
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

267 | P a g e

www.ijacsa.thesai.org

An Effective Lightweight Cryptographic Algorithm to

Secure Resource-Constrained Devices

Sohel Rana
1

Department of CSE

Bangladesh University of Business & Technology,

Mirpur-2, Dhaka,

Bangladesh

Saddam Hossain
2
, Hasan Imam Shoun

3
, Dr.

Mohammod Abul Kashem4

Department of CSE

Dhaka University of Engineering & Technology, Gazipur

Gazipur, Bangladesh

Abstract—In recent years, small computing devices like

embedded devices, wireless sensors, RFID tags (Radio Frequency

Identification), Internet of Things (IoT) devices are increasing

rapidly. They are expected to generate massive amount of

sensitive data for controlling and monitoring purposes. But their

resources and capabilities are limited. Those also work with

valuable private data thus making security of those devices of

paramount importance. Therefore, a secure encryption

algorithm should be there to protect those vulnerable devices.

Conventional encryption ciphers like RSA or AES are

computationally expensive; require large memory but hinder

performances of those devices. Simple encryption techniques, on

the other hand are easy to crack, compromising security. In this

paper a secure and efficient lightweight cryptographic algorithm

for small computing devices has been proposed. It is a symmetric

key block cipher, employing custom substitution-permutation

(SP) network and a modified Feistel architecture. Two basic

concepts from Genetic algorithm are used. A Linux based

benchmark tool, FELICS is used for the measurement and

MATLAB for the purpose of encryption quality testing. An

improvement over the existing algorithm, the proposed algorithm

reduces the use of processing cycles but at the same time provides

sufficient security.

Keywords—Lightweight cryptography; IoT; RFID tags; genetic

algorithm; feistel architecture; SP network; FELICS; MATLAB

I. INTRODUCTION

Lightweight cryptography [1] is a sub-category in the field
of cryptography that intends to provide security solutions for
resource-constrained devices. Cryptography means “secret
writing” [2]. In computer communication all want to encrypt
information so that no unwanted entity but the expected one
can decipher the information. At the core of lightweight
cryptography there is a trade-off between security and
lightweightness: that is how anyone can achieve a good level
of security in small computing devices? Recently, academic
communities have been doing a significant amount of work
related to lightweight cryptography; to implement
conventional cryptography standards efficiently, to design and
analyze new lightweight algorithms and protocol. The
widespread utilization of small computing devices such as
sensors nodes, Radio-Frequency Identification (RFID) tags,
industrial controllers and smart cards indicates there have been
massive changes in people’s lives. New security and privacy
considerations arise as one shift from desktop computer to
small devices. It is challenging to implement heavyweight

cryptographic standards to small devices [3]. Many
conventional cryptographic algorithms, was optimized for
desktop and server environments. Optimization in terms of
security, performance and resource requirements makes those
algorithms difficult or impossible to implement in resource-
constrained devices. Even if they can be implemented, they
hinder the performance on the small devices. Lightweight
cryptography aims at wide variety of hardware and software
spectrum in which an algorithm can be implemented. On the
device spectrum in Figure 1 for example, servers and desktop
computers occupy at the high end [1]. Tablets and
smartphones are the next.

Servers and Desktops
Conventional cryptography

Tablets and Smartphones

Embedded Systems
Lightweight cryptography

RFID and Sensor Networks

Fig. 1. Device Spectrum.

Conventional cryptographic algorithms inherently perform
well in these devices. Embedded systems, RFID devices and
sensors networks can be found at the end in the spectrum.
Highly resource-constrained devices are at the very end of the
spectrum that has very limited processing capabilities and
memory. Lightweight cryptography is principally motivated
for those.

Microcontrollers of wide array of performance traits are
available. 8-bit, 16-bit and 32-bit microcontrollers are more
common but use of 4-bit microcontrollers for certain ultra-low
cost applications are noticeable. There exist some instruction
sets which only contain a small number of simple instructions.
When executing common cryptographic algorithm, they take
excess number of cycles. The intended application can get
slower and energy-consuming. The amount of random-access
memory (RAM) and read-only memory (ROM) of certain
microcontroller can be very limited; ranging from 64 bytes to
as little as 16 bytes. RFID and sensors are often used in
applications which require very strict timing and power
requirements [3]. They are for only dedicated purpose and
their constraints are stringent. The algorithm they need must
also fulfill their requirements.

It is important to understand that lightweight cryptography
is not necessarily only for the lower end devices of the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

268 | P a g e

www.ijacsa.thesai.org

spectrum. Many resource-constrained devices work with
server which is powerful. The server must support lightweight
algorithm so that it can interoperate with the devices.

A. Motivation

Cryptography itself a challenging and interesting subject to
study and especially to research on. It is impossible to think
secure data communication without cryptography. In history,
people won wars using cryptography as a weapon. It involves
mathematics, algorithm, programming, understanding in data
communication, etc. With the widespread use of small low
powered devices, lightweight cryptography will play a vital
role in future. A survey by HP states that more than 70% of
resource-constrained devices are vulnerable [4]. It is necessary
to make a balance between the security and performance.

B. Security Challenges in Resource-Constrained Devices

Resource-constrained devices have many application
areas: automotive systems, smart parking, sensor networks,
disaster/weather forecast, healthcare, distributive control
systems, Internet of Things (IoT), cyber-physical systems,
smart cities, smart grid, etc. Building the confidence among
the user is necessary for the adoption of technology with small
computing devices, especially about its privacy and security
[5]. Resources constrained devices are intrinsically
defenseless to many types of security threats.

Devices in IoT are extremely open to assaults [6]. As they
remain unsupervised for long time there is a chance of
physical attack on its components. Also eavesdropping is
simple because of wireless communication medium. The
constituents bear low competency in terms of energy and
computational capability. If conventional security algorithms
are used which require computations, their performance will
be wasted [7]. IoT, used for monitoring purposes generates
substantial amount of data, so their integrity and
authentication are a matters of concerns.

The confidentiality of the data is retained in secure
systems. It is important that data should retain its originality
and no intentional or inadvertent changes are undetected by
the system [8]. For example IoT is composed of many small
devices such as RFIDs which remain unattended for a long
time [9]; it is easier for any malicious entity to steal the data
stored in the memory.

II. LITERATURE REVIEW

In [10], authors enhance the security of Ceaser cipher
including sharing secret key using modified Diffie-Hellman
technique. Shared key are made in the following way: Let A
has a public key 10 and private key 14. A sends 140 (public
key multiplied by private key) to B over unsecure channel. B
also has a private key 16, so B sends 160 to A. A generate the
value of shared secret key as 140 multiplied with 16 result is
2240. Similarly B generates the key value 160 multiplied with

14 which is same to 2240. They use the mod operation with 26
to get the value less than or equal to 26. For any character in
the 'x' position the secret key is simply first multiplied with 'x'
and then mod is done to get the cipher character. So 2nd
character of the message is multiplied with 2, third character
with 3 and so on. Then some light calculation to perform
cipher.

Authors in paper [11] analyze the performance and
security of different type of lightweight encryption algorithm,
which are used in especially resource-constrained
applications. Four lightweight algorithms TEA, HIGHT,
KATAN and KLEIN are implemented on AVR Atmel
ATtiny45 microcontroller to evaluate performance analysis on
their memory efficiency and energy consumption and also
evaluated degree of confusion and diffusion for security
analysis.

In paper [12], the authors propose an encryption technique
using simple mathematical operations and trivial
authentication using unique id. The algorithm applies
encryption on ASCII values. Each receiver has unique id and
sender possesses a database of all receivers. A set of three
keys are used. First a palindrome number is generated from
receiver’s alphanumeric id and four random numbers. From
the palindrome number an encoding matrix is generated. Data
is encrypted using the encoding matrix and ASCII values of
data. The decryption process is done using the inverse of the
encoding matrix called the decoding matrix. But the entire
process is questionable to security analysis. Here the
encrypted data, keys and random number seed are sent to the
receiver. It is possible for any intruder to perform a middle-
man attack thus making the entire process vulnerable.

In [13], the Authors propose an algorithm based on
combined concept of Genetic Algorithm (GA) and
pseudorandom number sequence generation. Only two
operators (Crossover and Mutation) of GA are used as a part
of this algorithm. They used Blum Blum Shub to generate the
pseudorandom sequences in order to select the crossover
operators among three (single point, two points, and uniform
crossover). Also, five keys are used for performing the
encryption and decryption process. First key is a number that
indicates a size of block to divide the plain text into blocks.
Second and third keys are used to generate the random
sequences. Fourth key indicates the modulating factor and
Fifth key is used for mutation oparation. This algorithm
ensures higher performance and security through the concept
of GA and pseudorandom sequence generation.

In [14] The authors proposes a symmetric key block cipher
that uses 64 bit key over 64 bit data. Block ciphers such as
AES uses substitution-permutation (SP) network in order to
integrate Shannon’s confusion and diffusion properties. Other
ciphers such as Blowfish and DES use Feistel architecture
using the advantage of having almost the same encryption and
decryption operation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

269 | P a g e

www.ijacsa.thesai.org

Fig. 2. F-Function of SIT algorithm.

Their proposal is a combination of both Feistel and SP
networks (here F-function as SP network as in figure 2), using
properties of the both to provide substantial security but
keeping the computation complexities as minimum as
possible. The algorithm has two parts: key expansion and
encryption. A 64 bit key is input by user, divided into 4
blocks, supplied into F-functions, arranged in 4X4 matrices
and new five unique keys are generated using some linear and
non-linear transformations.

Fig. 3. 4x4 matrices formation during key scheduling.

Input from the f-function forms a matrix and a non-linear
transformation occurs as show in figure 3. It can be observed
that it is too time consuming and with a little tweak the
operation can be minimized using in-place bit shuffling and
introducing random number.

The encryption process consists of logical operations,
shifting, and substitutions. Although other cipher uses 10 to 20
rounds but it uses Feistel network of 5 rounds that use the five
unique generated keys but provides enough confusion and
diffusion.

III. PROPOSED ALGORITHM

The proposed algorithm is a symmetric key block cipher. It
constitutes 64-bit key. In any symmetric key algorithm the
encryption process is made up of several encryption rounds.
Some mathematical functions define each round to create
confusion and diffusion. Increasing number of rounds will
ensure better security but will increase the consumption of the
device. A typical cryptographic algorithm usually consists of
on average 10 to 20 rounds so that the encryption process is

strong enough. But the proposed algorithm restricted to only
five rounds. The algorithm utilizes the Feistel network. It
creates sufficient confusion and diffusion of data so that
attacks can be confronted.

The algorithm consists of two parts:

a) Key Scheduling

b) Encryption Process

Key is the most fundamental component in the process of
encryption and decryption. The entire security of the data is
dependent on the key. The secrecy of the data will be lost if an
attacker happens to know the key. Therefore, the revelation of
the key should be as difficult as possible. The Feistel network
used here consists of five rounds each requiring five unique
keys for the encryption/decryption purpose. On figure 4 the
key scheduling block is illustrated.

The proposed algorithm requires a 64-bit key. A 64-bit of
data can be encrypted or decrypted using that key. In order to
guard against exhaustive search attack, the length of the first
key must be large enough so that it becomes difficult for the
enemy to perform key searching attacks. A cipher key is taken
as an input which is 64-bit. The cipher key is input to the key
expansion architecture. The block creates five unique keys
after going through much confusion and diffusion. The
modification that is made from the existing algorithm is
shown in the dashed border. Inside the border there are four
blocks called non-linear bit shuffling replacing conventional
matrix operation. The non-linear bit-shuffling is efficient in
creating more confusion and diffusion than the other non-
linear operation.

Fig. 4. Key Scheduling

The non-linear bit-shuffling block replaces matrix
operation in existing method. A 16-bit input from F-function
enters into the block. Taking that 16-bit data as a seed a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

270 | P a g e

www.ijacsa.thesai.org

pseudo random number is generated using linear feedback
shift register. Then the two is XORed. The result is transferred
to the bit shuffling block that performs a operation as shown
in figure 6. The bit shuffling blocks perform an in-place
conventional permutation. Figure 5 illustrates how these
operations are performed.

Fig. 5. Process of non-linear bit shuffling block.

Again the output enters into the perfect shuffling block.
Figure 7 illustrates how a perfect shuffle is performed.

Fig. 6. Bit shuffling.

Fig. 7. Perfect shuffle

First four keys, K1, K2, K3, K4 are generated after non-
linear bit shuffling. The fifth key K5 is computed by the XOR
of the keys K1-K4.

The encryption process encrypts a 64-bit block of data in
five rounds using five unique keys generated in the key
expansion block. To create considerable confusion and
diffusion this process is composed of some shifting, swapping,
substitution, XOR, XNOR operations.

Fig. 8. One of the rounds encryption process.

For the first round an array (figure 8) of 64 bit plain text is
first divided into four segments of 16 bits , ,
 , and . As the bits progresses in each round
the swapping operation is applied so as to diminish the data
originality by altering the order of bits, essentially increasing
confusion in cipher text. Bitwise XNOR operation is
performed between the respective round key obtained
earlier from key expansion process. The output of XNOR
operation is fed to the modified G-function. The rounds are
repeated using the following equations.

 {

The results of the final round are concatenated to obtain
Cipher Text (Ct).

The encryption process consists of five rounds and uses
Feistel architecture. The data block is of 64-bit. The 64-bit
data is divided into four 16-bit data. Each round utilizes one
key; first round uses first key, second round uses second key
and so on. Each key is used twice. In each round the innovated
G-function is also used twice. This considerably reduces
processing cycles. Figure 9 shows how five rounds of
encryption looks like. Please note, after each round data
blocks are exchanged except the last round. The decryption
process is the opposite of the encryption process. This time
last key is used first.

A. G-Function

Two fundamental concepts from genetic algorithm called
crossover and mutation are used in the function. That is why
the function is named as G-function. Figure 10 illustrates the
process of a G-function. The block takes a 16-bit input. The
input is divided into two 8-bit blocks. Middle four bits are
substituted using a substitution box which is precomputed
inside the program. Then a two-point crossover is performed
over the two 8-bit blocks. Then a simple mutation is
performed. It uses coin flip operation. In coin flip mutation
only the first bit is flipped, that is 1 flipped to 0 and 0 is
flipped to 1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

271 | P a g e

www.ijacsa.thesai.org

Fig. 9. Five rounds of the encryption process.

Fig. 10. Process of the G-function.

IV. EXPERIMENTAL SETUP

The proposed algorithm is implemented in C programming
language. C is an excellent choice for low-level operation as
cryptographic algorithms require bit level operations. The
algorithm is coded using Visual C++ Express 2010, although
CodeBlocks is an excellent choice. The coding was
independent of any machine specification. In order to measure
execution cycles, memory usage a fantastic benchmark tool
called FELICS (Fair Evaluation of Lightweight Cryptographic
Systems) [15] is used. This tool incorporates already other
standard and popular lightweight cryptographic algorithms
like AES, PRESENT, HIGHT, SIMON, SPECK, among
others. Many of these are implemented in different version
optimized for different consideration in mind. FELICS
provides interface to facilitate implementation of any new
algorithm and comparing with standard ones. The tool is
available to be downloaded. It runs on Linux Ubuntu. A
virtual machine file incorporates both Linux Ubuntu and
FELICS that saves the user from installing all prerequisites. In
the experiment, the virtual machine file is used and that works
excellently. The proposed algorithm is also implemented in
MATLAB in order to analyze security strength by encrypting
images.

The security strength of proposed algorithm is tested to
evaluate the basis of following criterion: Key sensitivity,
change of cipher entropy, histogram and correlation of the
image. Main considerations for observation are the memory
utilization and execution cycles for key generation, encryption
and decryption of this algorithm.

A. Key Sensitivity

Key sensitivity ensures that the cipher must not decipher to
original data if the key has even a bit difference from the
actual key. The amount of change occurred in the ciphertext
by the change of one bit of the key is evaluated by Avalanche
test. According to Strict Avalanche Criterion, the test is to be
perfect if 50% of the bits are changed effect of one bit change
[16]. To practically observe this effect, an image is decrypted
with a key which has only one bit difference from the actual
key.

B. Execution Cycle

Most fundamental parameter for the evaluation of
algorithm performance is the amount of cycle to perform
encoding and decoding a particular data. The proposed
algorithm developed for resource-constraint devices in mind
must consume minimal cycle and should offer desired
security. Execution cycle and power consumption can be
correlated, in which case minimizing the cycle also tends to
reduce the power consumption.

C. Memory Utilization

Limitation of memory is one of the major challenges for
resource-constraint devices. Memory can be measured the
number of registers and the number of bytes of RAM and
ROM that are used. ROM is used to store the program code
and fixed data such as S-boxes and hardcore round keys, while
RAM is used to store the computational values. The proposed
algorithm uses small amount of rounds that suitable and
favorable for its deployments in resource-constraint devices.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

272 | P a g e

www.ijacsa.thesai.org

D. Histogram

The image histogram is a powerful technique to observe
the strength of security for a particular cryptographic
algorithm. It is also a basic tool for quality control. However,
a histogram can measure the randomness while encrypting an
image. A cryptographic algorithm refers to enough secure if
the calculated histogram after encryption is uniform.

E. Image Entropy

Image entropy is a quantity which is used to describe the
amount of data that must be coded by an encryption algorithm.
Higher entropy of an image after encryption refers to the
higher security of encryption algorithm. An 8 bits gray scale
image can have maximum entropy of 8 bits. Image entropy
can be calculated using following equation as below.

 ∑

……………………..(2)

Where is the probability that the difference between
2 adjacent pixels is equal to i.

F. Correlation

The Correlation is an effective way to measure the strength
of a cryptography algorithm. However, the correlation
between two values refers to the dependency. The cipher text
of corresponding plaintext has no dependency on its original
data or plaintext for an ideal block cipher. Hence, no
information can be uncovered from the cipher text only [17].
Correlation coefficients for original and encrypted messages
are calculated using the following equation.

√ √

……………………..(3)

Where , and are covariance and
variances of variable x and y respectively. Also, and
 can be calculated as follows,

∑

……………………..(4)

∑()

……………………..(5)

Where and are the expected values of variable x

and y .Also can be evaluated using the following

equation.

∑

 ……………………..(6)

Where N is the total number of pixels of the image, is a
vector of length N and is the ith intensity values of the
original image.

FELICES provides an command line interface like gcc
(GNU Complier Collection) to test and build any lightweight
cryptographic code. They have already provided standard and
popular lightweight cipher. In order to test any other cipher
the algorithm should be coded in specific format. They’ve
provided documentation to facilitate the implementation.
Anyone can compile his implementation and tests whether the
algorithm is runnable in FELICS or not. It provides three
scenarios against which one can test his code. It is a very
convenient and highly advisable tool. Figure 11 illustrates an
example of a run.

Fig. 11. Testing the implementation of the proposed algorithm on FELICS.

TABLE I. DATA TABLE FOR DIFFERENT CIPHERS IMPLEMENTED ON

AVR ARCHITECTURE.

CIPHER DEVICE
Block

Size

Key

Size

Code

Size
RAM

Cycles

(key

generation)

Cycles

(encryption)

Cycles

(decryption)

AES AVR 128 128 23090 720 3274 5423 5388

HIGHT AVR 64 128 13476 288 1412 3376 3401

LEA AVR 128 128 3700 432 4290 3723 3784

PRESENT AVR 64 80 1738 274 2570 7447 7422

RC5 AVR 64 128 20044 360 26793 4616 4652

Simon AVR 64 96 1370 188 2991 1980 1925

Speck AVR 64 96 2552 124 1509 1179 1411

SIT AVR 64 64 826 22 2130 876 851

PROPOSED AVR 64 64 1228 34 1630 792 789

The simulation of the algorithm is performed by popular
open source benchmark tool for lightweight cryptography

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

273 | P a g e

www.ijacsa.thesai.org

FELICS (Fair Evaluation of Lightweight Cryptographic
Systems). It uses different platforms (such as AVR, MSP,
ARM and PC) for performance evaluation and usually in
different conditions. It can also evaluate execution cycles,
RAM footprint and binary code size. It can easily compare
new cipher with previous one.

Results comparison of different Lightweight Algorithm for
Hardware Implementation are shown in TABLE I

In the bar chart in figure 12, comparisons are illustrated
among different lightweight algorithm along with the
proposed algorithm. The comparisons are made based on
number of cycles taken by key scheduling, encryption and
decryption individually. The chart shows that the proposed
algorithm executes in fewer number of cycles, significantly
improving over the others.

Fig. 12. Execution Cycle Comparison for Hardware Implementation.

Two plots in figure 13 and figure 14 demonstrates
encryption and decryption cycles of data size between 64 bits
and 1024 bits. The proposed algorithm can be seen as a green
line taking fewer cycles.

Fig. 13. Execution cycle curve for different cipher in different data sizes for

encryption.

Fig. 14. Execution cycle curve for different cipher in different data sizes for

decryption

For a visual observation of encryption-decryption
demonstrate the code in MATLAB® which decrypted data
using correct key.

The avalanche test of the algorithm, as in figure 15,
implies that a single bit change in key, the plaintext brings
around 49% changes in cipher bits. The decryption is non-
recognizable if even one bit changed in original keys.

Original

Image

Encrypted

Image

Decrypted with

the correct key

Decrypted

with wrong

key (1 bit

difference)

Fig. 15. Analysis of Key Sensitivity

In figures 16, 17, 18, the vertical lines indicate the number
of pixels and the horizontal lines indicate the intensity value
for each histogram. After encryption, uniform distribution of
intensities indicates desired security.

Fig. 16. Bridge histogram

AES
HIGH

T
LEA

PRES
ENT

Simo
n

Speck SIT
Prop
osed

Key Scheduling 3274 1412 4290 2570 2991 1509 2130 1630

Encryption 5423 3376 3723 7447 1980 1179 876 792

Decryption 5388 3401 3784 7422 1925 1411 851 789

0

1000

2000

3000

4000

5000

6000

7000

8000

Ex
e

cu
ti

o
n

 C
yc

le
s

Key Scheduling

Encryption

Decryption

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

274 | P a g e

www.ijacsa.thesai.org

Fig. 17. Child histogram

Fig. 18. Flower histogram

The correlation graphs in figures 19, 20, 21 demonstrate
the comparison between the original images and the encrypted
images. The original image demonstrates highly correlated
value whereas the encrypted image seems to have negligible
correlated value. Less correlation gives better security for the
intended purpose.

Fig. 19. Bridge correlations for encrypted and decrypted image.

Fig. 20. Child correlations for encrypted and decrypted image.

Fig. 21. Flower correlations for encrypted and decrypted image.

The performance of lightweight algorithms in term of
memory efficiency is analyzed based on the size of the SRAM
and In-System Programmable Flash. Figure 22 compares the
memory usages with the existing algorithm. The size of
SRAM and In-System Programmable Flash for Atmel
ATmega128 microcontroller is 4KB and 128k bytes
respectively. The program memory usage bases on the size of
Assembly code for each algorithm.

Fig. 22. The comparison of data and memory usage of ciphers.

If the CPU cycle is known, then the energy consumption
of the algorithm can be measured. The equation [18] as
follows:

 (7)
Here, VCC is the supply voltage of the system and I is the

average current in amperes in which is consumed of T
seconds. is the clock period and N is the number of clock

cycle. So clock period is
 ⁄

Atmel Atmega128 generally uses operating voltage in
range of 2.7~5.5, current 40mA on average, and also operates
at 16 MHz. The figure 23 shows comparison of power
consumption among existing ciphers with the proposed cipher.

Fig. 23. Energy consumption comparison of ciphers.

V. CONCLUSION AND FUTURE WORK

In the near future resource-constraint devices will be
essential element of everybody’s daily lives with the blessing
of modern electronics and internet. Those devices will be
communicating with each other incessantly, so security of the
data must be considered. For this purpose an effective

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

275 | P a g e

www.ijacsa.thesai.org

lightweight cryptography algorithm proposed in this paper,
with a reduced 16.73% power consumption than the
existing cipher. The implementation shows promising
performance making the algorithm a suitable candidate for
resource-constraint devices. For future an indomitable
challenge is taken to reduce computation cycle for
sophisticated resource-constrained devices In-shah-Allah.

REFERENCES

[1] K. A. McKay, L. Bassham, M. S. Turan, N. Mouha, “Report on
Lightweight Cryptography”, National Institute of Standards and
Technology, USA, March 2017.

[2] B. Schneier, Applied Cryptography: protocols, algorithms, and source
code in C, john wiley & sons, 2007.

[3] L. Khelladi, Y. Challal, A. Bouabdallah, N. Badache, “On Security
Issues in Embedded Systems: Challenges and Solutions”, International
Journal of Information Security, Inderscience, 2008, 2 (2), pp.140-174.

[4] S. A. Kumar, T. Vealey, and H. Srivastava, “Security in Internet of
Things: Challenges, solutions and future directions”, in 2016 49th
Hawaii International Conference on System Sciences (HICSS), IEEE,
2016, pp.5772-5781.

[5] H.J. Ban, J. Choi, and N. Kang, “Fine-grained support of security
services for resource constrained internet of things”, International
Journal of Distributed Sensor Networks, vol. 2016, 2016.

[6] P. Wang, Professor S. Chaudhry, S. Li, T. Tryfonas and H. Li, “The
internet of things: a security point of view”, Internet Research, vol. 26,
no. 2, pp. 337-359, 2016.

[7] S. Wang, Z. Zhang, Z. Ye, X. Wang, X. Lin, and S. Chen, “Application
of environmental internet of things on water quality management of
urban scenic river”, International Journal of Sustainable Development &
World Ecology, vol. 20, no3, pp. 216-222, 2013.

[8] William Stallings. ”Cryptography and Network Security Principles and
Practices”, Fourth Edition, Publisher: Prentice Hall, November 16, 2005

[9] T. Karygiannis, B. Eydt, G. Barber, L. Bunn, and T. Phillips, “Guide-

lines for securing radio frequency identification (RFID) systems”, NIST
Special publication, vol. 80, pp. 1-154, 2007.

[10] Shreyank N Gowda,” Innovative Enhancement Of The Caesar Cipher
Algorithm For Cryptography” 978-1-5090-3480-2/16/$31.00 ©2016
IEEE

[11] Vikash Kumar Jha,” Cryptanalysis of Lightweight Block Ciphers” Aalto
University School of Science Degree Programme of Computer Science
and Engineering, Master's Thesis, November 18, 2011

[12] J. Gitanjali, Dr. N. Jeyanthi, C. Ranichandra, M. Pounambal, “ASCII
Based Cryptography Using Unique id, Matrix Multiplication and
Palindrome Number” School Of Information Technology and
Engineering, VIT University, India

[13] S. Dutta, T. Das, S. Jash, D. Patra, Dr. P. Paul, “A Cryptography
Algorithm Using the Operations of Genetic Algorithm & Pseudo
Random Sequence Generating Functions”, International Journal of
Advances in Computer Science and Technology, ISSN 2320 – 2602,
Volume 3, No.5, May 2014

[14] M. Usman, I. Ahmed, M. I. Aslam, S. K. and U. A. Shah, “SIT: A
Lightweight Encryption Algorithm for Secure Internet of Things”, Iqra
University, Defence View and Department of Electronic Engineering,
International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017.

[15] D. Dinu, A. Biryukov, J. Großschädl, D. Khovratovich, Y. L. Corre, L.
Perrin, “FELICS – Fair Evaluation of Lightweight Cryptographic
Systems”, University of Luxembourg, July 2015.

[16] Webster and S.E. Tavares, “On the design of s-boxes”, in Conference on
the Theory and Application of Cryptographic Techniques. Springer,
1985, pp. 523-534.

[17] E. Shannon, “Communication theory of secrecy systems”, Bell system
technical journal, vol. 28, no. 4, pp. 656-715, 1949.

[18] MOJTABA ALIZADEH, MAZLEENA SALLEH, MAZDAK
ZAMANI, JAFAR SHAYAN, SASAN KARAMIZADEH. “Security
and Performance Evaluation of Lightweight Cryptographic Algorithms
in RFID”, Faculty of Computer and Information Systems, Advanced
Informatics School Universiti Teknologi Malaysia.

