(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 1, 2018

AgentBased Systerfor Efficient kNN Query
Processingvith Comprehensive Privadyrotection

Mohamad Shady AlrahHalMaher KhemakhefmKamal Jambi

King Abdulaziz Universit KAU)
Jeddah, Saudi Arabia

Abstrac® Recently, location based services (LBS) have
becomeincreasingly popular due to advances in mobile devices
and their positioning capabilities. In an LBS, the user sends a
range of queies regarding his knearest reighbors (kKNNs) that
have common points of interests (POIs) based orhis real
geqyraphic location. During the query sending, processing, and
responding phases, private information may be collected by an
attacker, either by tracking the real locations orby analyzing the
sent queries. Thiscompromisesthe privacy of the user andrisks
his/her safetyin certain cases. Thus, the objective of this paper is
to ensure comprehensive privacy protection while also
guaranteeing the efficiency of kNN query processindglherefore,
we propose an agenbased systenfor dealing with these issues.
The system is managed by three software agentd (Hi "Hag'l 1
"HHTHE “Hf &@hd’1 Tl "HTHI) AT I THT "HilEgenit executes a
Wise Dummy Selection Location (WDSL) algorithm to ensure
the location privacy. The mission of the'l "Hi "Hilagderit is
integrated with the mission of the’H'l 'H Hi "Hiagent Which is
to ensure the query privacy based on LefRight Fragmentation
(LRF) algorithm. To guarantee the efficiency of kNN processing,
the'l "I "H'Hi apBhi eitecutes a prediction phasdependingon a
Cell Based Indexing (CBI) technique. Compared to similar
privacy protection approaches the proposed WDSL and LRF
approaches showed higher resistance against location
homogeneity attacls and query sampling attacls. In addition, the
proposed CBI indexing techniqueobtains more accurate answers
to KNN queriesthan the previous indexing techniques.
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I.  INTRODUCTION

Location Based Services (LBSare servicesthat are
customized according to the location of the userrecent
years, LBS have received substantialattention especially
since GPSenabled devices (such asnart phonésbecame
popular. One offte most important advantagefd BS-enabled
applications istheir ability to searcHor the nearest Point of
Interests (PQJ). Searching for the nearest ROtequires
construction of a query on the LBS useside. Table |
summarizes the units of the constad query.

TABLE I. GENERAL FORM OF THELBS QUERY
Symbol <X, Y> POI R ID
. . . The dentity
Description Coordlnates_of _Querled Queried of theLBS
thereallocation | interess | range user

D Query (<X, Y>, POI, Range, ID) l

\_ Results
N/E i o s s e e e .
AV— ] -
w
.
LBS users, real locations

LBS server

Fig. 1. Classicalscenarioof using LBS applications.

As a generakxampleof LBS usageFig. 1 illustrates the
classical scenario of using LBShabled applications based on

{he query unitshat are listedh Tablel.

In Fig. 1, the LBS user constructs a quewgarding a
desired POland sends it to the LBS servdthen, the LBS
server proceses the query and semdback the results.
However, thisclassical scenarimvolvesrisk since the LBS
user is forced to construct the query based on his/her real
geographic location. This risk is directly related to the privacy
issue of the LBS user. Theason behindhis risk is that an
attacker can track theeal locationof the LBS user [1] or
intercept the sent query for analygisrposs[2]. In both cases,
the attacker can collect sensitive or personal information about
the LBS userswch as customshabits, religion or politic
leanings Then, this personal informatiotan bemisused to
conduct attacks inreal life, such as mugging, extortion or
stealing. According to [3], tletwo methodsof personal data
collection can lead to branches oftwo kinds of privacy.
location privacy and query privacy. Therefore, if we want to
achieve full privacy protection, we need to protecséte/o
kinds of privacy. However, achieving comprehensive privacy
protection requires protecting the query privaicyaddition to
the location privacy) atthe sending, processing, and
responding levelsComprehensivéBS privacy protectiorhas
not beeraddressdpreviouslyto the best of our knowledge.

Thequeried POI, are either static R@$uch as the nearest
hotels, hospitals, apors clubs in a defined range) or moving
POIs (such as the nearest taxis that will enter a defined range).
WhenanLBS user searches farmoving POI, it isreferredto
as arange quenor k-nearest neighbokiN) query[4]-[7]. In
manipulaing kNN queries,two major issuesirise Thefirst is
related to ensurintghe privacy protection athe kNN queries,
which in turnensures the privacy of the LBS uséhe £cond
is related to guaranteeing the accuracy of the retrieved results
(i.e., the retrieved locations of the queried moving PQ]) [8
[9]. Fig. 2 illustrates the uncertainty problem, which is
considered a redime problem.
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Time minimum boundingectangle (MBR) or grid cell. This, irn,
I leads to a poor manipulation dhe realtime uncertainty

problemfor KNN queries. Therefore, an efficient technidoe
| manipulatingkNN queries is a top requirement.

¥ Response (location+A distance)

l Response (location) ¢

In this paper, based on agent software technology, we
propose anagentbased sysem architecture for privacy

e ——

) 41 protection of LBS usersThree main missionare assigned to

I auery |/ i three software agente/hich areintegrated wittone anotheto

i 1 g > Location ensure comprehens.ive privacy protectiorkNN queries and
Moving  Movingobject_1 Moving  Movingobject_2 overcome the reaktime uncertainty problem.The main

object_1
location

location + T

object_2 “.,Vlocatiuni—A dislance.f
distance

location

contributiors of this workareas follows:

1 To protect the location privacy of LBS users, we
introduce a novel Wise Dummy Selection Location
(WSDL) algorithm. The objective of or WSDL
algorithm is to selectstrong dummy locations that

Fig. 2. Realtime uncertainty problem for-KIN queries.

According toFig. 2, the first Moving Object (MO), as a
query issuer, searches for a second M@cdse of the

continuous updatingf the locations of botlthe 1st MO and
the 2nd MO in the reaiftime temporal and spatial domsiithe
query issuer will receivan unmatched valu¢hat isrelated to
the exact location of the queried MDhe correctresponseo
the query is( | ocat i on must wp)deliverachtd then
query issuer locatio(iocation +i ).

Motivation. Many effortshave been proposed to protect
the privacy of continuoukNN queries anavercomethe real
time uncertainty problem. One of the most important proposed
approaches ighe useof dummies. In the context of LBS
privacy protection,a dummy is a querythat is costructed
based ora fabricated location or fabricated properti¢fsthe
LBS user surroundsis/her real location by some fabricated (or
false) locations, location privacy protection will be achieved
[10]-[12]. If the LBS user tampers witthe propertief the
query itself (changing the queried interest or P@ir
example), query privacy protection wiile asseed [13]. In
both cases, the current quemed] query) is mixed with a
number of false queries (dummies) so that the attacker cannot
recognize he real query amonthe dummies. This process
(i.e., mixing process) aims at achievingukonymityin which
the attacker cannadentify the real query amongXkdummies

cannot be distinguished from the real location of the
LBS user. The power of the proposed WSDL algorithm
comes from taking into consideration two main factors
1) lecting the dummy locations based ontitgtorical
query prolability of each celland 2) selecting dummy
locations that are far away froome anothebased on

the products of the distances among the selected
dummies. This, in turn, gives the WSDL algorithm
strong resistance against location homogeneity attack.

1 To protect the query privacy, we introduce a noveftL

Right Fragmentation (LRF)ased algorithm. Our LRF
based algorithm extracts the sensitivenits of the
constructed query, encrgthem and randomesthem
to ensureesistanceo query sampling attask

1 To enhance thereattime uncertainty problem, we

introduce a novel indexing technique calleell-Based
Indexing (CBI). Our indexing techniqu@erforms
efficient motion modeling with a prediction phase to
ensurethatthe exact locations of the queried M@=
retrieved

The rest of this paper is structured as follows: Section Il

However, achieving full privacy protection (i.e., location giscysses related work. The threat model is provided

privacy and query privacyby using dummiedas not been

Sectionlll . Our proposed agebiased architture is provided

addressed. Moreover, generating weak dummies allows &f section IV. SectionV discusses the security analysis. In

attacker to filter these dummieshereby determining the

dummies, some inference attacksuch as location
homayeneity attack [14] (which targets loat privacy) and
query analysis attacksuch as query saripg attack [15]
(which targetsyuery privacy) can be applied by an attacker to
circumventthe privacy protection methods. In both irfece
attacks and qugranalysisattacks, the attackeloesnot need to
know the accurate location of the LBS user to infer the
personal data. This, in turn, means tlzhieving robust
privacy protection is a pressing nee®regarding the
manipulation of kNN queries, many techniqudsave been
proposedsuch as R#ree [16], Dtree [17], and Grigpartition

: ) Section M, we presenthe metrics that are used. Sectionl VI
accurate location of the LBS user. Beyond generating Weabresents our

experimental results and the conducted

evaluations. Finally, we conclude the papebactionVIl I.

Il. RELATED WORK

This section reviews some of the related work on privacy
protection approaches ihe LBS research field. In addition,
we discuss some of the related work on technidbas are
used to manipulateNN queries.

A. LBSPrivacyProtection Aproaches

Many efforts have been made to classify the privacy
protection approaches in the domain of LBS, suchg$19,

[18]. However,thesetechniques rely on Euclidean space to (20} There are two major categories of LBS privacy protection

manipulate thekNN queries, whereas in many reatlife
applicationsthe objects' movements arenstrained in a road

approaches: serverbased approaches
approaches. In this subsection, we eewisome existing

and userbased

network. Moreoverthesetechnigues cannot be applied in road 4 proaches frorthe userbasedcategory thaim at protecting

networks because the network distance (i.e., the shortest pg
distance) cannot be computed using theundary of the

ation privacy or query privacy.
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The authors of work [10] proposed a dummy data arraytechniqueghat isused for manipulating thieNN queries is to
(DDA) algorithm for generatingdummy locations to protect retrieve approximate locations of the MOs as responses to the
the location privacy of LBS users. For a given regighich is ~ kNNqueries.
divided into a grid of cells, the key ideatbe DDA algorithm
is to calculatehoth the vertices and the edges of each cell in thiN
grid. Then, the DDA algorithmandomlyselecs some of the
cells as dummy locations. To select strong dummy location
and achievé&-anonymity, the DDA algorithm selects k cetlis
equal area. Similarly, [11] uses dummies to protect the locatio
privacy of LBS users, but with a differedummy generation
method. The authors proposed two algorithms. The first i
called CirDummy, which generates dummies based on a virtu
circle that contains theeal locationof the LBS user. The
second is called GridDummy, which generates dummies bas
on a virtual grid that covers theeal locationof the LBS user.

In [12], a dummy generation method calldee Destination
Exchange (DedEx) methodwas proposed. In this method,
historical motion trajectorieare usedo generate the dummies. one object An object a, is guaranteed tfo be the nearest

To ensure thathe generated dummies are strong, the -B&st iahbor 1o anv cli t is located inside thsameVC. In
method chooses the historical trajectories that intersect with tHRE1ghbor to any clienthat islocated inside thsameVC.
3], a newkNN query processing technique was proposed by

Many techniques have been propofmdmanipulatingthe
N queries. In [16], araditional method called Ptree was
Qroposedfor supporing range queriesThe P*-tree technique
efficiently manipulate range queries with static POIs, but not
moving POls. Another technique was provided in [1ifiich
IS called Dtree. The key idea dD-tree is to index the data
egions based on the divisions amdhemso that a binary b
i‘ee index is constructed. For a givieNN query, two main
phasesare used to find and retrieve the quer&@ls: region
é)c?rtitioning andlocationdependency query pressing based
on paging the Bree index. The authors of [18kveloped the
D-tree technique, proposiraGrid-partitioning technique. The
authors usethe Voronoi Diagram to partition the service area
into disjoint Voronoi cells (VCs)with each corresponding to

current trajectory of the LBS user. Therefore, the attacker i ;
confused when trying to determine the correct LBS user, whg@"d €t al. based on the density of the POIs. R f#btocol
was used to search for the POIls within a clocking region, so

has several motiortrajectories with different destinations. that the clocking reqiomasexpanded to overl ther region
However, the main objective of albf these previous at the clocking reglowasexpanded 1o overiap other regions
based orthe k-d overlapindex. Howeverjn all the previous

approaches was location privacy protectida.achievequery , ; : .
privacy protection, the authors of [13] proposed an approacffchniquesthe index is constructed fdarge regionsthereby
called DUMMY-Q. The DUMMY -Q approach dgends on the Ignoring the cellshat arencluded in the divided regions.

strategy ofgenerating dummie;, but tistrategy is applied to . THREAT MODEL
the queryrather than the location. Therefore, dummy queries , ) ) ) .
of different attributes from the same location are generated to N this section, we define the threat modeftich specifics
hide the real qugr To make the generated dummémnger, the attacker and his/her objective. In addition, we determine the
two aspets are taken into consideration: 1) the query contextVays that are used by the attacker to collect perab
and2) the motion model. information about the victimjn addition to inference and
analysisattacks.

Encryption techniquebave beeremployed to protect the ) L
privacy of LBS users. The authors of [21] proposed the idea oft- Attacker ancHis/Her Objective
using buddies to protect both locationiyacy and query The objective of the attacker is to obtajrivacy
privacy against the LBS server (a malicious party). Thisinformation about a particular LBS user, including location,
approach depends on notifying the friends (buddies) of an LB®OI and queried range. To achieve his/her objective, the
user who are located in the vicinityhereby avoiding the  attacker can track the location of the LBS user or analyze the
revelation of any personal data to the LBS servdhis  sent queryas shown irFig. 3 below.
approzh assumethat each user shares a secret with each of
his buddies and usesymmetric encryption techniques.
Another approach was proposed based using Private
Information Retrieval (PIR) [22] to achieve full privacy
protection. The key idea dfie PIR technique depends on the
quadratic residuosity assumption, which states that it i
computationally hard to find the quadratic residues in modul
arithmetic of a large composite number for the product of tw
large primes. Therefore, the LBS server can pscasd B

In the context of the threat model, we define two terms:
passive attack and active attack. In a passive attacK, B8y
usercan act as an attacker. In an active attack, the LBS server
(or its maintainer) is an attacker and all the information (related
o the trajectories of the LBS user's motion) that is stored in the

BS server is accessible. Since an active attack is stronger than
Oapassive attack, we only addresgiveattack.

answer the query without knowing any sensitive information
about the query.

Query (<X, Y>,POIl,Range, ID)

Tracking Analyzing

B. Techniques of kNN @gry Manipulation \

The Global Positioning System (GR®)hich isintegrated _ "3{(_________ _____R_e_sfl_tf
with the mobile devices of the LBS useaslows the users to Ay
obtaintheir locations from the satellite and send them to the ’%’ @_ 2
LBS server. Duringnovementthe locations of the LBS users L L L N, ~
are continuously updatesh the LBS server siddhis results LBS users, real locations "’%},§/ LBS server
in inaccurate retrieved locations when the LBS user asks for ' _ _
the kNN MOs as BIs. Therefore, the final goal of any Fig. 3. Attacking the privacy of LBS users.
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B. Inference Attacks and Query Analysitacks

The LBS server (an attacker) can apply inference attacks

such as location homogeneity attacknd query analysis
attackssuch as query sampling attack.

In alocation homogeneity attack, the attacker analyzes the

locations of all LBS users. If thei positions are almost
identical, then the position information of each member is

revealed. For instance, if the users are located in a place tha
represents a landmark such as a hospital, the attacker can infecovered

that those users (including the victim) hareblems related to
their health without needing to accurately identify their
locations Fig. 4 illustratesalocation homogeneity attack.

Fig. 4. Location homogeneity attaciH) hospital or medical area, (S) sprot
cub orathletic area(R) resturant orrestarea

In aquery sampling attackhe attacker employs thmeven

Vol. 9, No. 1, 2018

selectorp; =I»{  predictor

fragmentor,

area

[e:8 ﬂ.

Mobile device

Un-trusted LBS

Cell server
Fig. 6. Ouragentbasedarchitecture.
TABLE II. AGENTS
Agent Name | Type Main M ission Location
- s A ) Location privacy Each mobile
3 Al AAQ| Stationary protection device
&OACI ATl Mobile Query privacy Each mobile
protection device
s ok oo . Uncertainty reatime
0 OA AE A Stationary problem solution LBS server

A. Roles oflte Agents
] -JLJ«DThis stationary agent executése Wise

purposs. This attack targets isolated users in sparse regisn
illustrated in Fig 5. Therefore, it relies on the trafficasistics
of the environment wherdn¢ users are located. In detdiie

attacker tries to calculate a probability distribution function of

the user location over a given area. If thistributionis not
uniform, thenthe attacker can determine the areaerelthe
user is located with a high probabilitgnce the location of the
victim is determined, the attacker focusesaoalyzingthe sent
queries.

N

@
E
D

‘o

A
L

Fig. 5. Query sampling attack.

IV. OURPROPOSEDPRIVACY PROTECTIONARCHITECTURE

In this section, we provide oumgentbased privacy
protection architecturdollowed by the roles of thagentsThe
details of the architecture are represented bya sequence
diagram.

The framework of the proposed architecture consistmof
untrusted LBS server (a malicious party) and a g@umobile
devices which areconnected via a network. The system is
managed by three agents Q4 ‘Qw 6 w0 Q& Q¢ and i
ni 'QQPasskown in Figb.

Tablell lists theagents anddentifiesthe main mission of
each ongits type, andvhereit is installed.

location privacy protection against the untrusted LBS server,
which can apply location homogeneity inference attack, as
described below.

1) Wise Dummy Selection Location (WD&pproach

The final objective of the WSDlapproachis to generate
strong dummy locations to protect the location privatyhe
LBS user. In the dummgeneration process, suitable locations
are selected that cannot be distinguished frontahklocation
of the LBS user. Consider a region divided into a grid of
cells Each cell has a probability of being queriedich is
based onpast queries This is referredto as the query
probability. For a given LBS user incall within' , randomly
selecing cells to be the dummy locatignss proposed in the
DDA approach10], for an exampleit is a poor strategyin
contrast, seleirtg the cells (to be a dummy locations) that have
the same query probabilities as the cell where the LBS user is
locatedis an efficient solutionFig. 7 illustrates this solutign
where' is divided according to the coordinaté$® .

Coordinate X

TR
l| : 4 l l 2 | Dooms
> ; =2 7‘ LJ 0.0347
£ | «[T= _
P L] IO — . = = =
:§ i‘ = ‘ t }7] [ L_‘,,, —] u 0.0213
§ | Hi == U Do,oma
: Il =2 [ ooes
e = =ZII=ZSZ
v L O
. Real User cels’ query probabity

Fig. 7. Dummy locations selection in the WSRlpproach
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In Fig. 7, if the LBS usewho islocated in the celihat is In Fig. 8,2 _represents threal location of the LBS user,
identified by row number five and column number thfiee, and$ p b ¢ hand$ o represent the dummy locations,
the coordinates C[5, 3]ants to protect his/helocation  where the query probability @ach dummy location equals the
privacy by achieving 4nonymity level (i.e., k=4), he/she can query probabilityof thereal location Let the distance between
select threef thecellsthat aremarked bythed sy mb o | .twoPoéints@ 4€and0 4begiven by B A E4D 4.$ p is
the query probability of any of the three selected cells equalge first dummy location that cae directly selected since it is

the query probability of theriginal cell, the attacker cannot the furthest location fror@ . If we want to achieve
determine thereal locationof the LBS user among thek A7 i T Uii £@Awk can choos&é ¢ or $o . If we
dummy locations. consider the sums of distances between pairs of dummy

In a formal way, for a given regioh that isdivided into locations, we can choose either of Eheﬁm or$o
¢ & cells, let N Drefers to the query probability of a cell. Pecause ( $¢ 2 s $¢ $ps= ($02 s

< - . . o $ p 9. However,to achievehigher resistancé ¢ is
ThenB NB p. Eachof theElocations (i.e., cellsihat are . : :
contained in a querywhich include onereal locationand preferredover$ o since it spreads dummy locationgtfeer.

E p dummies, has a conditional probability of being theTherefore instead of using the sum of distances between pairs

real location LetEDZ phgH8 HE denote the probability that of dummy locations, we caruse their product Note

. o . that $¢ 2 s $¢$ps > ( $0o 2 s
theE location is theeal bcation Then Dz — $ o $p s.Thisleads tothe choice of ¢ as thesecond

dummy location.

The entropy % of identifying thereal locationout of the

dummy set is defined as: Mathematically, the two previous factors form two
objectives in a MultiObjective Optimization Problem (MOP).
0 B nDz aé¢ "Q Dz Q) Let$, $p B¢ Mo MME denotethe set of real
The first factorthat is taken into consideration ithe and dummy locations. The MOP is defined as:
maximization of the entropy valuein the dummy selection &$
process. AOCAZ B Bz 11 C BDIb AEREMBE (3
-A@B ®z 11 C W2z ) Where & $ represents the finalselected dummy
locations.

2) Dangerof location homogeneity inference attack

If the LBS user selectellsC[5, 1], C[4, 2], and C[6, 3ps The first objective of the MORaspreviously optimized in
shown in Fig 8, some personal information can be inferred byformula 2becausgfrom all thegiven dummy locations (i.eall
the attacker withouthe need to determine theal locationof cells that form the regioh), we select a set of dummy
the LBS user. Thimccursbecause the three selected dummylocations based on similarity of query probability. This set is
locations are close tone anotherlf these selected dummy called the ®t of candidate dummy locationg $ , which
locations belong to a medicarea (which includebospitalsas  yields the maximum entropy value. Out of the candidate
a POls for example)thenthe attacker can infer that the LBS dummy locations, we optimizéhe second objective of the
user has a health problem. Therefore, it is better to select tHdOP asfollows, which determingthe final selecteddummy
following three cells for example,C[3, n], C[r1, n1], and locations:

Cl[1, 6]. e o oA
[L.6] &% AOCA® AEREmE (4)
To defendagainst loation homogeneity attaska second ) ) )
factor is taken into consideration the process of dummy In steps, we first sort the cells according to their query

location selectionfithe selected dummy locations must be farprobabilities. Second, we selecticells from outside the
away fromone another In this contextthe questionarisesas ~ queried range2 of the real queryK cells from each direction

to how to determine the furthestmmy location from theeal ~ around thereal locationof the LBS use2 ). All T Eselected
location of the LBS userand spreadsway from the other cells have the same query probability as the cell ofrélaé
dummy locationsThis can be accomplished lmplculating the  location of the LBS user. The Eselected cellsform the
distance between theal locationof the LBS user angéach  candidate set of dummy locations. Third, out of the candidate
dummy locatio based on the product distanegherthanthe set, we randomly select the furthelst p cellsasthe actual
normal sum distanceFig. 8 illustrates thestrategyof wise  and final dummy locations. Algorithm 1 provides details of the
dummylocationselection. WSDL approach

Algorithm 1: Wise Dummy Selection Location (WDSL)

Input: 1 n(query probability of each cell)y (the real
location of the LBS usgriQ(anonymity level).

Output: "O0 .

1: sort cells basd on their query probabilities;

2: for (direction=1; direction <4; direction ++)

3 60 OO0 n;
4. selectE cells from each direction arouid ;
Fig. 8. Wise dummylocationselection. 5 CountN 1
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6: while AT OAAKD AEAR OA

7 if nNo nny then

8: 60 NGO 0;

9 Count\ count + 1;

10 end if

11 end while

12: for (Q prNQ & Q&EQHO NQ

13; Dis-Array-cordi] N calculateQ Qi o B Q;
14 core candidatd max (DisArray-core);

15: for (Q prQ a QOGO I

16: QQ QO0E I0GE QAEIGD QQUNDNO Q
17: QQi QA FKE QQOOGO Q

18: Dis-Array[j] N QQi QQi

19 end for

203 SelecteeDummies[direction] N

21 {Top (Sort (DisArray),—)“ core candidate};
22 end for

23:00 N ¢z 3AT AAPAIAT EARDOAAOCET 1

24: output’'O0O

After generating the finalE p dummy locations, the

Vol. 9, No. 1, 2018

Original query <X,Y> POI R ID
Extraction <X Y> POI R ID
o M

Randomization <X,Y> POI R ID

Fig. 9. Fragmentation technique.

In the context of fragmentation, waeldressthe sensitive
units of the query andhe sensitive associations among the
units because the attackercfises on eitheone unit or the
associations among two or more units to infer personal
information. For instance, if the LBS user always queries the
nearest hospitals as POthenthe attacker can infer that the
LBS user has a health probleMeanwhile,if the attacker
associates the ID of the LBS user with the queried Rés,
he/she can accurateigentify the LBS user who has a health
problem. Therefore, protecting the sensitive association is more
important than protecting the sensitive units.

In this paper, the sensitive units of a given query are

i Qa 'Qwageni delivers them (as a set of coordinates) to thegsfodo /, and2). For the LBS user $it is not considered a

Qi ©"Qa ‘Q agerdt to start its missipas described below.

3 »=+[ O w1 Thedinal goal of this mobile agent is to
protect the privacy of the issued query dgrthe sending and
processing phases. Tocomplete this mission, the
"Qi & "Qd ‘Q @aderit tonstructs queries E  p queries based
on theE p dummy locationsthat arereceived from the
i 'Qa 'Qwayenisplus the query based on treal locaion of
the LBS user). Then, it executes a fragmentatpproach
called LeftRight-Fragmentation (LRF) to protect the privacy
of eachconstructedquery. After that, it migrates to the LBS
server, carrying the protected queriadiich aremanipulated
and aswered there withhe help then i 'Q'Q "Qgenté After

sensitive unit because the attacker cannot gain any private
information from the) $unit alone. Moreover, even if the
attacker associateh@) $unit with any of theother units,
he/she will fail to gather private information due to the
encryption and randomization processHEsus if the attacker
applies agueryanalysisattack, he/she wilbbtain for instance,

the following information:"the LBS user whosg $s (Bob-1)
issues a query froman unknown locationthat asksfor
nameles® / )thétare bcated in norexistentrange2". This
statement does not reveal any private information.

In detail the sensitiveunits are protected byuplic key
infrastructure (PKI) anthe sensitive associations are protected

the queries are answered on the LBS server side, tHy,yarandomization phase._TIftiBms our proposed LeRight
QG Q4a Q dnigrates back to the home machine (i.e., theFragmentation (LRF) algorithm.

mobile device of the LBS user) to deliver the results.

3) LeftRightFragmentation (LRFapproach
The™Qi @ "Qa 'Q agedtreceives the set of actual dummy
locationsthat weregenerated by the Q a ‘Q agént. Each
dummy location has its own coordinat&n . Let& $
denote the set othe coordinateof the generated dummy
locations, where:

&$ BdedBRMBMB M OO
For eachcoordinate8 O O & $ EE phcfB FE
p , a query is built according to tHermatthat is specifiedn
Tablel, which casists ofthe following units: oordinates of
the LBSuser@BQ queried interesd /, queried rang2, and

identity of the LBS user $Eachconstructedjuery is referred
to as an original query.

The key idea othe fragmentation technique is to extract
the sensitie data from the query, encrygitem and then
randonize them as shown in Fig9.

Formally, ~for —~a given  set of queries
1 NWNBWN kEAGAPKBE p , encoding a
guery N consiss of splitting it into two main partsthe left
part 0 andtheright part 0 . Both parts are necessdor
reconstrudhg the original query .

N o o (6)

In thefirst stepof the randomization phase, wkcethe 1D
unit in the middle since it is not considered a sensitive, data
shown in Fig10.

Original query <X,Y> POI R/-w-— ID

_ Leftpartquery /‘ Right partquery
Extraction
Encryption X Y ID POI R

Fig. 10. First step in the randomization phase of the LiBSedalgorithm.
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Original query ‘ XY> ‘ POI ‘ R/F_ D | Algorithm 2: Left-li[ghtvFrvagmentation (LRF)
Input: KNN @i 6 hienOOquery.
Leftpart query Right partquery Outp_ut: protectedd\,l‘l\vlu vgdnpb uﬁ@(_)Oquery. N
1: units{} = extract chhd U hY ;obtaining the sensitive data.
Extraction {7 "~ T T T T T R 2: units{} = encrypt(units Jusing 3DES algorithm;
Encryption | i i i i ! 3: newunits{}=null;
/l randomization
_ 4: count =0; randarray [5] ={-1};
Marking L1 L-2 ID R-1 R-2 5: while (count <5)
Fig. 11. Marking step in the randomization phase of the iREed 6 .randomva_‘lue = rand(4);
algorithm. 7 if (! contains (ranehrray, randonrvalue))
) ) ) ) 8: rand-array[count] = randorvalue;
Theleft partof thequeryincludesoneunit, which consists g Count ++:

of two subunits (X, Y). As for the right part query, it includes 10: end if
two units (POI and R)In thesecond stepf therandomization  11-end while
phase we mark each unit or sumit by a(letternumber)pair 12:for (i=0; i<5:j++)

that indicates the correctder in the orignal query as shown  ja. o\ units ’{i}= units{ rancarray([il }:

in Fig. 11. 14: Returmew-units,
In Fig. 11, for instance, R indicatesthat the encrypted
unit (POI) must belaceddirectly to theright of the ID unit.

By the LRFbased algorithm, all queries that are
constructed on the LBS user side are protected béfeirey

Since we have five different sitésr ordeing the units of  sentto the LBS server. Then, ahe queries are packaged and
the original query, therere p ¢ 0 T U p @robable carried together by tH@i & "Qd Q @agerdt to the LBS server,
sites) for randomizing the original units. Thus the  which in turn means that the queries are protected during the
Qi & "Qa Qagendcan periodically change the randomization sending phase. Because the HREedalgorithm mixes the
strategy, which prevents the attacker from discovering theeal qiery withE p dummy queries \hich areconstructed
correctorder of the original query's units. FIR illustrateone based on thé&e p dummy locations and selected by the
possible choicandthe reconstruction process. i 'Qa 'Qoagéni) and the mission of manipulating the queries

is assigned to thg i 'Q'Q "Gwenté the queries are protected

originalauery | <xy> | pol | R_4—mw | during the processing phas&he task ofprotecting the queries

Left part query Right part query
POI I

during the responding phase is included in the role of the

Nni QQQgente i
Encryption L X LY il o R I »m™  dThis ssationary agent receives teueries
M thatwere constructed and carried by @ @ Q@é& 0 énbbile
Randomizationj R 11 x {1 v i o || eor | agent.Then it manipulates each query individually. After
: 1 e [ ' [ * [ * I : answering Ehe‘ rgcgl\{ed queries, th_e results_are delivered to the
warking | Re W e H T T i R Qi ®"Qa Q aobilel agent, whichin turn, migrates back to
! i i g it ! the mobile device of the LBS user (i.the home machine).
W The process of manipulation requiteg reconstructionf the
E protected queries. This is performed according to the four
Reconstruet { X | vy i o {i por ii R | stepsthat arelisted above, where the same shared encryption
. N A - N key as wasused to encrypt the units of the queries is used for
Fig. 12. Left-RightFragmentation (RF) algorithm and reconstruction decryption. After reconstructing the queries, theé ‘QQ QOO € |

agent manipulates each query according to an indexing

Reconstructing the original query is necessary tfu techniqueas described below.

stationary D O A A Eagédi © perform its mission (i.e.,
manipulating and answering the queri€Be reconstruction 4) Cell-Basedndexing (CBI) technique
process igarried out irfour steps In the kNN queries, the LBS user asks for the neaFest
. o . moving POls that are locatedthin a specifiedange2 of the
;) Euttlng che It[r: unit 'Itn th]? trr:uddle. based the sh BS user. Because of the con_tinuous tipds of_the Ioca}tions
) Decrypting the units of the query based on the share(t e moving POIs, the locations of the queried moving POIs
encryption key betweerthe "Qi © Qa4 Qeagedti and the e ypdatedduring the serding and processingf the queries.

ni QQ 'Q@@\t‘l i _ In addition, the location of the query issuer is algmlated
3) Performingthe marking step. since it is considerechaMO. Therefore, we need to retrieve the
4) Moving the ID unit to the end. new exact locations of the queried moving POIs, and these new

. . . locations must be delivered the new exact location of the
fra Ar‘]lq%?]rt';?ig]mz rggJngrates the details of the lefight query issuer. Taachievethis, we model the motion of the
9 PP moving POls first. Then, thg i 'Q'Q "Cagent indexes the
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moving POlsand based on the indices, predicts th& new Cell 1 Cell i Cell it1 Cell j=n"n
locations. ] S— ]
The given region' hwhich is divided into & £ cells
of equal size, is modeledas anundirected graph 2( H ,
where( represents the headessid! representshe arms. The Y Index Data
numberghat are associated withe arms denote weightg |, 2| Part Part
which represent the physical distances betweerheadersas
shown in Fig 13. Fig. 14. General structure of CBI.
('I /.> hi (\ h2 Ce Data part of C1
"'-.\ ¢ \\ N : Headers and paths MO data
1 *‘-\i 1 1 \
hs oM h<\- o h, S h3 ha h2 h5 o4
N 7 1 5N P~
S I;T > o o
® h O ‘iA 2 _P
o4 < MNa SN L pmeeseemeeesd Sasmssssssressssesssssess ssesssssssssss Cesssssssss
\\ . lls; 19 / 110
J f 2 | g
. i1 ha 4 04 atmoment t
O|R / o o3 1 hi 1 1 P h1,ha
D, q IO m | 1| o a |
C 111 112 13 C h2 1 o cl 0.2
3 4 hs 1 0

Fig. 13. Modeling the motion of the POls. Fig. 15. Data part structure o .

In the context of the modethe terms path, boundary path,

\ The data part holds detailed information about bottcétie
and MO are defined as follows:

andthe MOs that are located within the cell. This information
mainly includes headers, paths, numberd@fs on the paths,

Definition 1. For a given undirected graph2(f , a : =IO
and data about the MOs, as illustrated in Fig. 15.

path 0 between a start headerand end headét , which is
illustrated as ablack line in Fig. 13, is expressed by the

A Two tables areshown in Fig 15. The first record in the left
following formula:

tableinQicatesthat there are 4 headeitsat arelinked to the
headerE and contained in# , which form two paths

OEFE  EFE /E BRE FE @)
. EE hEH andtwo boundary pathse lE hE hE
where,E represents sub pathin the casen which there  The rest of the records carry information about the physical

distances (or weights) of tHermed pahgboundary pathand

o , i the number of MOs on eackor example, the second record
Definition 2. For a given patf0, a pathis called a giateqhatx EFE p, and this patihasone movingobject

boundary pathif its start headeE " # and its end header The rignt tablestatesthat moving object moves on path

E N #hwhere# represents a cell and E(i.e., passing p EFE towardsE, and its currentocationis a disance

from one cell to anotherBoundary paths are shown as red of 0.2 from E .

linesin Fig. 13.

existmany headerfom the start tolte end.

Based on the informatiothat isrelated to the MO/( in
the right table of Figl5), the i 'QQ "Gehtécan calculate
the speed of the MO based dga two previous cosecutive
locations and momentas follows:

ODAAA 2 2 (9)

After calculating the speed, thgi ‘Q'Q"Qagéné tan
. _ ) . estimate the future location of the M@ c al cul ati ng
Based on the previous three definitions, four neighboringjistance iflustratedin Fig. 2 in the introduction section) and
cells are shown in Figl3. The MOs are illustratedsblack  adding it to the current location of the MO, taking into
boxes.# contains three boundary path&€ lE h EFE h  consideration the direction of the MO.

E FE , Which areweighted as 1, 1, and Bspectively. The
moving object | resides i on the pathbetweerE and
E , and movesn thedirectionof E hwith a distancef 0.4.

Definition 3. For a given patB, an MO that islocatedon a
path atime Os expressed by the following triple:
]

A (8)

whereA Henotes the current quation of the MXJenotes
the paththat islinked to the MO, and denotes the direction of
the MO from the start header to the end header.

The index part of a given cell contains the cell identifier
#r ; the area of the celvhich isrepresented by the width of
the cell x O E and the number d¥10s that ardocated in the
Based on the modethat was presented above, the ce|| |n addition, it includes the same previous information

N i 'QQQgentéicieates dmanages an index at the dellel. — apqut the eight cells that surround the given, eslishown in
This index includes two partanindex partanda data partas Fig. 16.

shown in Fig14.
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CoordinateX 18: returnPOQls;
B C,Wth e o Algorithm 4: Trip of "Qi & "Qd& 'Q dmobéle agent
; E] Cia Ci2 Ci3 wth Inputi TQl’j ('[]uery.
é I L L 1 Output: report results
g C21] Caz| Cos C23 1:agent new'Qi & "Qd& Q¢ [ctente an agent)
© I T 2: itinerary =new itinerary();
C31i €32} C33 3: itinerary Adddistenatior{ "LBS server","execute
v Grid of cells Index partof C, encryptionmethod);

4. itinerary.Adddistenatior{ "LBS mobile devie", "execute
report results method");

The index part will be the input of a bloom filter [24]. The 5: output: reportresults
benefit of the bloom filter is that it can give a direct answer
regardingthe existenceor nonexistencean element within a
set. We exploit thisto determine whethethereis an MOs
within the ells that arecovered by the range, which is
specifiedin the KNN query.If no MOs are found in a celit is
nat necessary to search inside the ceflus, we can move®
the next cellThisgreatly speeds up both the response time an
the processing timmof KNN queries sincéime is notwastel on
examiningempty cells

Fig. 16. Index part structure oft .

Since the query issuer (i.e., the LBS usermi®®, his/her
location changesiuring the sending and processing the query.
Therefore, the results must be delivered to the query issuer
according to Is/her new location. Because 8B & "Qd Q¢ 0 € |
is a mobile agentthat is created in the mobile device of the
BS user, which represents the home machineuist return
ack to the same home machine without any additional
predictions on the locath of the query issugas shown in
Algorithm 4. Therefore the future locations of the queried
In detail for a givenkNN query with a rang&, we first ~ MOs are calculateéh the prediction phaseyhile the future
determinewhich cellsarecovered byY8Then, the index part of location of the query issuer is naturally obtained due to the
each cell is used tdeterminewhich contain the queried MOs returning step in the itinerary. In other words,is not
using the bloom filter. For only the cells that have MOs, the necessary o compute the | distance.
actual search is performed on the data part of each limited cedf the realtime uncertaintyproblem are solvedas shownn
with a predictionphase to retrieve the future locations of the Fig.17.
queriedMOs. Algorithm 3 illustrates th steps of processing a ;...
kNNquery based on the proposed CBI technique. )

Part one, Prediction
<> Part two, Return to home machine

After retrieving the results (i.e., the predicted locations of
the queriedMOs), then | 'Q'Q "Ggemtéemncrypts the results and
delivers them to th&i & "Qda Q agert.iThéQi O "Qa Q& 0 € Response (location) %
mobile agent migates back to the home machine to deliver the l
results to the LBSuser. The process of encryptitite results

¥ Response (location+A distance)

e
r i
. . . . ) e 1
ensures the privacy protection of the queries during the ) M i
responding phase. Algorithm describesthe itinerary of the i Query |,/ 5 ;
Qi ®O"QA Q anobdlei agent. L — H { ———3> Location
Moving Moving object_1 Moving Moving object_2
i . i object_1 i + object_2  location+A distance -
Algorithm 3: CBI basedkNNquery processing pbject)  lecation+ T object2 t * '
Input: cells, 'Y real location , rang¥.
Output: POlS[] //moving objects. Fig. 17. Solved uncertainty redgime problem.

1: coveredcelld]=null;

2: for (i=1; i<=count(cells): i++) B. Details ofOur Proposed Achitecture

3 AEOOALAA Yo 080admd Yo 08Qdadad We use sequence diagrams to illustrate the general scenario
4 fEREOOAL AA Y of our proposed agediased architecture. Fig8 shows the
5: add (cell[i], coverezklis), stepsfor processinga kNN query with canprehense privacy
6 end for protection.

7: foreachcell in covered cells Selector o1 Fragmentor o Predictor

8 if (bloom (indexpart of cell)) LB e Addiil bl

9 fetch (datpart of cell) AR R Ra)

10: foreach path in datgpart Deliver ()

1% if (path contains MO) LRF Algorithm

12 futureell=prediction (MO); Migration O _

13 add(futucell, POIs); fExelar s

14 end if Encryption )
15 end foreach o R -t

16 end if Fig. 18. Sequence diagram of processing a KNN query.

17:end foreach
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V. SECURITY ANALYSIS Definition 2. An algorithm is locatiorhomogeneity attack
In this section, we discugs/o main security issueghe  'esistant if the probability of successfully guessing rial
first is related to the agents themselves #melsecondis  ocationofanLBSuseris very low.

related to the WSDL and LRBasedalgorithms which were Theorem 2. The proposed WSDL algorithm is location
proposed for privacy protection. homogeneity attack resistant.
A. Security of Agents Proof 2: We assume that the attacker complelebals the

The main obstacl¢éo the Widespread dep|0yment of the LRF'baSEdalgor"Eh.m, thergbyobtai_ning the location of the
mobile agent techno|ogy is the Security issuma'rticmar the LBS user. In addition, the information that tfle attacker hislds
problem of protecting a mobile agent from malicious hosts thathe query probability of each individual ceN Band allthe
may compléely block the agent or modifits carried data. submitted E locationsl H 8 H (i.e., themixture of realand
Sincethe scopen this paper is privacy protection, security is dummy locations). Led 3 referto the probability othe
out of scope Therefore we assume that all the agents areattacker successfully guésg whether A O A isQrue. The
secure. Specifically, the approatttat wasproposed in [25] is  WDSL algorithm isresistantto location homogeneity attack if
followed. The integating of privacy protectionwith security  the following two conditions are satisfied:
agentswill be consideredn future work. ) 0Y OYlnm o (10)

B. Securityagainst Inference Attacks and Query Analysis 2) Qb Qb é ¢ Q
Attacks

In this subsectionwe provethat our proposed architecture
is robust by discussing the resistancah&fWSDL algorithm
and the LRFbasedalgorithm against location homogeneity
attack and query sampling attackespectively. Since we
consideractive attack gs discusseth Section IIl), Tablelll
lists the capabilities of the LBS server (the attacker).

First, since the dummy locations are selected based on the
guery probabilitiesN Dof the cellsbeingsimilar to the query
probability of the LBS user's cell (i.e., his/her real locatiord, th
attacker canobtain no benefit from employing the query
probabilities to determine theeal locationof the LBS user.
Second, since we ha#submittediocations, the probability of

successful guessing theal locationis - . The previous
TABLEIll.  CAPABILITIES OF THEATTACKER (LBS SERVER) probability valie is the same for aff submitted locations
Cap- — because no benefis obtained fromknowing the query
No | Description probabilities of the locations. This means that the first
1 Can eavesdropnthe wireless channel. condition is satisfied. Third, since the dummy locations are
> Can monitor the current qUETebLBS users selected based_on the product of tlmiamcesrat_her ;harthg _
: L - sum of the distances, the second condition is satisfied.
3 Ssa;rsobtaln all the stored informatitimat isrelated to the LBS More_over, even if _the.attacker tr_ies to revers.e the WDSL
— —— : algorithm, he/she will fail to determine theal locatios of the
4 Can obtain the historic&cation data of the LBS users. dummies. That is because of the random selecfidgheofinal
: zl;nc())\;\i/tshtmh)e query privacy protection method (L-R&sed and actual dummy locations, which leads to uncertamthpe
KSOWS the Tocation ori =% hod dummy selection results. Therefore, the attacker can only
privacy protection method (WDSL .
6 algorithm). randomly guesshereal locationof the LBS user. As a result,

___ — ) the location homogeneity attafzls.
We follow the definitiontheoremproof style in discussing

resistance against inferenagacks. VI. METRICS

Definiton 1. An algorithm is query sampling attack In this section, we provide the metrics that are used for

resistant if the units of the sent query cannot be obtained arf¥aluation purposes. In this paper, two kinds of metrics are
correctly reordered. employed: privacy metrics and performance metrics.

Theorem 1.The proposed LR#Basedalgorithm is query ~A. PrivacyMetrics
sampling attack resistant. We use two privacy metricthe entropybanda metric that
Proof 1. Obtaining the units of a query requires is derived from th entropy. To evaluate the location privacy,

eavesdroppingn the wireless channel. Since a cryptographic"\’.e employ%to quann_fy the privacylt is better to achieve a
technique (PKI) is used to protect the sensitive data (the unit¥9her¥value.%is defined by formula 1.

of the query), the attacker cannot obtain the units. Moreover, Suppose an LBS user sendgueryto dummy locations to
even if the attackewereto successfully break the encryption protect his/her privacy. The highest entropy ealbat can be
phase, he/sherould needo form the query in a correct order achieved i I &, which is achieved when all the submitted
due to the randomization phase. Furthermore, if the attackegcations have the same probabilifiybeing treated as theeal
tries to reverse the LRBasedalgorithm, he/she will fail locationof the query issuer (LBS user). Therefore, if the LBS
because of the periodithanging of he query’s units in the yser achieves an entropy value that is less ithen€ , the
LRF-basedalgorithm, which confuses the attacker andtésr  extent to which the privacy was breachmdthe attacker (LBS

him/her to randomly guesthe correct order of the units t0 server)willbel I € %. As time progresses, the attacker

form the original query. This means that the query samplingichieves a small success with each sent query. The sum of

attackfails. these small successes represents the degree of daagtre
6l|Page
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privacy will be compromised which represents the second
privacy metric.
More formally, let h h Bh refer to the

moments at which the LBS user issues queries, where each

query is protected bl p dummy locationsThe degree of
danger$ is defined as:

$ 11 €

When an encryption technique is used to protect the
privacy, no privacy metric is used to quantify the privacy. This
is clearly statedin the survey in [3]. Therefore, we rely on a

performance metric for evaluating the query privacy
protection.

B % MKEAOA (11)

B. PerformanceMetrics

Since we used encryption in the proposed {@Bed
algorithm to protect the query privacy, we introduce the
computation timet
time refers theime that isspent on both sidethe LBS mobile
device's side anthe LBS server side). On the LBS mobil
device's side, thecomputation includes thdime spent
constructing aquery based on a dummy location and passin
sensitive ung, which is equal téhe sum of the durations of the
extraction, encryption, randomization, and marking phases.

4 4 4 4 4 12)

On the LBS server side, tlemmputationtime is the time

e

for evaluation. Here, the computation E

Vol. 9, No. 1, 2018

TABLE IV.  PARAMETER SETTINGS
Parameter Setting
Number of cellsT 1 POTP QT
Number of headerq 21,103
Number of arms! 21,246
Number ofusers 10,000
Number of moving POls 500

For comparison we selected three dumrmased
approachesfor location privacy protectian DDA [10],
CirDummy [11], and DdsEx [12]. TheBuddies [21] and PIR
[22] approachesire selected for query privacy protenticAs
kNN query proessing techniques, we selied Dtree [17] and
density [23.

B. Evaluationsof ResistancégainstAattacks

There is a direct correlation between e AT 1
el and theresistanceagainst attacks because a higher
AT 1 T Ulevelpravideshigher resistance. Increasing the
AT T 1 Ulle#D kkquires increasing th@umber of
generated dummies. Therefore, based on the entropy value, we
first measure the privacy protection level agaitist E

AT T T Ulleked) Uassuming that the defensesf the
ragmentation techniquieave beeroroken. Then, we calculate

the number of LBS usethat reachdangerous states based on
the$ privacy metric.

Fig. 19 below shows a snapshot at a time progress of 120
minutes. Among the approaches, the DDArapch performs

lev

that is spenpreparing the query (i.e., reconstructing the query)the worst because DDA fills the array of dummies by selecting

which is equal to the sum of the duratiasfsthe decryption,
marking, unitordering, and processing phases.

4 4 4 4 4 (13)
Thus, the computatiotime is defined as
4 4 4 (14)

To evaluate the proposed indexing technique, we use tw
times as performance metriaecesdatency and tuning time.
Access latency4  refers the elapsedime between the
moment when a query is issued and the moment when it
satisfied. Therefore, it depends#én as follows:

4 4 4 4 (15)

The tuningtime4 is thetime that themobile LBS user
stays activédo receive the reqeéed data.

VII. EXPERIMENTAL RESULTS ANDEVALUATIONS

A. Simulation Setup

In this paper, Matlb software is used to implement the
proposed algorithms with the help of Java Agent
DEvelopment Framework (JADE). The performance

locations in a random way based on the principle fita
dummy locations must be equal in axebhus the entropy of
the dummy locations mainly relies on the current query
probabilities of the grid of cells. The CirDummy approach
slightly outperforms the DDA approaciihat is becausd¢he
selected dummy locations are limited by a virtual circle. Since
the variation of the query probabilitiés not largewithin the
8ircle, which coversonly a few cells (a small region), the
corresponding entropy e is only slightly higher. The Dest

Ex approach outperforntgoth DDA and CirDummy. The main
factor that contributes tihe enhancmentof the entropy values

IS the directionwhich may be changetb includemore cells
with the same querprobability,. Compared to the previous
approachesthe WDSL approach performthe best. The
underlying reason is that the dummy locations are selected
based orhavingsimilar query probabilitieto the real location
This guarantees much higher entropy values and highe
corresponding privacy levels.

Regardingto the evaluation based on the privacy
metric, we evaluated the situations of LBS users under location
homogeneity attack. In this comte a threshold is defined
O E O v at which the LBS user is consideredinerable
to attack by the LBS server. The level of anonymity is fixed to

evaluation is simulated on a Genuine Intel(R) 2.4 GHz PC withE ¢ (i.e., at any moment, the sent query is protected by

4.00 G RAM, running Microsoft Windows 7 Ultima.
TablelV lists the parametesettings. A data base is constructed
for the moving POIs, where timestamps attachedto each
POI and each queryThe query probabilityis generated
randomly withthe help of theGoogle Maps API.

five queries which arebuilt based on dummguey locations).
Twenty LBS users are randomly selected from eaftlhe
comparedapproacksand a snapshot a p ¢ 7is teken as
shown in Fig20.
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8 - . TABLE VI.  PERCENTAGEOF ENCROACHMENT OF THEPREDEFINED
—#—DDA : sk THRESHOLDS
7r CirDummy ; § a 3
e ‘?v;s;fx s Wy Try NO of LBS Percentage of encroachment
K «| <l ,
- B NO users WDSL | Dest | Cir DDA
o5t s 1
;4 */_;1/" 1 40 130 | 0.7 | 0.11 0.5 0.62 | 100
2 =S ]
£ ol , i 2 60 140 | 0.65| 0.12 | 0.53 | 0.78 | 100
3 o : i 1
& /"'V e e : 3 80 150 | 0.6 | 0.2 0.4 0.61 | 100
2| : g RO e 4
S et 3 " % 4 100 160 | 0.55| 0.18 0.41 | 0.55 | 100
1t J
Ot 5 120 170 | 0.5 | 0.13 0.34 | 0.53 | 100

Fig.

19. Entropy vsE, O p ¢at

C. Evaluationsof Computation Costs

We use thed performance metric tcevaluate the
efficiency of the proposed LRBased approachgainst the

DDA buddyand PIR approaches. Two aspectscamsideredn the
- , e oy evaluation: the impact of increasing thé& value that is
ol % e associatedwith a query andthe impact of increasing the
o ot K ! Lol number of sent queries.
= \ /AN \
s | A\ ¢/ k ¥ [\ ' In general, the computation timiecreasesasE increases.
g 15 i ' A : A\ Fig. 21 shows a snapshot @ p ¢ ,iwhere we randomly
s /N \: / [\ A selected an LBS user who sendpravacy-protected query at
S B A RV AN A different levels oft. The PIRbased approach performs the
J f*’*f § & i N AAF—k worst since itperforms many computations to protect the
0N R S R R privacy of the queryDespitethe times spentin the various
: e phases (i.e.the extraction, encryption, randomization, and

(=]

R O I S B D B O (A
12 3 4 656 6 7 8 9 10 11 1213 14 156 16 17 18 19 20

LBS User's Number

marking phases), our proposed LRF fragmentation technique
performs the best. The reason behind tkisthie efficient

Fig. 20.$ valuesfor 20 LBS userst 9,0 p qar employment of the bloom filter to enhance the processing time
of the query. Specifically, the helfnat is provided by the
TABLEV.  COMPARISONOF VULNERABILITY STATUSESOFLBS USERS ni 'QQQagerdt ithrough the proposed CBI technigue

Settings:"| T Mi7s 8 efficiently contributes tahe shortering of thequery pocessing

gs: i time. In deph, the process of encapsulatithge index part by
Approadh Term ’;‘;‘ggg;‘g"t‘;gsshtggt Eﬁgg;‘éi%ee‘:ft the bloom filter has a positive impact on the search tasé,
e 2 NE avoids searching in the empty cells.
DestEx 10 05 The resultghat are shown ifig. 21 are supported by those
gg‘z\“mmy ;8 2-080 in Fig. 22, in which the number of protected queriesreased

Again, the bloom filter is the underlying featurthat
Table V shows that all LBS users in the DDA approach accelerateshe answeringf the queries, which is nattilized
exceeded the threshold. That is because all the selected dumiy the other approaches.
locations are close tone anothesince they are formed by the 90 .
vertices and the edges of the grid. More than thresters and % LRF : ; : : ; : :
half of the LBS uers exceeded the threshold in CirDummy and 80| —e—Buddies [ 7 i
DestEXx, respectively. Compared to DDA, the C|rDummy has =70 LTS~ PIR
higherresistance against location homogeneny attack since the 8 : :
radiss of the circle may be enlarged to inclusteme dummy
locations that are far away frothe real location of the LBS
user. DesEx achieved a higher resistance than CirDummy
because the directionsan be changed to includdummy
locations that are further away from the real locatiorhe
proposed WDSL approach performs the best since itheas t
minimum number of LBS users that exceeded the threshold,d 20
and consequentlythe highest resistance against the location 44
homogeneity attack. That is because the dummy locasians I : : : ; , _ :
selectebased on the product thfeir distances. 3 6 9 12 15 18 21 24 27 30 33 36

2]
o

o]
o

omputation Time (s
& &

. K
Under different thresHd values, snapshots, and nurnber .
Fig. 21.4 vs.E O p ¢8t

of LBS users, Tabl¥1 supportgheresults in Tablé/.
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b i i i i i i L i i Number of Sent Queries
2 4 6 8 10 12 14 16 18 20 22 24 ] L »
Number of Sent Queries Fig. 24.4 vs. Number of sent querieg, ¢hO p ¢8t

Fig.22.4  vs Number of sent queriel, ¢fO p 8t The resultghat areshown in Fig 24 support thosthat are

. : . . illustrated in Fig 23, but with higher tuning time values since

D. Access Latency’Y and Tuning Time"Y  Evaluations o BS yser spends additioniahe preparing the queries and
In the previous sudection, the sending time of the query exploring the received answers. However, the proposed CBI

(from the mobile device of the LBS user to the LBS serverkechnique provides the minimum tuning time values. Since the

and the receiving time of the query's answer (from the LBSuning time refers the timénat mobile deviceof the LBS user

server to the mok# device of the LBS user) are completely staysactive, the proposed CBI techniqueducesthe battery

ignored. Wherevaluatingd and4 , the two previous times consumptiorof the mobile deviceShortbatterylife is a main

must betakeninto accountWe assume thahe sending time  drawbackof userbased privacy protection approaches.

of the query is the samfer all of the comparedechniques , . .

(i.e., Dtree, Density, and theroposed CBI). Fig23 shows the E. Evaluationsof the Prediction Phase ahe CB Technique

access timefor different numbes of sent queries. The migration of théQi @& "Qd& Q énobilel agentack to

the lome machine contributes to solvitige second part of the

reattime uncertaintyproblem, andhe prediction phase in the

proposed CBtechnique contributes to solvirge first part of

the reattime uncertainty problem (see Fi§7 above). In this

context, we evaluate the number of retrieved moving POls and

the precisiorof thelocations of the retrieved moving POls.

As shown in Fig 23, the proposed CBI technique
outperforms the Density and -ee techniques. The main
factor in this is the migration of théQi & "Qd& 'Q imokild
agentbackto the home machingg deliverthe answerso the
sent queries.Meanwhile, in both the Density and ee
techniques, a significamimount of timds needed to search for
the querieSissuer (since it is considered Mi®) to deliver the Fig. 25 shows the number of retrieved moving POIs when
answers. In other words, the receiving time of the quiriesthe LBS wser searches for the nearediagis that are located
answers is longdor these two methodbanfor the proposed  within a 0.5 km range around different real locations of the
CBI techniqueThe access latency time reflects the efficiency LBS user. For instancén responsdo the query X X T
of the proposed CBI technique in solving the second part of thBO A @@ | A3, 6,and 11 moving taxiswere retrieved by
reattime uncertainty problem (see Figj7). the D-tree, Density, and CBI techniqyesespectively.The

Density techniqueoutperformsthe Dtree technique since it
—k—csl uses the overlammong the cells to build the index. The
o—Density proposed CBI techniqueutperformsthe Dersity technique
—5—Ddree | fresae R e due to two factorsFirst, the index is built on the level of cells,

I @ which accurately covers all the cefiat areincluded in the 0.5
8001 e s 5 ; v 4 km range. Secondn the prediction phase, becaust the
: g motion of the queried POls, many additional P@iay enter
, the cells (covered by the given range) from the surrounding
600 - o G i ) A cells. Therefore the prediction phase camcludethe POls that
o % + enteedthe range in the answerthe query.

0P — : .
400 2 +,_,.-F 1 Since the number of the retrieved POls does not accurately

v Y +,+ reflect the diciency of the proposed indexing technique, we
200} i s B o b Tl 1 evaluate the precisioof the retrievedocations of the moving
Y ‘ POls. Here,the precision termis the degreeof matching
‘ ‘ ;4 : = : between the current location (i.e., the exact future location of
4 6 8 10 12 14 16 18 20 22 24 the moving POI) and th predicted one. From Fi@5, we
Number of Sent Queries select_the nine retrieved taxibat arerelated to the query
Fig. 23.4 vs. Number of sent querie§, ¢ p ¢8at wtw T FOA @@ | Aor evaluation

1200

1000 -

Access Latency (sec)
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guery sampling attack, whickargets the query privagyis
considered Extracting,
sensitive units of the sent query based on a-Riafht
Fragmentation (LRF) techniqueesults in robust defense
against the query sampling attack and ensures the query
privacy. The integratiof the WDSL approach anithe LRF
technique enses thekNN query privacy duringhe sending,
processing, and responding phases. To manipulat&Nhe
query efficiently, an index is built bad®n an efficient motion
model at the level of cellsin which the moving POls are
moving. The index consists ¢fvo parts:a data part andn
index part. The data part is supported by a prediction phase
which estimats the future locations of the queried moving
POls. The index part is encapsulated by a bloom filter to speed
up the responséo the KNN query. In terms of resistance
against
computatiomal cost and numberand accuracy of retrieved
moving POI locations the proposed systenoutperforms

encrypting, andandomizing the

infeence attacks and query analysittacks,

similar approaches and techniques.

In future work, we intend to ensutleeintegratingof agents

security and privacy. In addition, we intend to develop
defenses againsther inference attacksuch as map matching
attacls and semantic location attasck

(1]

(2]
(3]
(4]

(5]

Fig. 26. Locationsprecision of the retrieved moving POls.
(6]
As shown in Fig26, the precision of the retrieved locations
is variable forboth the Dtree and Density techniqueb
contrast, the stabilitgf theprecisionof the locations that were
retrieved by the proposed CBI technique high:varies
between 100% and 98%hisis due to the prediction phase.

(71

[8]
VIIl. CONCLUSION

With the impressive development of both wireless
networks and mobile devices, Location Based ServicesgLBS [°]
have become populatBSs enable network users fmerform
range queries or-Kearest Neighbork(NN) queies However,
it is extremely important to ensureoroprehensive privacy
protection, in addition t@uaranteeing the efficiency &iNN
query processingWe propose a Wise Dummy Selection
Location (WDSL) approackor ensumg the location privacy
of kNN queries To ensurea high protection level of location
privacy, the WDSL approach selects dummy locatitivet
satisfy two conditions (1) the query probabilities of the
selected dummy locations are the samethas of the real
location of the LBS user dn(2) the selected dummy locations 13]
aredistributed over a wide region to ensure resistance againLt
location homogeneity inference attacResistance against

(20]

(11]

(12]
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