N

21: {Top (Sort (Dis-Array) ,) ᷾ core candidate};

22: end for

23: ὊὈ Nẕ 3ÅÌÅÃÔÅÄ$ÕÍÍÉÅÓ ÄÉÒÅÃÔÉÏÎ;

24: output ὊὈ

After generating the final Ë ρ dummy locations, the
ίὩὰὩὧὸέὶ agent delivers them (as a set of coordinates) to the
ὪὶὥὫάὩὲὸέὶ agent to start its mission, as described below.

╕►╪▌□▄▪◄▫►╠: The final goal of this mobile agent is to

protect the privacy of the issued query during the sending and
processing phases. To complete this mission, the
ὪὶὥὫάὩὲὸέὶ agent constructs Ë queries (Ë ρ queries based

on the Ë ρ dummy locations that are received from the
ίὩὰὩὧὸέὶ agents, plus the query based on the real location of
the LBS user). Then, it executes a fragmentation approach
called Left-Right-Fragmentation (LRF) to protect the privacy
of each constructed query. After that, it migrates to the LBS
server, carrying the protected queries, which are manipulated
and answered there with the help the ὴὶὩὨὭὧὸέὶ agent. After
the queries are answered on the LBS server side, the
ὪὶὥὫάὩὲὸέὶ migrates back to the home machine (i.e., the

mobile device of the LBS user) to deliver the results.

3) Left-Right-Fragmentation (LRF) approach

The ὪὶὥὫάὩὲὸέὶ agent receives the set of actual dummy

locations that were generated by the ίὩὰὩὧὸέὶ agent. Each
dummy location has its own coordinates 8ȟ9. Let &$
denote the set of the coordinates of the generated dummy
locations, where:

&$ ộ8ȟ9Ớȟộ8ȟ9Ớȟộ8ȟ9Ớȟȣȟộ8 ȟ9 Ớ (5)

For each coordinate ộ8ȟ9Ớɴ &$ ÉȟÊ ρȟςȟȣȟË
ρ, a query is built according to the format that is specified in
Table I, which consists of the following units: coordinates of
the LBS user ộ8ȟ9Ớ, queried interest 0/), queried range 2, and
identity of the LBS user)$. Each constructed query is referred
to as an original query.

The key idea of the fragmentation technique is to extract
the sensitive data from the query, encrypt them, and then
randomize them, as shown in Fig. 9.

Fig. 9. Fragmentation technique.

In the context of fragmentation, we address the sensitive
units of the query and the sensitive associations among the
units because the attacker focuses on either one unit or the
associations among two or more units to infer personal
information. For instance, if the LBS user always queries the
nearest hospitals as POIs, then the attacker can infer that the
LBS user has a health problem. Meanwhile, if the attacker
associates the ID of the LBS user with the queried POIs, then
he/she can accurately identify the LBS user who has a health
problem. Therefore, protecting the sensitive association is more
important than protecting the sensitive units.

In this paper, the sensitive units of a given query are
(ộ8ȟ9Ớ, 0/), and 2). For the LBS user)$, it is not considered a
sensitive unit because the attacker cannot gain any private
information from the)$ unit alone. Moreover, even if the
attacker associates the)$ unit with any of the other units,
he/she will fail to gather private information due to the
encryption and randomization processes. Thus, if the attacker
applies a query analysis attack, he/she will obtain, for instance,
the following information: "the LBS user whose)$ is (Bob-1)
issues a query from an unknown location that asks for
nameless 0/)Ó that are located in non-existent range 2". This
statement does not reveal any private information.

In detail, the sensitive units are protected by public key
infrastructure (PKI) and the sensitive associations are protected
by a randomization phase. This forms our proposed Left-Right-
Fragmentation (LRF) algorithm.

Formally, for a given set of queries
1 ÑȟÑȟȣȟÑȟ×ÈÅÒÅ É ρȟςȟȣȟË ρ , encoding a
query Ñ consists of splitting it into two main parts: the left

part 0 and the right part 0 . Both parts are necessary for

reconstructing the original query Ñ.

Ñ 0 0 (6)

In the first step of the randomization phase, we place the ID
unit in the middle since it is not considered a sensitive data, as
shown in Fig. 10.

Fig. 10. First step in the randomization phase of the LRF-based algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

58 | P a g e

www.ijacsa.thesai.org

Fig. 11. Marking step in the randomization phase of the LRF-based

algorithm.

The left part of the query includes one unit, which consists
of two sub-units (X, Y). As for the right part query, it includes
two units: (POI and R). In the second step of the randomization
phase, we mark each unit or sub-unit by a (letter-number) pair
that indicates the correct order in the original query, as shown
in Fig. 11.

In Fig. 11, for instance, R-1 indicates that the encrypted
unit (POI) must be placed directly to the right of the ID unit.

Since we have five different sites for ordering the units of
the original query, there are ρ ς σ τ υ ρς probable
sites) for randomizing the original units. Thus, the
ὪὶὥὫάὩὲὸέὶagent can periodically change the randomization

strategy, which prevents the attacker from discovering the
correct order of the original query's units. Fig. 12 illustrates one
possible choice and the reconstruction process.

Fig. 12. Left-Right-Fragmentation (LRF) algorithm and reconstruction.

Reconstructing the original query is necessary for the
stationary ÐÒÅÄÉÃÔÏÒ agent to perform its mission (i.e.,
manipulating and answering the queries). The reconstruction
process is carried out in four steps:

1) Putting the ID unit in the middle.

2) Decrypting the units of the query based on the shared

encryption key between the ὪὶὥὫάὩὲὸέὶ agent and the

ὴὶὩὨὭὧὸέὶ agent.

3) Performing the marking step.

4) Moving the ID unit to the end.

Algorithm 2 illustrates the details of the left-right
fragmentation approach.

Algorithm 2: Left-Right Fragmentation (LRF)

Input: kNN ộὢȟὣỚȟὖὕὍȟὙȟὍὈ query.

Output: protected kNN ộὢȟὣỚȟὖὕὍȟὙȟὍὈ query.

1: units{} = extract ὢȟὣȟὖὕὍȟὙ ;obtaining the sensitive data.

2: units{} = encrypt (units)using 3DES algorithm;

3: new-units{}=null;

// randomization

4: count =0; rand-array [5] ={-1};

5: while (count <5)

6: random-value = rand(4);

7: if (! contains (rand-array, random-value))

8: rand-array[count] = random-value;

9: Count ++;

10: end if

11: end while

12: for (i=0; i<5;i++)

13: new-units {i}= units{ rand-array[i] };

14: Return new-units;

By the LRF-based algorithm, all queries that are
constructed on the LBS user side are protected before being
sent to the LBS server. Then, all the queries are packaged and
carried together by the ὪὶὥὫάὩὲὸέὶ agent to the LBS server,

which in turn means that the queries are protected during the
sending phase. Because the LRF-based algorithm mixes the
real query with Ë ρ dummy queries (which are constructed
based on the Ë ρ dummy locations and selected by the
ίὩὰὩὧὸέὶ agent) and the mission of manipulating the queries
is assigned to the ὴὶὩὨὭὧὸέὶ agent, the queries are protected
during the processing phase. The task of protecting the queries
during the responding phase is included in the role of the
ὴὶὩὨὭὧὸέὶ agent.

╟►▄▀░╬◄▫►ȡ This stationary agent receives the Ë queries
that were constructed and carried by the ὪὶὥὫάὩὲὸέὶ mobile

agent. Then, it manipulates each query individually. After
answering the received queries, the results are delivered to the
ὪὶὥὫάὩὲὸέὶ mobile agent, which, in turn, migrates back to

the mobile device of the LBS user (i.e., the home machine).
The process of manipulation requires the reconstruction of the
Ë protected queries. This is performed according to the four
steps that are listed above, where the same shared encryption
key as was used to encrypt the units of the queries is used for
decryption. After reconstructing the queries, the ὴὶὩὨὭὧὸέὶ
agent manipulates each query according to an indexing
technique, as described below.

4) Cell-Based Indexing (CBI) technique
In the kNN queries, the LBS user asks for the nearest Ë

moving POIs that are located within a specified range 2 of the
LBS user. Because of the continuous updatings of the locations
of the moving POIs, the locations of the queried moving POIs
are updated during the sending and processing of the queries.
In addition, the location of the query issuer is also updated
since it is considered an MO. Therefore, we need to retrieve the
new exact locations of the queried moving POIs, and these new
locations must be delivered to the new exact location of the
query issuer. To achieve this, we model the motion of the
moving POIs first. Then, the ὴὶὩὨὭὧὸέὶ agent indexes the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

59 | P a g e

www.ijacsa.thesai.org

moving POIs and, based on their indices, predicts their new
locations.

The given region 'ȟ which is divided into ὲ ὲ cells
of equal size, is modeled as an undirected graph '2(ȟ! ,
where (represents the headers, and ! represents the arms. The
numbers that are associated with the arms denote weights 7 ,
which represent the physical distances between two headers, as
shown in Fig. 13.

Fig. 13. Modeling the motion of the POIs.

In the context of the model, the terms path, boundary path,
and MO are defined as follows:

Definition 1. For a given undirected graph '2(ȟ! , a
path 0 between a start header È and end header È, which is
illustrated as a black line in Fig. 13, is expressed by the
following formula:

0ÈȟÈ ÈȟÈ ȟÈ ȟȣȟÈ ȟÈ (7)

where, È represents a sub path in the case in which there

exist many headers from the start to the end.

Definition 2. For a given path 0, a path is called a
boundary path, if its start header È ɴ# and its end header

È ɴ#ȟ where # represents a cell and É Ê (i.e., passing

from one cell to another). Boundary paths are shown as red
lines in Fig. 13.

Definition 3. For a given path 0, an MO that is located on a
path at time Ô is expressed by the following triple:

ÍÏ ÃÌȟÐȟÄ (8)

where ÃÌ denotes the current location of the MO, Ð denotes
the path that is linked to the MO, and Ä denotes the direction of
the MO from the start header to the end header.

Based on the previous three definitions, four neighboring
cells are shown in Fig. 13. The MOs are illustrated as black
boxes. # contains three boundary paths ÈȟÈ ȟÈȟÈ ȟ
ÈȟÈ , which are weighted as 1, 1, and 3, respectively. The

moving object ÍÏ resides in # on the path between È and
È , and moves in the direction of È ȟ with a distance of 0.4.

Based on the model that was presented above, the
ὴὶὩὨὭὧὸέὶ agent creates and manages an index at the cell level.
This index includes two parts: an index part and a data part, as
shown in Fig. 14.

Fig. 14. General structure of CBI.

Fig. 15. Data part structure of #.

The data part holds detailed information about both the cell
and the MOs that are located within the cell. This information
mainly includes headers, paths, numbers of MOs on the paths,
and data about the MOs, as illustrated in Fig. 15.

Two tables are shown in Fig. 15. The first record in the left
table indicates that there are 4 headers that are linked to the
header È and contained in # , which form two paths
ÈȟÈ ȟÈȟÈ and two boundary paths ÈȟÈ ȟÈȟÈ .

The rest of the records carry information about the physical
distances (or weights) of the formed paths/boundary paths and
the number of MOs on each. For example, the second record
states that ×ÈȟÈ ρ, and this path has one moving object.
The right table states that moving object / moves on path
Ð ÈȟÈ towards È, and its current location is a distance
of 0.2 from È.

Based on the information that is related to the MO (/ in
the right table of Fig. 15), the ὴὶὩὨὭὧὸέὶ agent can calculate
the speed of the MO based on its two previous consecutive
locations and moments, as follows:

ÓÐÅÅÄ

ȿ ȿ

 (9)

After calculating the speed, the ὴὶὩὨὭὧὸέὶ agent can
estimate the future location of the MO by calculating the ȹ
distance (illustrated in Fig. 2 in the introduction section) and
adding it to the current location of the MO, taking into
consideration the direction of the MO.

The index part of a given cell contains the cell identifier
#ȟ ; the area of the cell, which is represented by the width of

the cell ×ÔÈ; and the number of MOs that are located in the
cell. In addition, it includes the same previous information
about the eight cells that surround the given cell, as shown in
Fig. 16.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

60 | P a g e

www.ijacsa.thesai.org

Fig. 16. Index part structure of #.

The index part will be the input of a bloom filter [24]. The
benefit of the bloom filter is that it can give a direct answer
regarding the existence or non-existence an element within a
set. We exploit this to determine whether there is an MOs
within the cells that are covered by the range 2, which is
specified in the kNN query. If no MOs are found in a cell, it is
not necessary to search inside the cell. Thus, we can move to
the next cell. Thisgreatly speeds up both the response time and
the processing time of kNN queries since time is not wasted on
examining empty cells.

In detail, for a given kNN query with a range Ὑ, we first
determine which cells are covered by ὙȢ Then, the index part of
each cell is used to determine which contain the queried MOs
using the bloom filter. For only the cells that have MOs, the
actual search is performed on the data part of each limited cell
with a prediction phase; to retrieve the future locations of the
queried MOs. Algorithm 3 illustrates the steps of processing a
kNN query based on the proposed CBI technique.

After retrieving the results (i.e., the predicted locations of
the queried MOs), the ὴὶὩὨὭὧὸέὶ agent encrypts the results and
delivers them to the ὪὶὥὫάὩὲὸέὶ agent. The ὪὶὥὫάὩὲὸέὶ

mobile agent migrates back to the home machine to deliver the
results to the LBS user. The process of encrypting the results
ensures the privacy protection of the queries during the
responding phase. Algorithm 4 describes the itinerary of the
ὪὶὥὫάὩὲὸέὶ mobile agent.

Algorithm 3: CBI based kNN query processing

Input: cells, Ὑ real location , range Ὑ.

Output: POIs [] //moving objects.

1: covered-cells[]=null;

2: for (i=1; i<=count(cells); i++)

3: ÄÉÓÔÁÎÃÅ ȟ = Ὑὼ ὅὩὰὰὼ Ὑώ ὅὩὰὰώ;

4: if (ÄÉÓÔÁÎÃÅ ȟ Ὑ

5: add (cell[i], covered-cells);

6: end for

7: foreach cell in covered cells

8: if (bloom (index-part of cell))

9: fetch (data-part of cell)

10: foreach path in data-part

11: if (path contains MO)

12: future-cell=prediction (MO);

13: add(future-cell, POIs);

14: end if

15: end foreach

16: end if

17: end foreach

18: return POIs;

Algorithm 4: Trip of ὪὶὥὫάὩὲὸέὶ mobile agent

Input: Ὧὔὔ query.

Output: report results.

1: agent = new ὪὶὥὫάὩὲὸέὶȠ (create an agent)

2: itinerary = new itinerary ();

3: itinerary.Adddistenation ("LBS server", "execute

 encryption method");

4: itinerary.Adddistenation ("LBS mobile device", "execute

 report results method");
5: output: report results;

Since the query issuer (i.e., the LBS user) is an MO, his/her
location changes during the sending and processing the query.
Therefore, the results must be delivered to the query issuer
according to his/her new location. Because the ὪὶὥὫάὩὲὸέὶ

is a mobile agent that is created in the mobile device of the
LBS user, which represents the home machine, it must return
back to the same home machine without any additional
predictions on the location of the query issuer, as shown in
Algorithm 4. Therefore, the future locations of the queried
MOs are calculated in the prediction phase, while the future
location of the query issuer is naturally obtained due to the
returning step in the itinerary. In other words, it is not
necessary to compute the ị distance. As a result, the two parts
of the real-time uncertainty problem are solved, as shown in
Fig. 17.

Fig. 17. Solved uncertainty real-time problem.

B. Details of Our Proposed Architecture

We use sequence diagrams to illustrate the general scenario
of our proposed agent-based architecture. Fig. 18 shows the
steps for processing a kNN query with comprehensive privacy
protection.

Fig. 18. Sequence diagram of processing a kNN query.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

61 | P a g e

www.ijacsa.thesai.org

V. SECURITY ANALYSIS

In this section, we discuss two main security issues. The
first is related to the agents themselves and the second is
related to the WSDL and LRF-based algorithms, which were
proposed for privacy protection.

A. Security of Agents

The main obstacle to the widespread deployment of the
mobile agent technology is the security issue, in particular, the
problem of protecting a mobile agent from malicious hosts that
may completely block the agent or modify its carried data.
Since the scope in this paper is privacy protection, security is
out of scope. Therefore, we assume that all the agents are
secure. Specifically, the approach that was proposed in [25] is
followed. The integrating of privacy protection with security
agents will be considered in future work.

B. Security against Inference Attacks and Query Analysis

Attacks

In this subsection, we prove that our proposed architecture
is robust by discussing the resistance of the WSDL algorithm
and the LRF-based algorithm against location homogeneity
attack and query sampling attack, respectively. Since we
consider active attack (as discussed in Section III), Table III
lists the capabilities of the LBS server (the attacker).

TABLE III. CAPABILITI ES OF THE ATTACKER (LBS SERVER)

Cap-

No
Description

1 Can eavesdrop on the wireless channel.

2 Can monitor the current queries of LBS users.

3
Can obtain all the stored information that is related to the LBS

users.

4 Can obtain the historical location data of the LBS users.

5
Knows the query privacy protection method (LRF-based

algorithm).

6
Knows the location privacy protection method (WDSL

algorithm).

We follow the definition-theorem-proof style in discussing
resistance against inference attacks.

Definition 1. An algorithm is query sampling attack
resistant if the units of the sent query cannot be obtained and
correctly reordered.

Theorem 1. The proposed LRF-based algorithm is query
sampling attack resistant.

Proof 1. Obtaining the units of a query requires
eavesdropping on the wireless channel. Since a cryptographic
technique (PKI) is used to protect the sensitive data (the units
of the query), the attacker cannot obtain the units. Moreover,
even if the attacker were to successfully break the encryption
phase, he/she would need to form the query in a correct order
due to the randomization phase. Furthermore, if the attacker
tries to reverse the LRF-based algorithm, he/she will fail
because of the periodic changing of the query's units in the
LRF-based algorithm, which confuses the attacker and forces
him/her to randomly guess the correct order of the units to
form the original query. This means that the query sampling
attack fails.

Definition 2. An algorithm is location homogeneity attack
resistant if the probability of successfully guessing the real
location of an LBS user is very low.

Theorem 2. The proposed WSDL algorithm is location
homogeneity attack resistant.

Proof 2: We assume that the attacker completely breaks the
LRF-based algorithm, thereby obtaining the location of the
LBS user. In addition, the information that the attacker holds is
the query probability of each individual cell ÑÐ and all the
submitted Ë locations ÌȟÌȟȣȟÌ (i.e., the mixture of real and
dummy locations). Let 03 refer to the probability of the

attacker successfully guessing whether ÅÖÅÎÔ is true. The
WDSL algorithm is resistant to location homogeneity attack if
the following two conditions are satisfied:

1) ὖὛ ὖὛ ᶅ π Ὥ Ὦ Ὧ (10)

2) ὨὭί ὰȟὰ Ὥί ὰέὲὫ.

First, since the dummy locations are selected based on the
query probabilities ÑÐ of the cells being similar to the query
probability of the LBS user's cell (i.e., his/her real location), the
attacker can obtain no benefit from employing the query
probabilities to determine the real location of the LBS user.
Second, since we have Ësubmitted locations, the probability of

successful guessing the real location is . The previous

probability value is the same for all Ë submitted locations
because no benefit is obtained from knowing the query
probabilities of the locations. This means that the first
condition is satisfied. Third, since the dummy locations are
selected based on the product of the distances rather than the
sum of the distances, the second condition is satisfied.
Moreover, even if the attacker tries to reverse the WDSL
algorithm, he/she will fail to determine the real locations of the
dummies. That is because of the random selection of the final
and actual dummy locations, which leads to uncertainty in the
dummy selection results. Therefore, the attacker can only
randomly guess the real location of the LBS user. As a result,
the location homogeneity attack fails.

VI. METRICS

In this section, we provide the metrics that are used for
evaluation purposes. In this paper, two kinds of metrics are
employed: privacy metrics and performance metrics.

A. Privacy Metrics

We use two privacy metrics: the entropy % and a metric that
is derived from the entropy. To evaluate the location privacy,
we employ % to quantify the privacy. It is better to achieve a
higher % value. % is defined by formula 1.

Suppose an LBS user sends a query to dummy locations to
protect his/her privacy. The highest entropy value that can be
achieved is ÌÏÇË, which is achieved when all the submitted
locations have the same probability of being treated as the real
location of the query issuer (LBS user). Therefore, if the LBS
user achieves an entropy value that is less than ÌÏÇË, the
extent to which the privacy was breached by the attacker (LBS
server) will be ÌÏÇË %. As time progresses, the attacker
achieves a small success with each sent query. The sum of
these small successes represents the degree of danger that the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

62 | P a g e

www.ijacsa.thesai.org

privacy will be compromised, which represents the second
privacy metric.

More formally, let ȟ ȟ ȟȣȟ refer to the
moments at which the LBS user issues queries, where each
query is protected by Ë ρ dummy locations. The degree of
danger $ is defined as:

$ В ÌÏÇË % ȟ×ÈÅÒÅ ɴ (11)

When an encryption technique is used to protect the
privacy, no privacy metric is used to quantify the privacy. This
is clearly stated in the survey in [3]. Therefore, we rely on a
performance metric for evaluating the query privacy
protection.

B. Performance Metrics

Since we used encryption in the proposed LRF-based
algorithm to protect the query privacy, we introduce the
computation time 4 for evaluation. Here, the computation

time refers the time that is spent on both sides (the LBS mobile
device's side and the LBS server side). On the LBS mobile
device's side, the computation includes the time spent
constructing a query based on a dummy location and passing
sensitive units, which is equal to the sum of the durations of the
extraction, encryption, randomization, and marking phases.

4 4 4 4 4 (12)

On the LBS server side, the computation time is the time
that is spent preparing the query (i.e., reconstructing the query),
which is equal to the sum of the durations of the decryption,
marking, unit ordering, and processing phases.

4 4 4 4 4 (13)

Thus, the computation time is defined as:

4 4 4 (14)

To evaluate the proposed indexing technique, we use two
times as performance metrics: access latency and tuning time.
Access latency 4 refers the elapsed time between the
moment when a query is issued and the moment when it is
satisfied. Therefore, it depends on 4 as follows:

4 4 4 4 (15)

The tuning time 4 is the time that the mobile LBS user
stays active to receive the requested data.

VII. EXPERIMENTAL RESULTS AND EVALUATIONS

A. Simulation Setup

In this paper, Matlab software is used to implement the
proposed algorithms, with the help of Java Agent
DEvelopment Framework (JADE). The performance
evaluation is simulated on a Genuine Intel(R) 2.4 GHz PC with
4.00 G RAM, running Microsoft Windows 7 Ultimate.
Table IV lists the parameter settings. A data base is constructed
for the moving POIs, where timestamps are attached to each
POI and each query. The query probability is generated
randomly with the help of the Google Maps API.

TABLE IV. PARAMETER SETTINGS

Parameter Setting

Number of cells Î Î ρφπρφπ
Number of headers (21,103

Number of arms ! 21,246

Number of users 10,000

Number of moving POIs 500

For comparison, we selected three dummy-based
approaches for location privacy protection: DDA [10],
CirDummy [11], and Dest-Ex [12]. The Buddies [21] and PIR
[22] approaches are selected for query privacy protection. As
kNN query processing techniques, we selected D-tree [17] and
density [23].

B. Evaluations of Resistance Against Aattacks

There is a direct correlation between the Ë ÁÎÏÎÙÍÉÔÙ
level and the resistance against attacks because a higher
Ë ÁÎÏÎÙÍÉÔÙ level provides higher resistance. Increasing the
Ë ÁÎÏÎÙÍÉÔÙ level requires increasing the number of
generated dummies. Therefore, based on the entropy value, we
first measure the privacy protection level against the Ë
ÁÎÏÎÙÍÉÔÙ level, assuming that the defenses of the
fragmentation technique have been broken. Then, we calculate
the number of LBS users that reach dangerous states based on
the $ privacy metric.

Fig. 19 below shows a snapshot at a time progress of 120
minutes. Among the approaches, the DDA approach performs
the worst because DDA fills the array of dummies by selecting
locations in a random way based on the principle that ñthe
dummy locations must be equal in areaò. Thus, the entropy of
the dummy locations mainly relies on the current query
probabilities of the grid of cells. The CirDummy approach
slightly outperforms the DDA approach. That is because the
selected dummy locations are limited by a virtual circle. Since
the variation of the query probabilities is not large within the
circle, which covers only a few cells (a small region), the
corresponding entropy value is only slightly higher. The Dest-
Ex approach outperforms both DDA and CirDummy. The main
factor that contributes to the enhancement of the entropy values
is the direction, which may be changed to include more cells
with the same query probability. Compared to the previous
approaches, the WDSL approach performs the best. The
underlying reason is that the dummy locations are selected
based on having similar query probabilities to the real location.
This guarantees much higher entropy values and higher
corresponding privacy levels.

Regarding to the evaluation based on the $ privacy

metric, we evaluated the situations of LBS users under location
homogeneity attack. In this context, a threshold is defined
ÔÈÒπȢχυ at which the LBS user is considered vulnerable

to attack by the LBS server. The level of anonymity is fixed to
Ë φ (i.e., at any moment, the sent query is protected by

five queries, which are built based on dummy query locations).
Twenty LBS users are randomly selected from each of the
compared approaches and a snapshot at Ô ρςπ is taken, as
shown in Fig. 20.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

63 | P a g e

www.ijacsa.thesai.org

Fig. 19. Entropy vs. Ë, Ô ρςπȢ

Fig. 20. $ values for 20 LBS users, Ë φ, Ô ρςπȢ

TABLE V. COMPARISON OF VULNERABILITY STATUSES OF LBS USERS

Settings: Ἴ , ἳ ȟἼἰἺ Ȣ Ȣ

 Term

 Approach

Number of users that

exceed the threshold

Percentage of

encroachment

WDSL 3 0.15

Dest-Ex 10 0.5

CirDummy 16 0.8

DDA 20 100

Table V shows that all LBS users in the DDA approach
exceeded the threshold. That is because all the selected dummy
locations are close to one another since they are formed by the
vertices and the edges of the grid. More than three-quarters and
half of the LBS users exceeded the threshold in CirDummy and
Dest-Ex, respectively. Compared to DDA, the CirDummy has
higher resistance against location homogeneity attack since the
radius of the circle may be enlarged to include some dummy
locations that are far away from the real location of the LBS
user. Dest-Ex achieved a higher resistance than CirDummy
because the directions can be changed to include dummy
locations that are further away from the real location. The
proposed WDSL approach performs the best since it has the
minimum number of LBS users that exceeded the threshold,
and, consequently, the highest resistance against the location
homogeneity attack. That is because the dummy locations are
selected based on the product of their distances.

Under different threshold values, snapshots, and numbers
of LBS users, Table VI supports the results in Table V.

TABLE VI. PERCENTAGE OF ENCROACHMENT OF THE PREDEFINED

THRESHOLDS

Try

NO

NO of LBS

 users
◄ ◄▐►

Percentage of encroachment

WDSL Dest Cir DDA

1 40 130 0.7 0.11 0.5 0.62 100

2 60 140 0.65 0.12 0.53 0.78 100

3 80 150 0.6 0.2 0.4 0.61 100

4 100 160 0.55 0.18 0.41 0.55 100

5 120 170 0.5 0.13 0.34 0.53 100

C. Evaluations of Computation Costs

We use the 4 performance metric to evaluate the

efficiency of the proposed LRF-based approach against the
buddy and PIR approaches. Two aspects are considered in the
evaluation: the impact of increasing the Ë value that is
associated with a query and the impact of increasing the
number of sent queries.

In general, the computation time increases as Ë increases.
Fig. 21 shows a snapshot at Ô ρςπ, where we randomly
selected an LBS user who sends a privacy-protected query at
different levels of Ë. The PIR-based approach performs the
worst since it performs many computations to protect the
privacy of the query. Despite the times spent in the various
phases (i.e., the extraction, encryption, randomization, and
marking phases), our proposed LRF fragmentation technique
performs the best. The reason behind this is the efficient
employment of the bloom filter to enhance the processing time
of the query. Specifically, the help that is provided by the
ὴὶὩὨὭὧὸέὶ agent through the proposed CBI technique
efficiently contributes to the shortening of the query processing
time. In depth, the process of encapsulating the index part by
the bloom filter has a positive impact on the search time, as it
avoids searching in the empty cells.

The results that are shown in Fig. 21 are supported by those
in Fig. 22, in which the number of protected queries increased.
Again, the bloom filter is the underlying feature that
accelerates the answering of the queries, which is not utilized
by the other approaches.

Fig. 21. 4 vs. Ë, Ô ρςπȢ

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

64 | P a g e

www.ijacsa.thesai.org

Fig. 22. 4 vs. Number of sent queries, Ë φȟÔ ρςπȢ

D. Access Latency Ὕ and Tuning Time Ὕ Evaluations

In the previous subsection, the sending time of the query
(from the mobile device of the LBS user to the LBS server)
and the receiving time of the query's answer (from the LBS
server to the mobile device of the LBS user) are completely
ignored. When evaluating 4 and 4 , the two previous times
must be taken into account. We assume that the sending time
of the query is the same for all of the compared techniques
(i.e., D-tree, Density, and the proposed CBI). Fig. 23 shows the
access times for different numbers of sent queries.

As shown in Fig. 23, the proposed CBI technique
outperforms the Density and D-tree techniques. The main
factor in this is the migration of the ὪὶὥὫάὩὲὸέὶ mobile

agent back to the home machine, to deliver the answers to the
sent queries. Meanwhile, in both the Density and D-tree
techniques, a significant amount of time is needed to search for
the queriesô issuer (since it is considered an MO) to deliver the
answers. In other words, the receiving time of the queriesô
answers is longer for these two methods than for the proposed
CBI technique. The access latency time reflects the efficiency
of the proposed CBI technique in solving the second part of the
real-time uncertainty problem (see Fig. 17).

Fig. 23. 4 vs. Number of sent queries, Ë φȟÔ ρςπȢ

Fig. 24. 4 vs. Number of sent queries, Ë φȟÔ ρςπȢ

The results that are shown in Fig. 24 support those that are
illustrated in Fig. 23, but with higher tuning time values since
the LBS user spends additional time preparing the queries and
exploring the received answers. However, the proposed CBI
technique provides the minimum tuning time values. Since the
tuning time refers the time that mobile device of the LBS user
stays active, the proposed CBI technique reduces the battery
consumption of the mobile device. Short battery life is a main
drawback of user-based privacy protection approaches.

E. Evaluations of the Prediction Phase of the CB Technique

The migration of the ὪὶὥὫάὩὲὸέὶ mobile agent back to

the home machine contributes to solving the second part of the
real-time uncertainty problem, and the prediction phase in the
proposed CBI technique contributes to solving the first part of
the real-time uncertainty problem (see Fig. 17 above). In this
context, we evaluate the number of retrieved moving POIs and
the precisions of the locations of the retrieved moving POIs.

Fig. 25 shows the number of retrieved moving POIs when
the LBS user searches for the nearest 6 taxis that are located
within a 0.5 km range around different real locations of the
LBS user. For instance, in response to the query χπȟχπ
ȟÔÁØÉÓȟπȢυȟ"ÏÂȟ 3, 6, and 11 moving taxis were retrieved by
the D-tree, Density, and CBI techniques, respectively. The
Density technique outperforms the D-tree technique since it
uses the overlap among the cells to build the index. The
proposed CBI technique outperforms the Density technique
due to two factors: First, the index is built on the level of cells,
which accurately covers all the cells that are included in the 0.5
km range. Second, in the prediction phase, because of the
motion of the queried POIs, many additional POIs may enter
the cells (covered by the given range) from the surrounding
cells. Therefore, the prediction phase can include the POIs that
entered the range in the answer to the query.

Since the number of the retrieved POIs does not accurately
reflect the efficiency of the proposed indexing technique, we
evaluate the precision of the retrieved locations of the moving
POIs. Here, the precision term is the degree of matching
between the current location (i.e., the exact future location of
the moving POI) and the predicted one. From Fig. 25, we
select the nine retrieved taxis that are related to the query
ωπȟωπȟÔÁØÉÓȟπȢυȟ"ÏÂ for evaluation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

65 | P a g e

www.ijacsa.thesai.org

Fig. 25. Number of retrieved POIs, Ë φȟ2 πȢυ ËÍȟÔ ρςπȢ

Fig. 26. Locations precision of the retrieved moving POIs.

As shown in Fig. 26, the precision of the retrieved locations
is variable for both the D-tree and Density techniques. In
contrast, the stability of the precision of the locations that were
retrieved by the proposed CBI technique high: it varies
between 100% and 98%. This is due to the prediction phase.

VIII. CONCLUSION

With the impressive development of both wireless
networks and mobile devices, Location Based Services (LBSs)
have become popular. LBSs enable network users to perform
range queries or k-Nearest Neighbor (kNN) queries. However,
it is extremely important to ensure comprehensive privacy
protection, in addition to guaranteeing the efficiency of kNN
query processing. We propose a Wise Dummy Selection
Location (WDSL) approach for ensuring the location privacy
of kNN queries. To ensure a high protection level of location
privacy, the WDSL approach selects dummy locations that
satisfy two conditions: (1) the query probabilities of the
selected dummy locations are the same as that of the real
location of the LBS user and (2) the selected dummy locations
are distributed over a wide region to ensure resistance against
location homogeneity inference attack. Resistance against

query sampling attack, which targets the query privacy, is
considered. Extracting, encrypting, and randomizing the
sensitive units of the sent query based on a Left-Right
Fragmentation (LRF) technique results in robust defense
against the query sampling attack and ensures the query
privacy. The integration of the WDSL approach and the LRF
technique ensures the kNN query privacy during the sending,
processing, and responding phases. To manipulate the kNN
query efficiently, an index is built based on an efficient motion
model at the level of cells, in which the moving POIs are
moving. The index consists of two parts: a data part and an
index part. The data part is supported by a prediction phase,
which estimates the future locations of the queried moving
POIs. The index part is encapsulated by a bloom filter to speed
up the response to the KNN query. In terms of resistance
against inference attacks and query analysis attacks,
computational cost, and number and accuracy of retrieved
moving POI locations, the proposed system outperforms
similar approaches and techniques.

In future work, we intend to ensure the integrating of agents
security and privacy. In addition, we intend to develop
defenses against other inference attacks, such as map matching
attacks and semantic location attacks.

REFERENCES

[1] Dardari, Davide, Pau Closas, and Petar M. Djuriĺ. "Indoor tracking:
Theory, methods, and technologies." IEEE Transactions on Vehicular
Technology 64.4 (2015): 1263-1278.

[2] Wernke, Marius, et al. "A classification of location privacy attacks and
approaches." Personal and Ubiquitous Computing 18.1 (2014): 163-175.

[3] Shin, Kang G., et al. "Privacy protection for users of location-based
services." IEEE Wireless Communications 19.1 (2012).

[4] Yi, X., Paulet, R., Bertino, E., & Varadharajan, V. (2014, March).
Practical k nearest neighbor queries with location privacy. In Data
Engineering (ICDE), 2014 IEEE 30th International Conference on (pp.
640-651). IEEE.

[5] Ni, Weiwei, Mingzhu Gu, and Xiao Chen. "Location privacy-preserving
k nearest neighbor query under userôs preference." Knowledge-Based
Systems 103 (2016): 19-27.

[6] Yi, Xun, et al. "Practical approximate k nearest neighbor queries with
location and query privacy." IEEE Transactions on Knowledge and Data
Engineering 28.6 (2016): 1546-1559.

[7] Ma, Tinghuai, et al. "Protection of location privacy for moving kNN
queries in social networks." Applied Soft Computing 64.2 (2017): 485-
158.

[8] Dai, Jian, Zhi-Ming Ding, and Jia-Jie Xu. "Context-Based Moving
Object Trajectory Uncertainty Reduction and Ranking in Road
Network." Journal of Computer Science and Technology 31.1 (2016):
167-184.

[9] Zhang, Xu, et al. "A novel location privacy preservation method for
moving object." International Journal of Security and Its Applications
9.2 (2015): 1-12.

[10] Alrahhal, Mohamad Shady, et al. "AES-Route Server Model for
Location based Services in Road Networks." INTERNATIONAL
JOURNAL OF ADVANCED COMPUTER SCIENCE AND
APPLICATIONS 8.8 (2017): 361-368.

[11] Lu, Hua, Christian S. Jensen, and Man Lung Yiu. "Pad: privacy-area
aware, dummy-based location privacy in mobile services."
In Proceedings of the Seventh ACM International Workshop on Data
Engineering for Wireless and Mobile Access, pp. 16-23. ACM, 2008.

[12] Hara, Takahiro, et al. "Dummy-Based User Location Anonymization
Under Real-World Constraints." IEEE Access 4 (2016): 673-687.

[13] Pingley, Aniket, Nan Zhang, Xinwen Fu, Hyeong-Ah Choi, Suresh
Subramaniam, and Wei Zhao. "Protection of query privacy for

