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Abstract—With the rapid growth in mobile device users, and
increasing demand for video applications, the traffic from 2D/3D
video services is expected to account the largest proportion of
internet traffics. User’s perceived quality of experience (QoE) and
quality of service (QoS) are the most important key factors for
the success of video delivery. In this regard, predicting the QoE
attracts high importance for provisioning of 3D video services
in wireless domain due to limited resources and bandwidth
constraints. This study presents a cross-layer no-reference quality
prediction model for the wireless 3D video streaming. The model
is based on fuzzy inference systems (FIS), and exploits several
QoS key factors that are mapped to the QoE. The performance
of the model was validated with unseen datasets and even shows
a high prediction accuracy. The result shows a high correlation
between the objectivley measured QoE and the predicted QoE
by the FIS model.
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I. INTRODUCTION

The success of the modern communication networks and
systems has made many applications and services widely
accessible and more usable. Among of these are multimedia
applications which become popular over the Internet. One
critical multimedia service is video streaming that is nowadays
not only delivered as 2D stream but also in 3D. It is expected
that 82% of the global Internet traffic will be video, and more
than 65% of the video traffic will be transferred over wireless
communication links and using mobile devices [1]. It is evi-
dent that maintaining video quality, particularly in the scarce
wireless and mobile environments, is of critical importance.
While this can be tackled focusing on the performance of the
network, it is also important to highly consider it from the
end user perspective. Focusing on consumer’s QoE rather than
the network’s QoS leads to evaluating the quality of videos as
perceived by end-users. Compared to 2D videos, a 3D video
introduces a new dimension, namely the depth, which needs
to be additionally taken into account when processing users
QoE.

Maintaining high QoE for the end users requires the ability
for 3D videos to be efficiently monitored, predicted, and
controlled [2]. Nevertheless, the prediction of QoE is highly
based on understanding the impact of QoS parameters [3], [4].
In this regards, the relationship between QoE and QoS could
be established in a defined prediction model. This can be done
based on no-reference QoE prediction without the need for
a reference 3D video. In order to achieve such capability, it
is important to develop QoE prediction models that consider

more QoS factors related to user’s QoE. One of the effective
techniques for developing objective QoE prediction models
is the learning-based technique with the different types of
machine learning methods [5]. Developing QoE prediction
models using the machine learning methods would result in
a model that can dynamically and intelligently learn and then
make a decision like human reasoning.

There is a number of machine learning techniques that have
been adopted to realize QoE prediction models [6]. Among the
popular examples are Fuzzy Inference Systems (FIS), Artificial
Neural Networks (ANN), and Decision Tree. However, it is
critical to comprehensively incorporate the key QoS factors for
video traffic, instead of relying on a basic model of limited
factors which is the case in the majority of the proposed
solutions. According to the ITU classification of objective
quality assessment models [7], a hybrid QoE prediction model
is the best choice to build a generic prediction model, which
is proposed in this paper.

The FIS method has been the choice for many solutions in
telecommunications and engineering. It provides an efficient
system for addressing the innate uncertainty, which can be
caused by internal or external factors. Developing a QoE
prediction model based on FIS with predefined rules is an
effective approach to make effective decision with imprecise
information. Typically, fuzzy rules in FIS cannot be automat-
ically formulated and need to be manually updated when the
input dataset is updated. We proposed in this paper a hybrid
no-reference prediction model using an automated FIS for
predicting the quality of wireless 3D video streaming. The
main target of the proposed solution is to support real-time
QoE prediction at an intermediate measuring point over a
wireless network for 3D video streaming.

The structure of the paper is as follows; the related works
is discussed in Section 2. Section 3 provides a description of
the experimental setup. The validation and statistical analysis
of the QoE measurements resulted from the simulations are
presented in Section 4. Section 5 discusses the methodology
of the proposed video quality prediction system. The QoE
prediction model performance validation and evaluation are
provided in Section 6, respectively. Finally, the conclusion is
in section 7.

II. RELATED WORKS

Compared to other multimedia services, video streaming is
a demanding service that is more sensitive to any degradation
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over the network. The is more evident in the case of 3D
video communications over wireless networks with mobile
end-user devices. Without careful and efficient system design,
degradation in user experience would occur. Therefore, it is
critical to consider the different application and networking
aspects in this regard. There is a variety of video quality
measurement methods in the literature with different opera-
tional and computational requirements [3]. The measurement
of video quality is typically achieved with one of the two
modes: non-intrusive no-reference (NR) and intrusive full-
reference (FR). The FR mode has to use both the original
and distorted video streams. In contrast, the NR mode is only
based on the distorted video streams, which is more reliable
for real-time applications.

The effects of QoS can happen at the access network layer,
referred to as NQoS, or at the application layer, referred to
as AQoS. The NQoS can be described with a number of
NQoS parameters including delay, packet loss, and random
loss. These have been considered in many research efforts
such as [8], [9], and [10] for estimating QoE in 2D video
streaming applications. On the other hand, AQoS parameters
such as frame rate bit rate were the focus in [11], [12],
[13], [14]. However, QoE estimation for 3D video streaming
received less attention in the literature. This would require the
consideration of additional parameters relevant to 3D videos
including depth perception, naturalness, and comfort levels.
The study in [15] focused on examining random packet losses
and its effect on the overall 3D perception. With a subjective
test, the results showed that the increase in packet loss rate
led to a negative trend in 3D perception. In [16] and [17],
the researchers considered the degradation on the 3D video
quality when delivered over wireless mobile networks. The
aim was to understand how the overall 3D perception can
be affected by random packet loss using a subjective test. It
is apparent that there was no consideration in these studies
for evaluating the quality of 3D videos with VBR streams in
different resolutions. Moreover, there is no need to completely
rely on both NQoS and AQoS parameters when adopting
hybrid prediction models.

Recently, there is a growing interest in the literature in the
utilization of machine learning techniques for the development
of objective QoE prediction models [5], [18], [19]. As the self-
learning capability can be provided by such methods, non-
intrusive prediction of video quality can be implemented to
dynamically adapt to any update in QoS parameters. One
of these methods is the Adaptive Neural Fuzzy Inference
System (ANFIS) [20] which was adopted in [21] and [22]
for the estimation of the quality score, with the focus on 2D
video in a single resolution, QCIF (176x144). The authors
in [23] presented a real-time prediction engine for 3D video
using Random Neural Network (RNN). Another research work
focused on 3D video is [24], which presented a RR metric
based on Peak Signal-to-Noise ratio (SNR).

It is observed from the investigated literature that most of
the video quality prediction models considered either network
impairments, encoders compression artifacts, or the features of
video content. It is uncommon that these factors are considered
all together in one solution. The proposed work in this paper
introduces a a non-intrusive QoE prediction model based on
the use of an automated FIS method considering a collection

of key QoS parameters for wireless 3D video streaming.

III. EXPERIMENTAL SET-UP

A. Video Encoding Parameters

Three classes of H.264 coded 3D video streams were
evaluated based on a temporal activity by using the spatio-
temporal classification in the ITU-T P.910 recommendation
[25]. The temporal and spatial features were extracted from the
3D video stream, and then a temporal index (TI) and spatial
index (SI) were assigned by the Sobel filter. The temporal
activity and spatial complexity of the video sequence are
indicated by the computed index. Consequently, 6 3D video
sequences (2 in each class) were chosen, as shown in Table I.
The sequences Music, Poker and BMX were used for training,
while Fencing, Poznan and Pantomime were used for testing
and validation.

TABLE I. VIDEO SEQUENCES

Video Sequence TI SI Class
Music 4.90 74.41 Low Motion

Fencing 7.78 77.20
Poker 12.20 85.69 Moderate Motion

Poznan 11.53 87.78
BMX 22.35 99.42 High Motion

Pantomime 37.17 104.43

The H.264/AVC JM Reference Software [26] was used to
encode and decode all video sequences with the H.264/AVC
video coding standard [27] (for both the colour image and the
depth map). Table II presents the configuration parameters of
the encoding process. The frame rate (FR) was fixed at 25 fps
as this is typical in wireless video streaming [28]. The videos
sequences were encoded with different quantization parameter
(QP) and resolutions. The network abstraction layer (NAL)
units were RTP packetized and encapsulated in IP packets.
The Group of Picture (GOP) size was 16, where each group
included one I-frame and all remaining frames were P-frames.
This reduced the computation time arising from bi-predictive
B-frames, and is the structure recommended for wireless video
streaming [28].

TABLE II. PARAMETERS H.264/AVC CODING

Parameters Values
Level IDC 30 (SD), 32 (HD)

Sequence GoP IPPP
Reference Frames’ Number 2

Search-Range 32
Slice-Mode Packetized (bytes)

Format of Output-File RTP packet

B. The selected QoS Parameters

The selected QoS parameters in this study were resolution
(R), quantization parameter (QP) and content type (CT) from
the AQoS level, while mean burst loss (MBL) and packet
loss rate (PLR) from the NQoS level. Table III summarises
the values of the simulated QoS parameters. Moreover, the
simulation of each tested condition is repeated 10 different
times to increase data confidence.

C. Simulation Scene

The simulation scene illustrated in Fig 1, which is designed
and conducted for mapping the QoS to QoE. The coded
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3D video streams (2D colour image and depth map) were
simulated on wireless transmission environment. The packet
loss traces with varying MBL and PLR metrics were generated
by using the Gilbert-Elliot model [29]. The degraded 3D video
streams were then assessed by an objective 3D video quality
metric, which is explained in the following subsections.

TABLE III. QOS PARAMETERS

Parameters Values
R SD (720 × 540), HD (1280 × 720)

CT Low, Moderate, High motion
QP 16, 24, 32, 40, 48

MBL 1, 2.5, 5, 7.5
PLR 0%, 0.1%, 1%, 2.5%, 5%, 7.5%, 10%

 

Fig. 1. The Conducted Simulation Scene

IV. QOE ASSESSMENT AND EVALUATION

The QoE measurement methods can be categorised into
subjective and objective methods [30]. In this paper, an objec-
tive quality metric was used for quality assessment and then
validated by a subjective assessment.

A. Objective Test

A validated full reference perceptual 3D video quality
metric (Q) [31] was used for the objective measurements. This
metric uses VQM (Video Quality Metric) [32] for the 2D
colour images’ assessment, and then uses a joint mathematical
model [31] to be combined with the corresponding depth
map. For the VQM scale, 1 represents severe distortion and 0
represents original quality. The 3D quality scale is mapped to
the subjective metric called MOS (Mean Opinion Score) [25]
by means of the equations [33]:

MOS = 5− 4V QM (1)

MOS = 5− 4(1−Q) (2)

B. Subjective Test

In this work, the subjective assessment test was conducted
to assure the credibility of the huge measured objective dataset.
The standard recommendation ITU-R BT.500-13 [34] was
followed for this test. Because the total number of test condi-
tions for the measured objective dataset was huge (about 1080

conditions), a systematic approach (called Kennard and Stone
algorithm) [35] was followed to select a subset of 64 video
sequences for subjective testing. A single stimulus (SS) quality
evaluation method was applied with a panel of 21 viewers in a
lab under controlled conditions. The viewers were marked their
MOS scores between 1 to 5, as illustrated in Table IV. Figure 2
illustrates the observers’ MOS scores and their corresponding
95% confidence intervals.

TABLE IV. MOS SCORES

Quality Bad Poor Fair Good Excellent
MOS 1 2 3 4 5

Fig. 2. Subjective test with corresponding 95% confidence intervals

C. Correlation of Subjective and Objective QoE Scores

The objective scores that obtained through simulation were
validated by correlating them with the subjective scores, as
shown in Fig 3. In addition, the PCC (Pearson Correlation
Coefficient) was used to express the correlation. The measured
PCC indicated a high correlation level 92%.

Fig. 3. Objective and Subjective Correlation

The analysis of variance (ANOVA) test [36] was also
conducted in this study to explore the impact of AQoS and
NQoS parameters on the 3D video quality. Tables V shows
the results of the ANOVA test. A small p value (p <= 0.01)
indicates that the QoS parameter highly affectes the video
quality. It is clear from the table that the PLR metric had the
highest impact. The interactions between these QoS parameters
also affect the video quality

V. QOE PREDICTION METHODOLOGY

The peoposed 3D video quality prediction was built by
using the automated Type-1 FIS, which outperforms other
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TABLE V. FIVE-WAY ANOVA ON QOE OF 3D VIDEO

Source Degree of freedom F-statistics p-value
CT 2 141.7391 0
R 2 124.416 0.02975

QP 4 165.981 0
PLR 5 639.172 0
MBL 3 73.354 0.01003

PLR+CT 10 10.218 0.11909
PLR+R 8 5.182 0.3342

PLR+QP 18 71.955 0.1264
PLR+MBL 15 30.466 0.2921
MBL+CT 5 2.868 0.1942
MBL+R 5 7.940 0.52301

MBL+QP 12 13.533 0.29968

methods in terms of making decisions and modelling capa-
bilities [37]. The FIS control consists of three main modules;
fuzzifier, fuzzy inference engine and defuzzifier. A functional
block of the proposed model is presented in Figure 4.

 

Fig. 4. Functional Diagram of The Proposed Model

Inputs: QoS parameters x1, x2, ,,,, xn, and their values.

Membership functions: µ(Pi)Aj(x), i ∈ (1, . . . ,m), j ∈
(1, . . . , n),

where Aj the class number, n, of corresponding parameter
values, and x represents the input parameter value (Pmvalue).

The form of the fuzzy rules: IF < antecedent1 >
AND < antecedent2 > THEN < consequent >;

Output: QoE (MOS) scores.

Generally, the procedure of designing a FIS model can be
divided into two main steps; learning (initialization) step and
control step. The learning step includes defining the linguistic
variables, designing the MFs and extracting the fuzzy rules
base. While, the control step includes fuzzification, inference
engine and defuzzication. Algorithm 1 gives an overview
about the process of fuzzy logic system [38]. The following
subsections describe the procedure of designing the proposed
model, its MFs and fuzzy rules extraction.

Algorithm 1: process of the FIS
1. Define the linguistic expressions (Initialisation)
2. Design the membership function using triangle shape (Initialisation)
3. Convert crisp input value to fuzzy value using the MFs (Fuzzification)
4. Automatically extract the fuzzy rule base (Fuzzy inference engine)
5. Evaluate the fuzzy rules in the rule base (Fuzzy inference engine)
6. Aggregate the results of each rule (Fuzzy inference engine)
7. Convert the fuzzy value to crisp output value (Defuzzification)

A. Identifying the Inputs and Output

the chosen QoS parameters are outlined in table III and the
output MOS scores (QoE) in table IV. The collected dataset
consists of multiple data pairs of the input and output using
the following form:

(x(t); y(t))(t = 1, 2, ..., N), (3)

where N is the data instances number, x(t) ∈ Rn, and
y(t) Rk. Once the inputs and the output were identified, both
were converted into linguistic expressions (the MFs design) to
represent the quantification of the output (QoE scores).

B. Membership Functions Design

The correlation between the input and output parameters
was transferred into fuzzy MF. In this study, the MFs were
derived using probability distribution functions (PDF) [39] for
every QoS parameter. The PDF is divided by its peak to convert
the probabilistic information into fuzzy sets, which are a set
of rules that take linguistic expressions form. In this work,
the QoS input parameters were assigned by three fuzzy sets
(low, moderate, high), while the output was assigned by five
fuzzy sets, which are the MOS scales. All the fuzzy sets were
presented in an equivalent triangular shape due to its simplicity.
Figure 5 shows the MFs of the inputs parameters, while the
MF of the output is presented on Figure 6.

Fig. 5. MF of the Input ParametersMembership Functions of the output (QoE)
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Fig. 6. MF of the Output Parameters

C. Automated Fuzzy Rules Extraction

The proposed model automatically adapts the rules nec-
essary for the fuzzy inference system using learning from
example (LFE) approach [40]. A developed version of the
(Mendal-Wang) method [41], [38] was used to apply the LFE
approach in designing the proposed automated FIS model. The
extracted rules can take different forms. In the proposed sys-
tem, the following fuzzy IF-THEN rules was used to represent
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the relationship between the input pattern x = (x1, ..., xn)T

and the output y = (y1, ..., yn)T :

IF x1 is A
(i)
1 and ... xn is A

(i)
n THEN yk is B

(i)
k (4)

where the rules index i = (1, 2, ....M), and M repre-
sent the rules number. A number of V fuzzy sets Aq

s, for
q ∈ {1, 2, . . . , V }, defined for each input Xs, and W fuzzy
sets Bh, for h ∈ {1, 2, . . . ,W}, defined for each output yc.
Moreover, the AND operator, which selects the minimum value
of the fuzzy sets was used in this model. The process of
extracting the fuzzy rules from the data was performed using
the following two steps, as described in [41], [38]:

STEP A:
For a fixed N pair (x(t); y(t)) of input-output parameters, the
membership values µAq

s
(x

(t)
s ) are computed for each MF (q ∈

{1, . . . , V }), and each input variable s ∈ {1, . . . , n} to give
q∗ ∈ {1, . . . , V }:

µ
Aq∗

s
(x(t)s ) ≥ µAq

s
(x(t)s ) (5)

Thus, this step defines the process of choosing the fuzzy set
that reaches the highest membership degree at the data point
as the one in the IF part of the rule.

IF xt1 is A
q∗

1 and xt2 is A
q∗

2 and ..... xtn is A
q∗

n

THEN y is centred at y(t)
(6)

Note that each of the fuzzy sets Xs associated to the
input variables is characterised by V fuzzy sets Aq

s, where
q ∈ {1, . . . , V }, and V n is the maximum number of possible
generated rules. Nevertheless, depends on the dataset, only
those rules were generated from the V n possibilities whose
dominant regions contain at least one data point. In this STEP,
one rule was generated for each pair of the input and output
data. This rule is modified to create its final form in step 2.
The rule’s weight was computed using the formula [41]:

W (t) =

n∏
s=1

µAq
s
(x(t)s ) (7)

STEP B:
The STEP (A) was conducted several time in order to create
the N data generated rules by Equation (7) for all data points
t, from 1 to N . Since the number of data points is usually
large, many generated rules in the first step were shared the
same IF part but dissimilar the THEN part. In this step, the N
rules divided into groups with the same IF part. For example,
suppose there are M such groups i (i ∈ {1, . . . ,M}) that
includes Ni rules of the form:

IF x1 is A
(qi)
1 and x2 is A

(qi)
2 and ..... xn is A

(qi)
n

THEN y is centred at y(t
i
u)

(8)

Where u ∈ {1, . . . , Ni} and (tiu) is the data point index
in the group (i). After that the rule weighted average in this
conflict group is calculated by the following equation [41]:

average(i) =

∑Ni

u=1 y
(tiu)w(tiu)∑Ni

u=1 w
(tiu)

, (9)

Where the weights w(tiu) are computed using equation (9)
from Step (A). These Ni rules are then combined into a single
rule as the following form:

IF x1 is A
(i)
1 and .... xn is A

(i)
n THEN y is B(i) (10)

The fuzzy set of the output Bi was selected on the basis
of finding the set Bh∗

among the W output fuzzy sets B1, ...,
Bw that satisfies:

µBh∗ (average(i)) ≥ µBh (average(i)) (11)

Where h ∈ {1, 2, ...,W}, and B(i) was chosen to be Bh∗.

The calculations invoke Equations (9) and (11), and are
repeated for each output value [41], [38]. Table VI shows a
sample of the index fuzzy rules. The final fuzzy rule that was
used in the FIS controller had the form:

IF (CT is Moderate motion) AND (QP is Moderate) AND
(Resolution is Moderate) AND (PLR is High) AND (MBL is
High) THEN (QoE is Bad)

IF (CT is Low motion) AND (QP is Moderate) AND (Res-
olution is Low) AND (PLR is Low) AND (MBL is Moderate)
THEN (QoE is Fair)

TABLE VI. EXAMPLES OF THE QOE INDEX DECISION MAKING
RULES, (H= HIGH, M= MODERATE, L= LOW)

CT R QP PLR MBL QoE
L M L L L Excellent
M M M L L Good
H L M L M Fair
L M H M M Poor
M M L L M Good
H M H H H Bad
L L M H M Poor

D. Defuzzification: Predicting the Output

The overall result after the inference step was a set of
fuzzy values. This result was defuzzified to give a crisp output
value (QoE), based on the MF of the output variable. The
defuzzification process examined all of the rule outcomes after
they were logically added and then computed a value that
was the final output of the fuzzy controller. In this work, the
defuzzification was conducted using the centroid method that
is based on the centre of gravity (COG) formula [38]:

y(x) = fs(x) =

∑M
i=1 y

−i
∏n

l=1 µF
i
l (xl)∑M

i=1

∏n
l=1 µF

i
l (xl)

. (12)

Here, y−i is the centroid point of the output fuzzy set Bi,
M is the rule’s number in the rule base, and Πn

l=1 = µF i
l (xl)

is the membership degree product of each rule’s inputs.

E. Implementation of The Automated FIS model

In this work, the designed membership functions, fuzzy
rule extraction and fuzzy controller for the automated FIS
model were built in a Java programming environment. The
main components of FIS controller were programmed as
Java classes. The main java class (Fuzzy inference engine)
includes the equations of Mendal-Wang method.
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VI. MODEL VALIDATION

A. Validation by The Testing Dataset

As listed in Table I, 6 3D video sequences were chosen,
two in each class. The sequences Music, Poker and BMX are
used for model training and Fencing, Poznan and Pantomime
are used for model testing. The testing dataset was used to
validate the proposed prediction model. The measured QoE
results are compared with the predicted QoE by the proposed
prediction model. The used validation metrics were R2 cor-
relation and RMSE (root mean squared error). R2 scored
0.951 and RMSE was 0.1058. The validation of the proposed
system is illustrated in Fig 7 and 8. In Fig 7, the measured
MOS (QoE) represented by the line, while each point shows
the estimated MOS (QoE) of a particular test condition. The
obtained result indicates that the measured QoE is greatly
correlated with predicted QoE. So, the proposed FIS-based
model succeeds in estimating the user’s perception, and shows
how the relationship between the AQoS/NQoS parameters and
the video QoE is consistent.
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Fig. 7. Predicted MOS vs. Measured MOS

Fig. 8. Predicted MOS vs. Measured MOS (scatter graph)

B. Validation by The External Dataset

A further validation was conducted by using an external
dataset that has been used in [21] and publicly available in their
website. This dataset is for H.264 encoded QCIF 2D videos
with network conditions of PLR, MBL for three types of video
sequences (CT). In this case, we decrease the input parameters
in the proposed model to three inputs; PLR, MBL and CT.
Fig 9 illustrates the model validation results after using the
external database. This external dataset was also used in [21]

for the ANFIS-based prediction model. Thus, we compared the
results of our FIS-based model with the ANFIS-based model
developed in [21]. As shown in table VII, the proposed model
achieved a correlation coefficient of 90.2%, while 87.1% for
the ANFIS-based model in [21].

Fig. 9. Predicted MOS vs. Measured MOS from External Dataset [21]

TABLE VII. PERFORMANCE COMPARISON

Model Name R2 RMSE
Automated FIS-Based 90.23% 0.206

ANFIS-Based 87.19% 0.2412

VII. CONCLUSIONS

In this proposed work, a non-reference prediction model
was developed to predict the 3D video quality in wireless
transmission environment. The proposed model was built by
using an automated FIS method. Moreover, a selection of
AQoS and NQoS parameters were identified and mapped to
the MOS scores of the transmitted 3D video streams for
end-to-end quality prediction. A subjective assessment was
conducted to validate the objectively measured QoE dataset.
Furthermore, in order to identify the most influential QoS
parameters that affect the video QoE, the collected dataset
was also analysed by the ANOVA test. After that the validated
dataset was then used to build the proposed model. From the
results, the proposed FIS-based model shows a high correlation
between the objectively measured QoE and the predicted QoE.
The results also confirmed that the choice of the AQoS/NQoS
parameters is essential to achieve a high prediction accuracy.

This work advances the development of non-reference
quality prediction models for wireless 3D video streaming.
For future work, the usage of the FIS-based model can be
investigated to implement a potential application, such as con-
tent provisioning for network/service providers. Furthermore,
additional AQoS and NQoS parameters can be considered for
end-to-end quality prediction.
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