
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

129 | P a g e

www.ijacsa.thesai.org

Runtime Reasoning of Requirements for

Self-Adaptive Systems using AI Planning Techniques

Zara Hassan
1

Department of CS & IT

The University of Lahore

Lahore, Pakistan

Nauman Qureshi
2

School of Electrical Engg. &

Computer Science,

National University of Sciences and

Technology,

Islamabad, Pakistan

Muhammad Adnan Hashmi
3
,

Arshad Ali
4

Department of CS & IT

The University of Lahore

Lahore, Pakistan

Abstract—Over the years, the domain of Self-Adaptive

Systems (SAS) has gained significant importance in software

engineering community. Such SAS must ensure high

customizability and at the same time effective reasoning to meet

their objectives by meeting end-user goals more effectively and

efficiently. In this context, techniques related to Automated

Planning have acquired substantial precedence owing to their

adaptability to diverse scenarios based upon their enhanced

knowledge extraction from available Knowledge Base. These AI

planning techniques help in supporting self-adaptation

mechanism of SAS. We have investigated these techniques to

perform runtime reasoning of SAS requirements. This paper

proposes an architecture for implementing the reasoning

component of previously proposed Continuous Adaptive

Requirement Engineering (CARE) framework. The proposed

architecture has been experimentally verified by implementation

of a prototype application using JSHOP2 (Java implementation

of SHOP2, an HTN Planner).

Keywords—Self-Adaptive Systems (SAS); reasoning;

requirement engineering; AI planning; CARE framework; runtime

reasoning of requirements

I. INTRODUCTION

The software systems are increasingly expected to satisfy
their functional and non-functional requirements, even under
changing conditions in their environments, including
fluctuations in user demands (requirements), resource
availability (system parameters) and the presence of cyber
adversaries. Self-Adaptive Systems (SAS) address this need,
since they are required to modify themselves according to the
changes in the end user requirements or the environment in
which they operate or the system parameters, to remain
operational [2] [24]. Such systems have the ability to
continuously monitor their own state and the state of their
environment, and to autonomously change their structure and
behavior to operate as best as possible, with respect to a
defined goal in the presence of run-time changing conditions.

The desired end states (goals), as defined by the user and
dictated by the system itself for computational purposes, are
translated in the form of explicit requirements. Requirements
engineering approach provides the basic considerations for
determining the performance of evolved system. However,
pragmatically the existing requirements engineering (RE)
techniques work well where requirements of system are well

understood at design time and evolve very slowly with respect
to time. These techniques fail to provide solutions in abruptly
changing requirements, hence rendering them unable to
support Self-Adaptive Systems (SAS) where changes in all
domains are very dynamic [1].

Self-Adaptive Systems manifest themselves into
uncertainty in both context and lack of knowledge thanks to
the ever-changing variables [25]. It leads to a scenario where
system is made to take critical decisions for adapting itself
with respect to set goals (whether to adapt or not, when to
adapt, which adaptation technique to use, etc) in a dynamic
and partially observable environment. The authors in [27]
argue that contextual uncertainty in the operating environment
requires to be reduced in order to improve the performance of
SAS.

In the literature, a few approaches attempt to handle
uncertainty merely by including it in the description; whereas
some approaches rely on monitoring of context but lack the
ability to alter the system. Hence, the environment remains
uncontrollable and true implementation of adaptation logic
[26] cannot be affected thus leading to undesired adaptation
results. This paper proposes a model that enables the SAS to
continuously monitor the contextual variations and is
equipped with the mechanism to alter itself at runtime
according to the altering requirements.

The environment modelling approach that we have
adopted bears a few resemblances with the model of artifacts
proposed in [28] and [29]. Major dissimilarity between these
two approaches is that in [29] an artifact denotes a physical or
computational entity in the environment (e.g. a mouse, a
sensor, a web-service etc) whereas in [28] an artifact connotes
a conceptual or logical entity (e.g. a car, a house, a place etc).
However, our approach is hybrid where an artifact can be
physical or logical entity.

In order to effectively reason about the modelled artifacts
stemming from dynamic environment, this paper expands the
Continuously Adaptive Requirement Engineering (CARE)
framework proposed in [3]. CARE is both goal and user
oriented RE framework. This paper extends the reasoning
component of CARE framework, which provides effective
decision making to meet the end-user preferences based on

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

130 | P a g e

www.ijacsa.thesai.org

hatched goal models, by effective use of AI planning
techniques.

Rest of the paper is organized as follows. Section II
presents a brief literature survey leading to the research work.
It is followed by proposed architecture of reasoning
component in section III. A case study is presented in section
IV that demonstrates the proposed architecture along with its
goal model, the planning domain description representation
and its integration with Java based Self-adaptive application.
A brief evaluation of proposed model through developed
prototype application is presented in section V. Section VI
concludes the paper.

II. LITERATURE SURVEY

This section investigates various semi-plugged in voids
involved in the realization of SASs with particular focus on
their implementation at runtime and their ability to meet the
requirements posed by system, context and user.

A. Requirement Engineering for SAS

In software development life cycle, requirement
engineering is the ground activity upon which the working of
whole system depends. Work of Fickas and Feather presented
in [17] on requirements monitoring is a key contribution
towards run-time requirements. Continuous requirements
monitoring is necessary because of the deviation of system
behavior at run-time from requirements model, which
ultimately triggers the demand for system moderation. Such
deviations need to be agreed with the changing conditions of
environment so that the reasons can be identified and suitable
adaptation is achieved. This is called monitoring and
switching by Salifu in [32].

Berry, Cheng, and Zhang identified four-level model for
engineering requirements posed by dynamic adaptive systems
[9]. Level 1 includes traditional RE activities done by analyst.
Level 2 includes run-time adaptive requirements. Level 3
includes requirements engineering done by analyst to
determine the adaptation mechanism which actually enables
the system to adapt. Level 4 includes adaptation requirements
that are associated to specific adaptation solutions.

We also critically analyzed applicability of existing goal-
oriented RE approaches related to our work.

TROPOS methodology for goal modeling is used by
Penserini et al. [4] to model run-time changes in user needs
and preferences. It involves BDI (Belief-Desire-Intention)
agents, which may switch from one behavior to another
depending upon environmental conditions and changes in
user needs.

Liaskos et al. [31] uses requirements driven approach to
address the problem of changing requirements by configuring
software using goal-oriented approach. They model user’s
high level preferences as goal alternatives and then match
them with the system’s configurations. In this way, they
support reasoning about goal models to achieve automatic
system configurations. This approach i.e. goal based, seems
very useful to depict the behavior of autonomic elements.

Zhu et al. [30] uses goal models to derive patterns of
autonomic elements. To express different autonomic patterns,
goal oriented RE approach and attribute based architectural
style is used. In the field of goal oriented requirements
engineering, Jureta [5] redefines the concepts of core
requirements ontology. The core ontology is mainly based on
goal oriented concepts and also on mentalistic notions which
are called modalities.

KAOS [8] approach for requirements modeling focus on
relating the functional and non-functional requirements to the
enterprise goals because it assumes sufficient knowledge
about the current organizational state. i* modeling approach
[12] is used during early stages of RE when requirements are
not clear enough and goals are not well defined. It focuses on
understanding enterprise goals and how they affect the
behaviors of actors.

The existing RE approaches discussed above anticipate
run-time changes at design-time, so they are unable to
accommodate new or changed requirements posed by the end-
users at run-time. In this context [3, 6] proposes a novel
framework that captures and analyzes user requirements at
run-time. This framework is called Continuous Adaptive
Requirement Engineering framework.

B. Uncertainty in SASs

The systems having the capability to adapt and alter the
involved players or scenario inherently require continuous
interaction with the environment either to sense or to change.
The continuous altering nature of environment and system
thus places additional burden on system, of dealing with the
introduced uncertainty as argued in [23].

An elaborate description of SASs, and evaluation of
various approaches and models leading to declaration of
CARE as the most effective framework for reasoning of
requirements at runtime in presence of uncertainty in [22]
gives a venue for further capitalization on the concept.

C. Goal Modeling and HTNs

In the field of requirements engineering (RE), goal
oriented modeling approaches have acquired substantial
attention as they enable the system to traverse the
unexplained gap between stakeholder requirements (goals)
and the instruments (actions/tasks/plans) whose manipulation
ensure attainment of these goals. The presently employed
goal-oriented modeling frameworks [8, 12] consider goals as
mandatory requirements that must be satisfied by any suitable
solution. However, these frameworks are unable to satisfy the
preference requirements presented by stakeholders. So a
framework [10] is introduced allowing users to specify both
the preference requirements and priorities, which are later
utilized to select the specifications that meet the mandatory
requirements while best satisfying the preference requirements
as per accorded priorities.

In HTN (Hierarchical Task Network) [18] there is a
provision to manage mandatory goals alongside preference
goals based on evaluation of quantized criterion. This is
achieved by the arrangement of tasks in a hierarchical order
and their recursive mitigation into other sub tasks.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

131 | P a g e

www.ijacsa.thesai.org

HTN domain is composed of operators and methods that
outline feasible maneuvers to achieve goals whereas HTN
problem specification comprises a list of predicates and higher
level tasks that are required to be completed for the attainment
of goal state. HTN based planner initially scans the domain
and specification of problem and then recursively performs
HTN tasks to attain high level goal state. Hence, the
mandatory decomposition is translated into a set of HTN
operators, methods, and tasks, while the set of priorities and
preference goals are converted into PDDL 3.0 preference
constraints and metrics, modelled into weighted evaluation
function for reasoning [21].

D. AI Planners

Planning problems are represented in PDDL, STRIPS or
HTNs which are processed by AI planners to generate
solutions i.e. task sequences [10]. In our self-adaptive
application we are using JSHOP2 planner [11] which is Java
implementation of SHOP2 [16]. The core functionality of
JSHOP2 is constructed on planning formalism called
hierarchical task network planning [15, 11].

In most of the automated planning systems, planners have
to strike out various possibilities prior to discovering a
workable plan/solution; as they perform a trial-and error
search of a large solution space. On the contrary, HTN
planners conduct this same very search by firstly applying
HTN methods to decompose tasks into subtasks thus creating
a planning problem network [14] called hierarchical network
of tasks, which in turn can be efficiently searched by planner
to generate the requisite task sequence.

E. CARE Framework

CARE [7] is goal and user oriented requirement
engineering framework that captures and analyzes user
requirements at runtime. The main idea behind CARE is that
the system itself plays the role of analyst i.e. it performs RE
activities at runtime to satisfy end user preferences and adapt
itself to meet changes in user goals and preferences. To

achieve this adaptation, system automatically updates its
knowledge about the operational environment and end user
needs. The requirements captured by system at runtime are
called service requests [5] in CARE which can be expressed in
XML format. These service requests either consist of new
requirements or refined set of requirements expressed as
goals, quality constraints, preferences, priorities etc. These
service requests are provided as an input to reasoning
component. The reasoner performs three operations on
incoming requirements data. First it evaluates the incoming
data to determine which type of adaption is required [6],
before activating a planner. After evaluating, the Plan activity
activates the planner to generate task sequences and the
selected plan is executed by Reasoner’s Adapt activity [7].

III. PROPOSED ARCHITECTURE

Fig.1 shows the revised architecture of CARE reasoning
framework integrating goal modeling and automated planning
techniques [12, 13]. The requirements are represented as goal
model [10] that not only represents the functional
requirements but also the user’s preferences and non-
functional requirements. In CARE, these goal trees are
considered as a pool of adaptive requirements which are
directly translated into planning action theory [7] by using
HTN semantics. This action theory represents how user goals
can be achieved in most suitable way under given conditions.

The architecture of CARE reasoning component is self-
adaptive where different components/agents automatically
interact with each other to support runtime reasoning of
requirements. It consists of following four agents:

 User Agent

 Planning Agent

 Lookup Agent

 Update Agent

Fig. 1. Revised CARE Reasoning Framework.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

132 | P a g e

www.ijacsa.thesai.org

The requirements which are called runtime requirements
artifacts (RRA) are captured from the user through the user
agent. These RRAs consist of various requirement elements
e.g. user hard and soft goals (G, SG), preferences (P), quality
criteria (Q) and the data received from monitors which sense
the changes in environmental conditions (E). These user
RRAs are transformed into a complete problem description
where the values of monitored variables formulate the initial
conditions, user goals formulate the goal specification, and
quantitative prioritization of preference goals covers the
preferences specification [7]. The problem description is then
input to the planning agent which first evaluates the
information received from monitors and determines which
type of adaptation is required. It then activates the AI Planner.
As soon as the planner gets activated, the lookup agent starts
searching (using A* Algorithm) for the best possible plan
(sequence of tasks) in domain description that satisfies user
goals defined in the given problem description. The resulting
plan is displayed to the user again through the user agent. Re-
planning is required if some change is sensed in the
environmental conditions or the prescribed plan is not
executed as desired, thus warranting generation of a new plan
having different initial conditions. The update agent is
responsible for updating the problem description according to
the new requirements.

IV. CASE STUDY

We demonstrate the reasoning architecture presented in
Fig.1 with the help of a prototype application aimed at acting
as a Virtual Secretary to the user. The application covers basic
daily life tasks of various professionals e.g. Lecturer, Surgeon
and Businessman with the flexibility of incorporating his
preferred selections and forced constraints met during plan
execution. For instance, according to his preference of
reaching his work place cheaply with no sense of urgency the
application suggests him to move via train after evaluating the

weighted preference against cost of executing the intermediate
tasks in all possible cases as per defined Goal Model (see
Fig.2). Figure demonstrates the identification of set of goals,
set of AND/OR decomposed tasks along with their pre-
requisite conditions to meet the goals, predefined methods
encapsulating various tasks in order for meeting minor goals,
system ground state conditions and in addition a pool of
adaptive requirements.

The tasks are categorized as human and machine tasks, for
example Pack Bag, Carry Wallet, Pack Laptop are the tasks
performed by user but they are suggested as a reminder by
application. Moreover, the application continuously senses the
changes in its operational environment and re-plans according
to these changes. For example, the system notifies Faulty
ATM Machine and suggests user to Use Cheque to Draw
Cash. Preference goals are also supported for example
reaching Urgent, Enjoying Route, Cost Effective etc. by
assigning weighted metrics to each preference and evaluating
the core heuristic function with the actions’ accumulated
costs.

A. HTN based Goal Model

The prototype application based on the above mentioned
scenario in order to extend the desired features of adaptability
and handling of runtime requirements entails a Goal Model
that encompassed a few possible eventualities and recursive
corrective actions. A segment of the Goal Model is presented
in Fig.2. The given model is of transportation module which
depicts the possibility of reaching the work place via three
different modes i.e. By Walk, By Subway and By Car.
Selection of a mode is done upon weighing the resultant of
selected user preference and environmental variables like
IsRaining, IsUrgent and HaveCash. Each mode of transport
is further disintegrated into sub tasks through AND/OR
decomposition, rendering it an HTN Model.

Fig. 2. Goal Model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

133 | P a g e

www.ijacsa.thesai.org

A plan [10] is devised for root goal satisfaction. Plan is a
sequence of leaf level tasks that satisfy the root goal and is
acquired by employing various sorts of tree searches e.g. A*
Search, Depth First and Breadth First etc. For example
following sequence is a plan when user wants to reach urgent
and also does not have cash in wallet and gas in car :
t21 ,t22 ,t23 ,t31 ,t32 ,t33 ,t132 ,t133. Goal model in Fig.2 is a subset
of i* Strategic Rationale Diagram [12, 19] but PRECEDENCE
LINKS are additional to the core concept of i*. This concept
of precedence links is used for goal modeling in [10, 20]

B. Mapping Goal Model to PDDL using HTN Semantics

This section explains how the above mentioned user goals,
sub goals, preferences and tasks are translated to HTN and
JSHOP2 compatible PDDL specifications to solve the
planning problem and how action parameters and domain
predicates help in richer representation of domain and its
states.

1) Planning domain: Domain description is the knowledge

base we prepare for the planner in order to enable it to solve

the problems. The domain description, if done to the minutest

details, catering for all the possible actions that might be

involved in solving the possible problems enhances the

planner’s response in giving valid solutions. Domain is

composed of various predicates, operators, axioms and

methods.

JSHOP2 does not operate on standard PDDL, but a variant
of it defined in LISP and dictated separately in its own
grammar. A JSHOP2 compatible translation of prior
mentioned scenario through its equivalent logical model is
accomplished keeping in view the possible requirements that
might be brought forth at runtime.

For the Transport Module of the application, the modes of
transport are defined in a single category i.e. (Via ?Mode),
similarly all the locations as (Present-At ?Loc) and so on.
Reaching the work place via each selected mode is
represented by means of methods, which are further
subdivided into a set of ordered primitive tasks. Since the
selection of mode of transportation is to be made upon
evaluation of user based preferences, axiom of (:- Mode-
Sel ?Mode) is used to reason/evaluate and choose the
preferred method of reaching the destination work place
(Listing 1).

Listing 1: Planning Domain

Domain Axioms:
Is-Urgent(X) =>Mode-Sel(X)

Is-Enjoyable(X) => Mode-Sel(X)

Cost-eff(X) =>Mode-Sel(X)

Methods & Operators:

 Operator: Walk (Loc-from,Loc-to)

Pre = Is-At (Loc-from)

Eff = Is-At (Loc-to)

 Operator: Drive (Mode-car,Loc-from,Loc-to)

 Pre = Mode-Sel(Mode-car)˄ Car-At(Loc-
from)˄ Have-Gas(Mode-Sel)

 Eff = Car-At(Loc-to) ˄Is-At(Loc-to)

 Operator: Ride (Mode-train, Loc-from, Loc-to)

 Pre = Mode-Sel(Mode-train) ˄ Is-At(Loc-from)
˄ Have-ticket(Mode-train)

 Eff = Is-At(Loc-to)

 Method: Via-Car(Mode-Car, Loc-from, Loc-to)

 Pre = Car-At(Loc-to) ˄ Is-At(Loc-from) ˄ Need-
Gas(Mode-Car)

 Tasks = {Unpark(Mode-Car), Drive(Mode-Car,
Home, Gas-Station), Fill-Gas(Mode-Car, Cash),
Pay(Cash, Gas-Station), Drive(Mode-Car, Gas-Station,
Office), Park(Mode-Car)}

2) Planning problem: Planning problem description is the

precise description of planning problem at hand i.e. the initial

or current state and the goal state or the tasks to be realized.

Problem description also includes the identification of various

object types i.e. actors in the planning problem along with

problem specific knowledge.

Transport module of the application has identified three
different modes for reaching work place, each attributed with
certain preference depending upon the user specification. The
corresponding problem for above mentioned domain includes
the declaration of Objects i.e. Transport (walk, car, and train),
Locations (Home, Gas-Station, Bank, Work-Place, Subway-
Station-A, Subway-Station-B) and their user defined metric
preferences for each. The system ground state is defined by
manipulating the predicate variables already defined in
corresponding Domain Description. The problem satisfier
Goal i.e. Reaching-Workplace is expressed containing
evaluating variables (Listing 2).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

134 | P a g e

www.ijacsa.thesai.org

Listing 2: Planning Problem

Initial State:

{Is-Urgent(Car), Is-Enjoyable(Train), Is-Cost-
eff(walk),

Need-Gas (Car), Have-Cash (Cash),….}

Goals:

{Reach-Work-Place(Pref-U, Pref-E,Pref-C)}

C. Development of CARE Reasoning Framework

Prototype application named INSTA PLANNER is
developed to validate the proposed architecture of CARE
reasoning framework. Application has been developed using
Java Net Beans IDE, MySql and JSHOP2 AI-Planner which is
Java version of SHOP2. INSTA PLANNER is AI-Planner
based self-adaptive application that incorporates online Web
Services and Virtual Sensors and generates plans to achieve
daily goals of user based on data coming from virtual context
sensors, web Services and user preferences.

In the Listing 3, implementation of transportation module
of application is explained with the help of an algorithm.

Listing 3: Algorithm for Transportation Module

GeneratePlanForTransportation()

 PlanGenerationMode

GetPlanGenerationModeFromUser();

 if PlanGenerationMode = AUTO

 UserRRA RRAsFromConextSensors();

 else

 UserRRA UserPrefrencesForTransportation();

 ProblemSpecificationsGenerateProblemSpecification

(UserRRA);

 Invoke PlanningAgent (ProblemSpecification);

 Plan SearchPlan(DomainDescription);

 return Plan;

UserPreferncesForTransportation()

 ModeOfTransportation GetModeOfTransportation();

 AdditionalInfo

GetAdditionalInfo(ModeOfTransportation);

 UserRRA GetUserRRA (ModeOfTransportation,

AdditonalInfo);

 return UserRRA;

RRAsFromConextSensors()

 WeatherCondition WeatherWebservice();

 FuelLevel FuelMointering(FuelContextSensor)

 CashStatus CashMointering(CashContextSensor)

 AtmWorkingStatus PullInfoFromBank(ATMService);

 UserRRA GetUserRRA(WeatherCondition, FuelLevel,

 CashStatus, AtmWorkingStatus);

 return UserRRA;

Fig. 3. INSTA Planner.

Fig. 4. INSTA Planner.

Application gets input from the user through UI and
generates plans suggesting user the future course of action to
be adopted based on his selected preferences. The screen shots
presented in Fig.3 & Fig. 4 show the implementation of
application with respect to above goal models.

V. EVALUATION

The adopted technique incorporates Java front end UI
integration of context sensors in order to impart ability to re-
plan and adapt at runtime, seamless transition of domain and
problem descriptions in PDDL to Java, and their parsing to
Java based JSHOP2 for extraction of requisite plan. The
complete cycle as depicted in Fig.1 when traversed should
take considerably more time than existing non-adapting
frameworks, but keeping in mind the performance aspect of
proposed approach, the goal model is dis-integrated into sub-
goal models; which are implemented with each having a
considerably smaller domain, thus reducing the search space
for each sub-problem and substantially enhancing its
performance. Re-planning requires the multiple iterations of
search space for reaching the most suitable plan. This is
addressed by considering maximum possible scenarios
(discussed below) that may pose user with unpredictable
situations and incorporate them in goal model and generate
search tree bifurcations. Fig.5 depicts the time consumption
for tasks to achieve the final goal state shown in the goal
model (Fig.2).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

135 | P a g e

www.ijacsa.thesai.org

Fig. 5. Evaluation Trend.

Fig. 6. Plan 1 generated by INSTA PLANNER without using CARE.

INSTA PLANNER is divided into two main modules. The
first module covers the working day tasks of any professional.
Second module is concerned with the weekend/holiday
activities of individual. Following scenarios are developed to
verify the proposed architecture.

Scenario 1: This scenario is taken from the working day
module of application which does not involve CARE
technology.

 In this simple case, planner application just reminds
user to carry different things (based on some initial
conditions) before leaving for job and also suggests
some tasks that he has to perform before leaving home.

 This scenario does not involve input from the user and
CARE context sensing mechanism.

 The generated plan is only dependent on the location of
different things that he has to pack before leaving home.

 Fig. 6 shows the plan suggested by daily planner of
application as a reminder of packing different things
before leaving based on initial conditions and final goal
state (without using CARE technology).

Scenario 2: This scenario is also taken from working day
module but it involves CARE technology. In this case
transportation is suggested to the user and by using the CARE
methodology, system itself analyzes the user preferences
(based on some initial conditions, environmental conditions
and user/system context).

Case 1:

 John asks for application suggestion for his suitable
mode of transportation to reach job place.

 The context sensing mechanism of application starts
checking the weather forecast in his town through web
service agent.

 If the weather is sensed as pleasant and no forecast of
rain is found then train is suggested as the suitable
mode of transportation for John.

 After suggesting train, application checks if John has
cash. If no cash is found, then planner is again invoked
for some new sequence of tasks (re-planning).

 Planner suggests John to walk to bank and draw cash,
meanwhile application also checks whether the nearby
ATM is functional or faulty.

 Plan generated for John is shown in Fig. 7.

Fig.7. Plan 2 generated by INSTA PLANNER by using CARE.

Case 2:

 Any changes in weather conditions again activate the
context sensing mechanism of application and it starts
checking the weather conditions.

 If weather is sensed cloudy and forecast of rain is found
then planner is again invoked and car is suggested as
the suitable mode of transport for John.

 After suggesting car, application automatically checks if
John has gas/petrol in car by fuel sensor. If no/less fuel
is found, planner is again invoked which starts re-
planning according to the changed situation.

 Finally, the plan shown in Fig. 8 is generated for John
for his course of actions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

136 | P a g e

www.ijacsa.thesai.org

 Fig.8. Plan 3 generated by INSTA PLANNER by using CARE.

Scenario 3: This scenario is taken from holiday module
of INSTA PLANNER application in which system not only
plans and re-plans for user but also performs some actions to
facilitate him in achieving his goals (as suggested by planner).

 John wakes up early morning and starts INSTA
PLANNER that plays the role of his smart secretary.

 INSTA PLANNER automatically checks the time of
day. As it is early in the morning, it suggests different
actions to John that he has to perform in morning like
Prepare Breakfast, Clean snow, Clean house etc.

 In the afternoon, planner is invoked automatically and
suggests to John that he has to perform some important
tasks in afternoon like Do Laundry, Prepare Lunch etc.
It also gives him some options for lunch, based on his
preference that whether he wants some Healthy Food or
Instant Food. Moreover, planner also suggests sequence
of tasks to prepare selected lunch item.

 As soon as evening time is sensed INSTA PLANNER
starts generating different excursion plans for John like
Visit Relatives, Go for Movie or Go for Dinner.

 System also performs some actions to help John to
achieve his final goal state, for example if he selects Go
for Dinner, application starts searching for the nearby
restaurants available in his city based on his preference
of Chinese, Continental or Fast Food and also helps in
reservation of table in his selected restaurant.

 If he selected Watch Movie as his goal then application
gives him options of nearest cinema in his town and
current movies in that cinema with their show timings.
Application also gives him the option for online
reservation of seats. Hundred percent goal state is
achieved when application gives confirmation of seats
reservation via email.

Table 1 presents a comparison of these three scenarios.

TABLE I. COMPARISON OF SCENARIOS

Sr. No Planning
Context

Sensing
Adaptation Re-planning

Scenario 1 Yes No No No

Scenario 2 Yes Yes Yes Yes

Scenario 3 Yes Yes Yes Yes

VI. CONCLUSION AND FUTURE WORK

This paper presents an adaptive reasoning mechanism for
the run-time requirements in Self-Adaptive Systems (SAS).
We have implemented a prototype application to validate our
architecture by integrating AI planner with our application
which addresses user preferences at runtime and generates
plans according to these preferences. Moreover the said
application also continuously senses changes in its operational
environment and re-plans according to these changes. System
also performs some actions to facilitate user to achieve his
goals which is actually the execution of the selected plan.

Currently we are working on enabling the AI application
to sense the changes in user intentions so that it can adapt and
re-plan according to the changed mood and intentions of the
user.

REFERENCES

[1] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein.
“Requirements-aware systems. A research agenda for RE for self-
adaptive systems”. In Proceedings of 18th International Requirements
Engineering Conference, pages 95-103. IEEE, 2010.

[2] J. Anderson, R. de Lemos, S. Malek, D. Weyns. “Modeling dimensions
of self-adaptive software systems”. In Betty H. C. Cheng et al., editors,
LNCS Hot Topics on Software Engineering for Self-Adaptive Systems.
Springer, 2009.

[3] N. A. Qureshi and A. Perini, “Requirements engineering for adaptive
service based applications” in 18th IEEE Intl. Requirements
Engineering Conf., pp. 108–111, sept. 2010.

[4] L. Penserini, A. Perini, A. Susi, and J. Mylopoulos. “High variability
design for software agents: Extending Tropos”. TAAS, 2(4), 2007.

[5] I. Jureta, S. Faulkner, and P. Thiran, “Dynamic requirements
specification for adaptable and open service systems” in 15th IEEE Intl.
Requirements Engineering Conf. pp. 381– 382, 2007.

[6] N. A. Qureshi, A. Perini, N. A. Ernst, and J. Mylopoulos, “Towards a
continuous requirements engineering framework for self-adaptive
systems” in First Intl. Workshop on Requirements@ Run.Time, pp. 9 –
16, sept. 2010.

[7] N. A. Qureshi, S. Liaskos, and A. Perini. “Reasoning about adaptive
requirements for self-adaptive systems at runtime”. In Proceedings of
2nd International Workshop on Requirements@run.time, page 16–22,
August. 2011.

[8] Dardenne A, van Lamsweerde A, Fickas S “Goal-directed requirements
acquisition”. Sci Comput Program 20(1–2):3–50. 1993.

[9] Berry, D., Cheng, B., and Zhang, J. “The four levels of requirements
engineering for and in dynamic adaptive systems”, Proc. 11th
International Workshop on Requirements Engineering Foundation for
Software Quality (REFSQ’05), 2005.

[10] S. Liaskos, S. A. McIlraith, S. Sohrabi, and J. Mylopoulos.
“Representing and reasoning about preferences in requirements
engineering”. Requirements Engineering, 16:227–249, 2011.
10.1007/s00766-011-0129-9.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

137 | P a g e

www.ijacsa.thesai.org

[11] Ilghami, O. “Documentation for JSHOP2”. Technical report CS-TR-
4694, Department of Computer Science, University of Maryland. 2005.

[12] Yu ESK “Towards modelling and reasoning support for early-phase
requirements engineering”. In: Proceedings of the 3rd IEEE international
symposium on requirements engineering (RE’97). Washington, DC.
1997.

[13] Van Lamsweerde A “Goal-oriented requirements engineering: a
guided tour”. In: Proceedings of the fifth IEEE international symposium
on requirements engineering, RE ’01. IEEE Computer Society,
Washington, DC. 2001.

[14] Erol, K., Nau, D., & Hendler, J. “HTN planning: Complexity and
expressivity”. In AAAI-94. 1994.

[15] Nau, D., T. C. Au, O. Ilghami, U. Kuter, D. Wu, F. Yaman, H. Munoz -
Avila, and J. W. Murdock. “Applications of SHOP and SHOP2”.
Intelligent Systems, 20(2):34–41. 2005.

[16] D. Nau, T.-C. Au, O. Ilghami, U. Kuter, W.Murdock, D. Wu, and F.
Yaman “SHOP2: An HTN Planning System”. Journal of Artificial
Intelligence Research. (2003).

[17] Fickas, S. and Feather, M. “Requirements monitoring in dynamic
environments”, In Proc. of 2nd IEEE International Symposium on
Requirements Engineering (RE’95), 1995.

[18] Nau D, Cao Y, Lotem A, noz Avila HM. “SHOP: simple hierarchical
ordered planner”. In: Proceedings of the 16th International Joint
Conference on Artificial Intelligence (IJCAI-99), pp 968–973. 1999.

[19] Wang X, Lesperance Y. “Agent-oriented requirements engineering
using ConGolog and i*”. In: AOIS-2001 Bi-conference workshop at
agents 2001 and CAiSE’01. 2001.

[20] Fuxman A, Liu L, Mylopoulos J, Pistore M, Roveri M, Traverso P
“Specifying and analyzing early requirements in Tropos”. Requir Eng
9(2):132–150. 2004.

[21] Gerevini A, Long D “Plan constraints and preferences in PDDL3.
Technical report”. Department of Electronics for Automation,
University of Brescia. 2005.

[22] Krupitzer, Christian & Maximilian Roth, Felix & VanSyckel, Sebastian
& Schiele, Gregor & Becker, Christian..”A survey on engineering
approaches for self-adaptive systems”. Pervasive and Mobile
Computing. 17. 10.1016/j.pmcj.2014.09.009. 2014.

[23] Zavala, Edith & Franch, Xavier & Marco, Jordi & Knauss, Alessia &
Damian, Daniela. “SACRE: Supporting contextual requirements’
adaptation in modern self-adaptive systems in the presence of
uncertainty at runtime”. Expert Systems with Applications. 98.
10.1016/j.eswa.2018.01.009. 2018.

[24] Shang-Wen Cheng and David Garlan. “Stitch: A language for
architecture-based self-adaptation”. Journal of Systems and Software
85, 12, 2860–2875. 2012.

[25] N. Esfahani and S. Malek. “Uncertainty in self-adaptive software
systems”. In Software Engineering for Self-Adaptive Systems II,
Rogério de Lemos, Holger Giese, Hausi A. Müller, and Mary Shaw
(Eds.). Lecture Notes in Computer Science, Vol. 7475. Springer Berlin
Heidelberg, 214–238. 2013.

[26] J. Andersson, L. Baresi, N. Bencomo, R. deLemos, A. Gorla, P.
Inverardi, T. Vogel, “Software engineering processes for self-adaptive
systems”, in: Software Engineering for Self- Adaptive Systems II , in :
LNCS,vol.7475,pp.51–75, Springer,2013.

[27] Gabriel A. Moreno, Javier Cámara, David Garlan and Mark
Klein.”Uncertainty Reduction in Self Adaptive Systems”.
In Proc. of the 13th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), Gothenburg,
Sweden, 28-29 May 2018.

[28] M. A. Hashmi, A. E. Seghrouchni and M. U. Akram, "A Planning Based
Agent Programming Language Supporting Environment Modeling,"
2015 IEEE / WIC / ACM International Conference on Web Intelligence
and Intelligent Agent Technology (WI-IAT), Singapore, pp. 76-
83.doi:10.1109/WI-IAT.2015.22.

[29] A. Ricci, M. Piunti, and M. Viroli, “Environment programming in multi-
agent systems: an artifact-based perspective” Autonomous Agents and
Multi-Agent Systems, vol. 23, no. 2, pp. 158–192, 2011.

[30] Qin Zhu, Lin Lei, Holger M. Kienle, and Hausi A. Muller.
“Characterizing maintainability concerns in autonomic element
design”. IEEE International Conference on Software Maintenance
(ICSM 2008), pages 197-206, 28-2008-Oct. 4 2008.

[31] S. Liaskos, A. Lapouchnian, Y. Wang, Y. Yu, and Steve M.
Easterbrook. ”Configuring common personal software: a requirements
driven approach”. In 13th IEEE International Conference on
Requirements Engineering, (RE05), Paris, France, pages 918, 2005.

[32] Salifu, M., Yu, Y., Nuseibeh, B. “Specifying Monitoring and Switching
Problems in Context”. Proc. 15th IEEE International Conference of
Requirements Engineering (RE07), pp. 211-220, 2007.

