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Abstract—Fault Injection (FI) is the most popular technique
used in the evaluation of fault effects and the dependability of a
design. Fault Simulation/Emulation (S/E) is involved in several
applications such as test data generation, test set evaluation,
circuit testability, fault detection & diagnosis, and many others.
These applications require a faulty module of the original design
for fault injection testing. Currently, Hardware Description Lan-
guages (HDL) are involved in improving methodologies related
to the digital system testing for Field Programmable Gate Array
(FPGA). Designers can perform advanced testing and fault S/E
methods directly on HDL. To modify the HDL design, it is
very cumbersome and time-consuming task. Therefore, a fault
injection tool (RASP-FIT) is developed and presented, which
consists of code-modifier, fault injection control unit and result
analyser. However, in this paper, code modification techniques
of RASP-FIT are explained for the Verilog code at different
abstraction levels. By code-modification, it means that a faulty
module of the original design is generated which includes different
permanent and transient faults at every possible location. The
RASP-FIT tool is an automatic and fast tool which does not
require much user intervention. To validate these claims, various
faulty modules for different benchmark designs are generated
and presented.
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I. INTRODUCTION

Hardware Description Languages (HDL) have been in-
volved in improving various methodologies related to digital
system testing during the last few decades. This reduces the
gap between the tools and methodologies used by design and
test engineers. Using HDL, the design engineers can verify
and test the design at an early stage, and there is no need to
convert the design into a compatible format [1]. Verilog HDL
is one of the most widely used languages for implementing
the design structure for Application Specific Integrated Circuit
(ASIC) and FPGA-based designs [2]. These designs are mostly
written in HDL and a bit-stream file is generated, which is
downloaded into the FPGA chip to implement the design.
The FPGA development flow consists of various processes,
e.g. synthesis, translate, place & route, and then a bit-stream
generation. Various fault injection tools have been devised in
the past several years for FPGA-based designs, which work on
different stages of the development flow [3], [4] as shown in
Fig. 1. It depicts the way of injecting faults at various stages
of FPGA development flow.

Generally, FI techniques are divided into four: namely
hardware, software, simulation, and emulation-based. Partic-
ularly, for FPGA-based systems, emulation and simulation-

Fig. 1. Fault injection techniques at various stages of the FPGA development
flow.

based techniques are involved in testing, dependability analysis
and fault simulation/emulation applications [5]. Designs im-
plemented on the FPGA are also prone to errors and failures,
due to radiations and several other reasons, so it is necessary
to test and verify the designs. Both testing and verification
involve a deliberate introduction of faults in the System Under
Test (SUT). Fault injection technique is used in the process
of evaluation of fault effects and fault tolerance [6]. The fault
injection technique consists of the deliberate insertion of faults
into the particular target system and monitors the responses to
observe the effects of the faults. In a nutshell, the fault injection
technique provides:

• Statistical estimation of soft-errors for dependability
analysis.

• Evaluation of design characteristics for reliability.

• Measurement of the effectiveness of fault tolerance
capability of design.

• Ability to find the critical components of an overall
design.

• The way to test the digital design and obtains the test
vectors for the automatic test equipment.

• Fault coverage and code coverage for the design in
the verification process.

There are several reasons for involving FPGA in develop-
ing of fault injection techniques and tools, such as prototype
availability of designs (for simulation), fast emulation (also the
high speed of injections), more on-chip area availability and
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Fig. 2. Fault injection environment [7].

(full & partial) reconfiguration techniques. The main issue in
developing a fault injection tool is describing the mechanism
to inject, select, and activate a particular fault. In general,
any fault injection tool consists of these three basic building
blocks such as fault list manager, fault injection manager, and
a result analyser as shown in Fig. 2. FI tools for FPGA designs
are classified into two main categories and divided further as
shown in Fig. 3.

The RASP-FIT (RechnerArchitektur and
SystemProgrammierung)–German name of the institute–
Fault Injection Tool is presented in this work, which consists
of three main parts such as Fault Injection Algorithm (FIA),
fault injection control unit, and result analyser [5]. In this
paper, the FIA is focused which takes synthesizable Verilog
file as an input, parses the code, finds the locations and
instruments/modifies the file to generate the faulty design
to perform the fault injection and fault simulation/emulation
analysis of ASIC and FPGA-based designs. The tool, with
its graphical user interface, is developed in Matlab. This
fault injection tool deals with various fault models (e.g.
bit-flip & stuck-at 1/0) and able to generate any number of
faulty designs (required by the user) of the original design
with evenly distributed faults in them. It adds the proposed
fault control unit (e.g. the FISA Unit) with the required
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Fig. 3. FPGA-based fault injection techniques and tools.

ports in the faulty HDL design. The RASP-FIT tool is fast
and user-friendly and it takes an appropriate time for the
generation of faulty modules of the original design. Various
benchmark circuits are considered and their compilable faulty
modules are generated and presented. The complexity of a
design, the way of injecting faults at each code abstraction
level and the total number of faults injected in the design
versus time taken by this tool is evaluated and presented in
this work.

This paper is organized as follows: Section II presents
some background information. An automatic Verilog code
modifier tool is presented in Section III. Section IV presents
the description of the RASP-FIT tool developed in Matlab.
Section V shows the results of the instrumentation of Verilog
design code at various abstraction levels with timing analysis.
Section VI concludes the paper.

II. BACKGROUND

The ongoing miniaturisation of digital systems makes them
more and more sensitive to faults, which complicates the
design process of fault-tolerant systems. In this situation, fault
injection plays an important role in the process of testing,
verifying system’s robustness and fault-tolerance capabilities.
In the last few years, the fault injection technique is directly
applied to the FPGA-based designs, written in HDLs, mainly
Verilog or VHDL. Using HDL, designers can use different
existing test methods and develop new ones with little effort
[1]. Fault injection techniques and tools for FPGA-based
designs are divided into two major categories in the literature.

A. Simulation-based Fault Injection Tool for FPGA

Simulation-Based Fault Injection (SBFI) techniques can
be categorized into two, i.e. Code Modification (CM) and
Simulator Command (SC). The first technique requires modifi-
cation of HDL code by adding saboteurs and mutants, whereas,
the signal or variable values are changed through simulator
commands in the second technique [8]. The advantages of
using SBFI technique are [9], [10]:

• There is no risk of damage of the SUT.

• Cost effective because no real hardware is used.

• Higher observability and controllability during fault
injection campaigns.

• Modelling of both transient and permanent faults is
achieved with ease.

• Supports all abstraction levels.

At the code level, the fault injection techniques for the
FPGA designs usually come in the category of SBFI. There
are many tools that are designed and available for VHDL in
the literature, e.g. VERIFY [11], (MEFISTO-C, HEARTLESS,
VFIT, FTI) [12], [9], FSFI [13] etc. All these tools are
developed for VHDL based designs using SC, saboteur and
mutant techniques. The application of Verilog PLI includes test
generation during fault simulation. This environment is capable
of fault injection, generation of some random patterns and
check the responses of injected faults [1]. In some approaches,
top-level design module is modified, along with the simulator
command technique as presented in [23].
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B. Emulation-based Fault Injection Tool for FPGA

The FPGA design & development flow consists of many
stages, where modification of the design is possible for the
fault injection analysis. Emulation-based fault injection tech-
niques can be categorized into two, i.e. instrumentation and
reconfiguration. The advantages of using emulation based fault
injection technique are [9], [12]:

• Injection time can be improved as compared to SBFI

• Time and area overhead reduction using partial recon-
figuration technique

• Higher observability and controllability

Authors studied the recently developed fault injection tools
based on instrumentation technique in the FPGA development
flow, such as, tools that work on the net-list developed after
the synthesis process [14], [15], [16], some tools based on
the instrumentation technique on the code level [18], [17],
and using some hybrid techniques (simulation/emulation) [19],
[20], [21], [22]. HDL environment is able to generate a list of
faults and it is used for fault emulation/simulation of the target
system. Authors in [24] presented a code modifier which is
developed in C++ language for structural Verilog net-list. A
multiplexer is injected as a stuck-at fault model in the code.
In comparison with this work, the RASP-FIT tool injects bit-
flip and stuck-at (1/0) fault models using simple gates XOR,
OR, AND with NOT, respectively. Hence, the RASP-FIT tool
provides a small number of additional input ports and area
overhead.

The main goal is to develop a fault injection tool, which
performs fault injection analysis, fault simulation/emulation,
testing, and dependability analysis directly on HDL designs for
FPGAs and ASICs. This can reduce the gap between the tools
and methodologies used by design and test engineers which
speed-up the process of testing, produce cost-effective methods
and reduce the time to market. In this paper, code-modification
techniques of RASP-FIT tool for various abstraction levels are
presented in detail.

III. AUTOMATIC CODE GENERATOR (A VERILOG
CODE-MODIFIER)

The concept of automatic code generation involves a num-
ber of various techniques such as code completion or code
insertion. The code transformation is a technique, where a
piece of code is transformed into a target language from a
source code [25]. In this work, an automatic code generator
is developed to generate a compilable faulty module of the
original design, written at Verilog HDL. These faulty designs
can be used for fault S/E analysis and testing of FPGA-based
designs. The automatic code modifier serves following basic
functions:

1) Reading of design file (code parsing).
2) Instrumentation of design code and generation of

faulty design code.
3) Addition of fault control unit in each faulty module.
4) Writing of instrumented/modified code to a file hav-

ing *.v extension.

Fig. 4. Block diagram of the automatic code generation process.

The block diagram summarizes these functions, developed
under RASP-FIT tool as a Verilog code modifier is shown in
Fig. 4.

A. Code Parsing Technique in RASP-FIT

The code parser is a fundamental component of the RASP-
FIT tool, which analyses the design code written in Verilog
HDL. Normally, a parser generates an Abstract Syntax Tree
(AST) from the design code for further analysis. As described
earlier, the Verilog code for FPGA-based designs is written
at various abstraction levels. The automatic code modifier
developed under RASP-FIT is able to modify/instrument the
design at any abstraction level for fault injection analysis. The
interpretation of the developed parser technique in RASP-FIT
for fault injection is shown in Fig. 5 for a gate level design.
For different abstraction levels, the way of injecting faults in
the design is also different. Detailed about each level is given
in the sequel.

1) Gate-level Designs: At gate abstraction level, the basic
cell of the design is a logic gate. A logic circuit which contains
a few hundreds of logic gates are typically designed at this
level [4].

TABLE I. PRE-DEFINED GATE PRIMITIVES IN VERILOG HDL

S. No. Gate primitives I/O positions

1
and, or, nor, nand

xor, xnor
First terminal is output,

one or more inputs

2 buf, not
One or more outputs,
last terminal is input

3
bufif0, bufif1,
notif0, notif1

First terminal is output,
Second terminal is input,
Third terminal is control

Gate level coding of any design in Verilog HDL consists
of built-in gate primitives e.g.(and, or, nand, nor,
xor, bufif0, etc.), and user-defined primitives. In
these primitives, some ports are assigned as outputs and some
as inputs. Their positions are defined in Verilog HDL. Table
I shows a review of built-in primitives with their positions of
inputs/outputs. By default, the RASP-FIT tool injects faults at
the input positions, whereas, these positions can also be defined
in the library for user-defined primitives. To inject faults at
output ports, the RASP-FIT tool adds buffer (buf) to each port.
The way of fault modification at this level for the bit-flip fault
model is shown in Fig. 6. In this figure, f0,f1 represents the
bit-flip faults in this line of the code.

www.ijacsa.thesai.org 32 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

/ / V e r i l o g
/ / c17 benchmark c i r c u i t ISCAS ’85
/ / N i n p u t s 5
/ / N o u t p u t s 2
/ / N t o t a l G a t e s 6
/ / NAND2 6

module c17 ( N1 , N2 , N3 , N6 , N7 , N22 , N23 ) ;

input N1 , N2 , N3 , N6 , N7 ;
output N22 , N23 ;
wire N10 , N11 , N16 , N19 ;

nand NAND2 1 ( N10 , N1 , N3 ) ;
nand NAND2 2 ( N11 , N3 , N6 ) ;
nand NAND2 3 ( N16 , N2 , N11 ) ;
nand NAND2 4 ( N19 , N11 , N7 ) ;
nand NAND2 5 ( N22 , N10 , N16 ) ;
nand NAND2 6 ( N23 , N16 , N19 ) ;

endmodule

‘ / / ’ Comments ( s i n g l e or m u l t i−l i n e ‘ /∗
∗ / ’ ) are i g n o r e d and removed i n f a u l t y
c o p i e s o f o r i g i n a l d e s i g n .

ModuleName : c17 , ( used i n g e n e r a t i o n o f
o t h e r c o p i e s names as c 1 7 f a u l t y c o p y 1 ,
c 1 7 f a u l t y c o p y 2 , . . . e t c . )

I n p u t P o r t L i s t : Keep i t i n t h e c o n t a i n e r .
Map ( ) wi th t h e i r d i m e n s i o n s ( i f v e c t o r )
.

Ou tpu t P o r t D e c l a r a t i o n : Outpu t p o r t ’ s name
a r e changed wi th t h e i n c l u s i o n of

o u t V a r f 1 or o u t V a r f 2 e t c f o r f u r t h e r
compar i son i n f a u l t i n j e c t i o n .

Wire D e c l a r a t i o n : Keep i t i n t h e c o n t a i n e r .
Map ( ) wi th t h e i r d i m e n s i o n s ( i f v e c t o r )
.

nand : Recogn i se g a t e l e v e l de s ign ( Gate−
l e v e l L i b r a r y added i n t h e t o o l
c o n t a i n s p r o t o t y p e s o f b u i l t−i n and
u s e r d e f i n e d p r i m i t i v e s ) .

C o n s t u r c t f a u l t l i s t & c o u n t f a u l t
l o c a t i o n s : 12

End of code

Fig. 5. Parsing of a Verilog design file.

Fig. 6. Fault injection style for different abstraction level.
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TABLE II. VERILOG OPERATORS ADDED IN RASP-FIT FOR DATA-FLOW ABSTRACTION LEVEL

Operators (Op) used in a Data-flow
Abstraction Level

Original Expression
Faulty Expression by

RASP-FIT Tool
Precedence

Unary Operators

Unary ( +, - ) assign B = -A; assign B = fn ˆ -A;
Highest

∼, & , — , ∼&, ∼—, ˆ, ∼ ˆ, assign B = OpA assign B = fn ˆ OpA;

Binary Operators

Arithmetic (+, -, *, /, %, ** ) assign C = operand1 Op operand2; assign C = ( fn ˆ operand1 ) Op ( fn+1 ˆ operand2 );

Relational (<, >, <=, >=) – –

Equality (= = =, != =, = =, !=) – –

Logical ( &&, — — ) – –

Ternary Operator

Conditional (? : ) assign C = expr1 ? expr2 : expr3; assign C = expr1 ? (fn ˆ expr2) : (fn+1 ˆ expr3); Lowest

2) Data-flow Designs: For small circuits, up to a few
thousand of gates, the gate level modelling approach can work
very well. However, the large circuits consist of hundreds of
thousands of gates and gate-level modelling is not feasible
to test and verify the circuit. Data-flow modelling provides
a powerful way to implement large and complex designs.
Data-flow is a bit higher level of abstraction than gate-level
modelling.

The assign command is the heart of Verilog data-flow
abstraction level [26], [27]. Fig. 6 shows the fault injection
logic for data-flow designs. A simple expression is shown
with assign statement. For a single bit variables, only
one fault is injected per variable. Similarly, in the second
modified expression, these variables are considered a byte long
variables. Therefore, with the help of concatenation and bit-
wise reduction operators, we can inject faults in the vectors.
Note that, integer variables (integer) are considered 32-bit
wide, for the code modifier developed under RASP-FIT tool.
It reads and stores the declaration variables with their lengths
for fault injections. Table II describes the summary of most
widely used operators in data-flow designs with the examples
of correct and faulty expressions for bit-flip fault model.

3) Behavioural Designs: Modelling a circuit with logic
gates and continuous assignments reflects quite closely the
logic structure of the circuit being modelled; however, these
constructs fail to describe complex high-level aspects of a
system [28]. Verilog provides designers with the ability to de-
scribe the whole design functionality in an algorithmic manner,
which represents the behaviour of the design [27]. Verilog’s
behavioural construct is similar to C language construct and it
provides greater flexibility to designers.

Verilog behavioural models contain procedural statements
that control the simulation and manipulate variables of the data
types. The major components of behavioural constructs consist
of: always and initial blocks, blocking and non-blocking as-
signments, conditional statements, multi-way branching, loop-
ing statements, sequential and parallel blocks etc. Note that,
the vectors are treated with the same approach as described in
a data-flow abstraction level. Prototypes for each expression
and operators are added to the code modifier. When the code
modifier reads the line of code and extracts the command
(keyword), it injects the fault accordingly. Faults are injected
into the right-hand side of the expression as shown in Fig. 6.

B. Instrumentation Technique for Verilog HDL

The instrumentation is a technique in which extra circuitry
added to the design for fault injection/simulation applications,
which is commonly known as ‘saboteur’. In normal operation,
it remains inactive, but when it is activated, it injects faults in
the SUT during the fault injection process. The benefit of using
this technique is that it does not have time limitations during
circuit operation. In FPGA development flow, instrumentation
of additional circuits can be done at various stages, e.g. in
net-list, bit-stream, and HDL design code. In the RASP-FIT
tool, (XOR, OR, AND with NOT) gates are used to inject
bit-flip, and stuck at 1/0 faults respectively.

1) Fault Models in Verilog HDL: The fault models are de-
veloped to be used in pretending the defects in the test process
and dependability analysis. Faults can be classified into various
categories, such as permanent, transient and intermittent faults.
In simple words, a fault is a manifestation of error [29]. Some
fault models are widely used in digital circuit testing, fault
simulation/emulation, and dependability analysis. These fault
models are stuck at fault and Single Event Upset–commonly
known as bit-flip–(SEU) fault. The fault injection technique
at code level should describe the way to inject these faults in
the code, which pretend as real faults occurred in the system,
given in the sequel.

Stuck-at Fault Model in Verilog HDL: The stuck-at fault is
a fault on a line or its interconnecting gates, which causes the
logic value to be appeared on the line never changes. There
are two categories of such fault model, i.e. stuck at 1 (sa-1)
and stuck at 0 (sa-0) [1], [30]. In the sa-1 fault model, a logic
value ‘1’ appears to a signal line in the logic circuit, whereas,
in the sa-0 fault model a logic value ‘0’ appears on a line. Two
faults per line can occur, these are sa-1 or sa-0 at the input or
the output of a logic gate. In Verilog HDL, these faults can be
injected into the gate, data-flow, and behavioural abstraction
levels as shown in Fig. 6.

Bit-flip Fault Model in Verilog HDL: The bit-flip fault
model is also widely used in order to calculate SEU. An SEU
occurs when a bit is changed from logic ‘0’ to logic ‘1’ and
vice versa.

Table III presents the summary of all fault models along
with the Verilog operators used in RASP-FIT code modifier.
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fn and Var show the particular fault and the declared input,
wire or reg ports in the design, respectively.

TABLE III. SUMMARY FOR FAULT MODELS AND VERILOG
OPERATORS

S.No. Fault model Verilog operator Verilog code

1 Stuck-at 1 | (OR logic) (fn | Var )

2 Stuck-at 0 ∼,& (AND logic) (∼fn & Var )

3 Bit-flip (SEU) ˆ(XOR logic) ( fn ˆVar )

C. Fault Control Unit: FISA Unit

DEMUX-based Fault Injection, Selection, & Activation
(FISA) unit is developed to control the selection and activa-
tion of the injected faults in the fault simulation/emulation
applications as shown in Fig. 7. The proposed fault control
unit is a simple unit and it provides the high controllability
and observability about the selection and activation of faults.
The FIS signal has a logic value ‘1’. When the select port is
assigned a value from a test-bench (in simulation), then that
fault is selected and activated in the target system. The fault
injection analysis under RASP-FIT includes the code for the
FISA unit in each faulty copy of the target design [3]. As
we are generating a faulty module of the original design at
the code level, we need to write this code in the design. It
is very time-consuming to write HDL code manually for the
fault control unit when a number of faults are large enough.
For that purpose, a function (gen_always) is created and
integrated into the RASP-FIT tool. The output of the function
is shown in Fig. 7 and it is added to the faulty design as shown
in Fig. 9.

IV. DEVELOPMENT OF RASP-FIT IN MATLAB

The RASP-FIT tool is developed in Matlab along
with its graphical user interface. The tool consists of
three major functions, namely, fault_injection(),
static_compaction() and hardness_analysis().
All these functions are developed in Matlab under the function
RASP_FIT(). It is a tabbed-based GUI as shown in Fig. 8.
Each tab performs certain specific functions.

In this paper, the fault injection capability of this tool
is presented. The fault_injection() function consists
of approximately 563 lines of code having 20 functions. A
Verilog code modification is described in detail in Section
V. At the graphical user interface, the user must provide a
synthesizable Verilog design file as an input, select the type
of fault model for injection in the design from a drop-down
menu and enter the number of faulty modules required. By
clicking on the Generate button, faulty modules will be
generated along with the top file. The faulty modules are
saved under the name (moduleName_faultycopy1.v,
moduleName_faultycopy2.v and so on) at the same lo-
cation/folder. The top file, which contains the comparator logic
and memory declaration for storing results of the comparisons,
is saved under the name (moduleName_top.v). These mod-
ified designs are now used for the fault simulation/emulation,
digital testing and dependability analysis, with FPGA tools,
without much effort.

F1

FISA Control Unit

F2

F3

Fn

Fn-1

Select Port Pins

FIS

wire f i s = ’ 1 ’ ; / / D e c l a r a t i o n p a r t
reg f0 , f1 , f2 ;

always @ ( s e l e c t ) begin
i f ( s e l e c t == 2 ’ d0 ) begin

f0 = f i s ; f1 =0; f2 =0; end
e l s e i f ( s e l e c t == 2 ’ d1 ) begin

f0 =0; f1 = f i s ; f2 =0; end
e l s e i f ( s e l e c t == 2 ’ d2 ) begin

f0 =0; f1 =0; f2 = f i s ; end
e l s e begin

f0 =0; f1 =0; f2 =0; end
end

Fig. 7. Proposed DEMUX-based FISA control unit (above), and it’s Verilog
code (below).

V. RESULT AND DISCUSSION

The RASP-FIT tool has the capability to modify (instru-
ment) the Verilog code, written at any abstraction level. As
described earlier, there are three main abstraction levels, e.g.
gate-level, data-flow, and behavioural levels. The fault injection
technique is widely used in fault simulation/emulation, digital
testing and dependability analysis. To perform fault injection,
we need a faulty module of an original module (i.e. golden
module). In our case, the golden module is available in
Verilog code for FPGA-based designs. In order to generate a
compilable faulty code of the original design with the inclusion
of faults and fault control unit, we need to modify the code
which is a cumbersome and time-consuming task. When the
complexity of design is increased, it injects more faults and
takes more time to generate faulty copies.

In this work, we have used different benchmark circuits
(ISCAS’85, ISCAS’89, EPFL and some behavioural designs).
These benchmark circuits are written in gate-level, data-flow
and behavioural abstraction levels. The complexity of design
in terms of logic gates and time taken for these design is
described tabularly. Details are given in the sequel.

A. Gate Abstraction Level Code

To validate a test methodology, the ISCAS’85 and IS-
CAS’89 benchmark circuits are most widely used. These
benchmark circuits consist of combinational and sequential
circuits. The ISCAS’85 consists of 11 combinational bench-
mark circuits, whereas the ISCAS’89 consists of 23 sequential
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Fig. 8. Tabbed-based GUI of the proposed tool (RASP-FIT).

circuits. In this work, the capability of the RASP-FIT tool to
generate a compilable faulty code is highlighted, however, we
have used these benchmark circuits to validate the proposed
test approach (which is not discussed here).

1) Compilable Faulty Design: Fig. 9 shows the original
design and the compilable faulty design of the simple circuit
from ISCAS’85 benchmark circuits for illustration purpose.
There are some points to be noted here:

1) In the original design, the module name is c17,
whereas, in faulty design, the module name is
changed to c17_1, which shows the first copy of
the faulty design.

2) The output ports of a faulty design are renamed with
the extension of (_f1) for the first copy of the
faulty design and for the second copy (_f2) and
so on. This is done for the comparison purpose in
fault injection experiments with the fault-free design.

3) The fault selection port (i.e. select port) is added
to the faulty copy as an input port, which is used
to choose a particular fault for injection and its
activation.

4) The selected fault is activated by assign a logic ’1’
value. For that purpose, a wire fis is added to the
design.

5) The fault variables f0,f1,...,fn are used to
assign the ‘fis’ value in an always block, so these
variables must be declared as reg variables.

6) DEMUX-based FISA unit is added to select and

activate the fault. When no fault is activated, the
circuit performs the same operation as of the original
design.

7) This tool is capable of injecting faults in a full design
or in a partial design. The user can specify any
number of copies, and this tool evenly distributes the
number of faults in each copy of the design.

2) Timing Analysis for Gate-Level Designs: The RASP-
FIT tool takes appropriate time to generate faulty designs.
We have performed the experiments on the various gate-
level benchmark circuits from ISCAS’85 and ISCAS’89. The
complexity of design in terms of logic gates are described
in Table IV and Table V for the ISCAS’85 and ISCAS’89
benchmark circuits, respectively. Also, these tables show the
total number of faults injected in the design. The time taken by
the RASP-FIT tool is measured (in Seconds) using the Matlab
commands (tic,toc), and described in the last column of
the tables.

TABLE IV. TIME ANALYSIS TO GENERATE FAULTY MODELS OF
ISCAS’85 GATE-LEVEL DESIGNS

S.No.
Gate-level

benchmark circuits

No. of logic

gates
Total faults Time (in Seconds)

1 c17 6 12 0.2075

2 c432 160 336 0.4187

3 c499 202 408 0.4578

4 c880 383 729 0.5811

5 c1355 546 1064 1.068

6 c1908 880 1498 1.8334

7 c2670 1269 2152 4.8450

8 c3540 1669 2939 6.4805

9 c5315 2307 4386 13.011

10 c6288 2416 4800 21.935

11 c7552 3513 6145 37.504

TABLE V. TIME ANALYSIS TO GENERATE FAULTY MODELS OF
ISCAS’89 GATE-LEVEL DESIGNS

S.No.
Gate-level

benchmark circuits

No. of logic

gates/FFs
Total faults Time (in Seconds)

1 s1494 647/6 1399 1.503

2 s5378 2779/179 4391 8.723

3 s9234 5597/211 8182 21.68

4 s13207 7951/638 11803 82.09

5 s15850 9772/534 14179 118.188

6 s35932 16065/1728 29997 965.05

7 s38417 22179/1636 33664 577.50

8 s38584 19253/1426 34182 1306.90

B. Data-flow Abstraction Level Code

The EPFL benchmark circuits consist of 23 combinational
logic circuits, written in a data-flow code style. These circuits
are specifically designed for logic optimization but we are
using them for fault injection/simulation approaches.
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/ / O r i g i n a l d e s i g n
module c17 ( N1 , N2 , N3 , N6 , N7 , N22 , N23 ) ;

input N1 , N2 , N3 , N6 , N7 ;
output N22 , N23 ;
wire N10 , N11 , N16 , N19 ;

nand NAND2 1 ( N10 , N1 , N3 ) ;
nand NAND2 2 ( N11 , N3 , N6 ) ;
nand NAND2 3 ( N16 , N2 , N11 ) ;
nand NAND2 4 ( N19 , N11 , N7 ) ;
nand NAND2 5 ( N22 , N10 , N16 ) ;
nand NAND2 6 ( N23 , N16 , N19 ) ;

endmodule

/ / Compi lab le f a u l t y d e s i g n
module c17 1 ( s e l e c t , N1 , N2 , N3 , N6 , N7 , N22 f1

, N23 f1 ) ;
input N1 , N2 , N3 , N6 , N7 ;
output N22 f1 , N23 f1 ;
wire N10 , N11 , N16 , N19 ;
input [ 1 : 0 ] s e l e c t ;
wire f i s =1 ;
reg f0 , f1 , f2 , f3 ;
always @ ( s e l e c t )

begin
i f ( s e l e c t == 2 ’ d0 ) begin

f0 = f i s ; f1 =0; f2 =0; f3 =0; end
e l s e i f ( s e l e c t == 2 ’ d1 ) begin

f0 =0; f1 = f i s ; f2 =0; f3 =0; end
e l s e i f ( s e l e c t == 2 ’ d2 ) begin

f0 =0; f1 =0; f2 = f i s ; f3 =0; end
e l s e i f ( s e l e c t == 2 ’ d3 ) begin

f0 =0; f1 =0; f2 =0; f3 = f i s ; end
e l s e begin

f0 =0; f1 =0; f2 =0; f3 =0; end
end

nand NAND2 1 ( N10 , f0 ˆ N1 , f1 ˆ N3 ) ;
nand NAND2 2 ( N11 , f2 ˆ N3 , f3 ˆ N6 ) ;
nand NAND2 3 ( N16 , N2 , N11 ) ;
nand NAND2 4 ( N19 , N11 , N7 ) ;
nand NAND2 5 ( N22 f1 , N10 , N16 ) ;
nand NAND2 6 ( N23 f1 , N16 , N19 ) ;
endmodule

Fig. 9. Original code (left) & instrumented compilable design code (right) by RASP-FIT.

1) Compilable Faulty Design: A simple code of 4 to 1
multiplexer, written in a data-flow abstraction style is con-
sidered to present the output of RASP-FIT tool for data-flow
designs. Fig. 10 shows the original design and instrumented
faulty design of it. The detail description of the faulty code is
described already in gate-level design. The difference lies in
the way of the injection of faults in the design. Fig. 6 shows
the method of injection in a single bit and vector variables for
all abstraction levels.

2) Timing Analysis for Data-flow Designs: We performed
the experiments on the various data-flow benchmark circuits
from EPFL. The complexity of design in terms of logic gates,
the total number of faults in the design, and time taken by the
tool in Seconds are described in Table VI and Table VII.

C. Behavioural Abstraction Level Code

At this level, the large and complex designs are written e.g.
processor design. In order to perform fault injection testing
for these bigger design, a fault-free module is replaced by a
generated faulty module. Different basic and large complex be-
havioural designs are considered from DP32 Verilog processor
and presented in Table VIII. Instead of the number of logic
gates information, we added the number of slices LUTs (Look-
Up Tables) obtained after the synthesis process using Xilinx
ISE tools. Fig. 11 shows the original design and instrumented
faulty design of it. The way of fault injection mechanism
(code parsing) for the different behavioural commands, e.g.
case, if-else construct, blocking and non-blocking assignments,
always-initial blocks is added in RASP-FIT. The fault injection
mechanism for other behavioural commands such as loops,
built-in or user-defined macros & functions, and the include

www.ijacsa.thesai.org 37 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

/ / O r i g i n a l d e s i g n
module mux 4x1 ( out , in0 , in1 , in2 , in3 , s0

, s1 ) ;

output o u t ;
input in0 , in1 , in2 , i n 3 ;
input s0 , s1 ;

a s s i g n o u t = ( ˜ s0 & ˜ s1 & i n 0 ) |
( s0 & ˜ s1 & i n 1 ) |
( ˜ s0 & s1 & i n 2 ) |
( s0 & s1 & i n 0 ) ;
endmodule

/ / Compi lab le f a u l t y d e s i g n
module mux 4x1 1 ( s e l e c t , ou t f1 , in0 , in1 ,

in2 , in3 , s0 , s1 ) ;
output o u t f 1 ;
input in0 , in1 , in2 , i n 3 ;
input s0 , s1 ;
input [ 3 : 0 ] s e l e c t ;
wire f i s =1 ;
reg f0 , f1 , f2 , f3 ;
always @ ( s e l e c t )

begin
i f ( s e l e c t == 2 ’ d0 ) begin

f0 = f i s ; f1 =0; f2 =0; f3 =0; end
e l s e i f ( s e l e c t == 2 ’ d1 ) begin

f0 =0; f1 = f i s ; f2 =0; f3 =0; end
e l s e i f ( s e l e c t == 2 ’ d2 ) begin

f0 =0; f1 =0; f2 = f i s ; f3 =0; end
e l s e i f ( s e l e c t == 2 ’ d3 ) begin

f0 =0; f1 =0; f2 =0; f3 = f i s ; end
e l s e begin

f0 =0; f1 =0; f2 =0; f3 =0; end
end

a s s i g n o u t f 1 = ( ( f0 ˆ ˜ s0 ) & ( f1 ˆ ˜ s1 ) &
( f2 ˆ i n 0 ) ) |

( ( f3 ˆ s0 ) & ˜ s1 & i n 1 ) |
( ˜ s0 & s1 & i n 2 ) | ( s0 & s1 & i n 0 ) ;

endmodule

Fig. 10. Original code (left) & instrumented compilable data-flow code (right) by RASP-FIT.

TABLE VI. TIME TO GENERATE FAULTY MODULES OF ARITHMETIC
DATA-FLOW CIRCUITS FROM EPFL

S.No.
Data-flow

benchmark circuits

No. of logic

gates
Total faults Time (in Seconds)

1 Adder 1020 2040 6.512

2 Barrel-shifter 3336 6672 89.898

3 Divisor 44762 114494 4034.22

4 Hypotenuse 214335 428670 -

5 Log2 32060 64120 794.34

6 Max 2865 5730 41.26

7 Multiplier 27062 54124 1153.9

8 Sine 5412 10832 62.93

9 Square 24618 36970 955.66

10 Square-root 18484 49236 1212.9

files are in progress.

TABLE VII. TIME TO GENERATE FAULTY MODULES OF
RANDOM/CONTROL DATA-FLOW CIRCUITS FROM EPFL

S.No.
Data-flow

benchmark circuits

No. of logic

gates
Total faults Time (in Seconds)

1 Round-Robbin arbieter 11839 23678 311.659

2 ALU control unit 174 349 0.484

3 Coding-cavlc 693 1386 2.177

4 Decoder 304 608 1.393

5 I2C controller 1342 2699 10.61

6 Int-to-float controller 260 520 1.601

7 Memory controller 46836 93946 15794

8 Priority encoder 978 1956 3.396

9 look-ahead xy router 257 541 0.806

10 voter 13758 27516 152.30
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/ / O r i g i n a l d e s i g n
module mux 4x1 ( out , in0 , in1 , in2 , in3 ,

s e l ) ;
output reg o u t ;
input in0 , in1 , in2 , i n 3 ;
input [ 1 : 0 ] s e l ;

always @ ( i n 0 or i n 1 or i n 2 or i n 3 or s e l )
begin

case ( s e l )
2 ’ b00 : o u t = i n 0 ;
2 ’ b01 : o u t = i n 1 ;
2 ’ b10 : o u t = i n 2 ;
2 ’ b11 : o u t = i n 3 ;
endcase

end
endmodule

/ / Compi lab le f a u l t y d e s i g n
module mux 4x1 ( s e l e c t , out , in0 , in1 , in2 ,

in3 , s e l ) ;
output reg o u t f 1 ;
input in0 , in1 , in2 , i n 3 ;
input [ 1 : 0 ] s e l ;
input [ 2 : 0 ] s e l e c t ;
wire f i s =1 ;
reg f0 , f1 , f2 , f3 , f4 , f5 ;
always @ ( s e l e c t )

begin
i f ( s e l e c t == 3 ’ d0 ) begin

f0 = f i s ; f1 =0; f2 =0; f3 =0; f4 =0; f5 =0; end
e l s e i f ( s e l e c t == 3 ’ d1 ) begin

f0 =0; f1 = f i s ; f2 =0; f3 =0; f4 =0; f5 =0; end
.
.
.
e l s e begin

f0 =0; f1 =0; f2 =0; f3 =0; f4 =0; f5 =0; end
end

always @ ( i n 0 or i n 1 or i n 2 or i n 3 or s e l )
begin

case ({ f0 , f1 } ˆ s e l )
2 ’ b00 : o u t = f2 ˆ i n 0 ;
2 ’ b01 : o u t = f3 ˆ i n 1 ;
2 ’ b10 : o u t = f4 ˆ i n 2 ;
2 ’ b11 : o u t = f5 ˆ i n 3 ;

endcase
end

endmodule

Fig. 11. Original code (left) & instrumented compilable behavioural code (right) by RASP-FIT.

VI. CONCLUSION

Fault S/E helps designers and test engineers in the eval-
uation, verification of their designs and generation of test
patterns. It is used to evaluate fault effects, dependability
and measure the robustness of FPGA-based systems, written
in HDL. The injection of faults in HDL design requires
modification of design to generate faulty target system. In this
work, the code modifier for Verilog HDL designs is presented
in detail. The RASP-FIT is a fault injection tool, which
works at the code level of the designs at various abstraction
levels. This tool can inject faults in the whole design, and

produce the compilable code. The tool is simple, automatic
and user-friendly. Results show that the RASP-FIT tool takes
an appropriate time, depends on the size of the design, for the
generation of faulty module and fault injection control unit.
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D. Soudris, M. Hübner, and P. C. Diniz, Eds. Cham: Springer
International Publishing, 2015, vol. 9040.

www.ijacsa.thesai.org 39 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

TABLE VIII. TIME TO GENERATE FAULTY MODULES OF
BEHAVIOURAL DESIGNS

S.No.
Behavioural

designs

No. of slices

LUTs
Total faults Time (in Seconds)

1 Mux (case) 1 6 0.108

2 Mux (if-else) 1 12 0.112

3 8-bit Full Adder 9 75 0.648

4 Program Counter 12 130 0.785

5 ALU-32bit 173 896 3.359

[3] A. R. Khatri, A. Hayek, and J. Börcsök, Applied Reconfigurable Com-
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