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Abstract—This article deals with fractional systems that rep-
resent better physical process and guarantee a very small number
of parameters that can reduces the computation time. It focuses
in particular on the state-space representation which highlights
the state variables and allows to study the internal behavior of
the system taking into account the initial state. Moreover, this
representation adapts better to the multiple input multiple-output
case. It also discusses the discretization of fractional system
to finally adapt the Model Predictive Control to apply it and
shows its efficiency and performance in these systems. The main
objective of this article is to compare the commensurate and non-
commensurate fractional models performance, calculation time
and ease of use.
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I. INTRODUCTION

Over the last few years, many theoretical and practical
contributions showed the importance of fractional systems and
their interest in different applications of modeling, identifica-
tion and control of physical systems. Several control strategies
have been developed and adapted for fractional systems such
as the PID controller, sliding mode control and predictive
control. In different disciplines such as electricity, chemistry,
biology, economics, automation and signal processing. Some
researchers have compared the fractional models with the
classical integer models. The results have shown that fractional
model represents systems with much lower number of param-
eters than those of integer model.

The most studied physical phenomena and most used
during modeling or identification are mentioned in [1].

One of these phenomena is the attenuation of the movement
of water on dikes, especially those with cavities or depressions
trapping air pockets that can be compressed by water.

There is also the viscoelasticity of the materials having me-
chanical properties strongly dependent on the frequency over
many decades of frequency, where the number of parameters
is very large. As a result, calculations on the model take time
and produce high order differential equations. Which is solved
by using a fractional model with a number of paramtrestres
very reduced in [2].

Ref [3] treated another phenomenon that requires the use
of the fractional model which is the Randles model that
is frequently used in the literature for modeling lead-acid
batteries. This model results from a simplified solution of the
electrochemical diffusion equation in the batteries (Fick’s law).

To finish, the diffusion of heat in a semi-infinite environ-
ment subjected to a heat flux q(t) on its surface boundary S.
In [4, 5], authors demonstrate that the mathematical equations
describing the unidirectional heat transfer in the environment
reveal a real order of derivation of the temperature at the point
of abscissa x = 0.

Almost all articles dealing with fractional systems focus
on commensurate order systems and the developed controls
are based on the transfer function model. But in practice the
identification programs give better results in free identification.
Therefore the orders of systems can be arbitrary, this type
is named non-commensurate order. This can impose problem
because in the case of non-commensurate the use of the
classic tools becomes imopossible, moreover the programming
becomes more complicated.

This paper compares the commensurate and non-
commensurate fractional system discussing the advantages and
the disadvantages of each model. The models used in this paper
are in the form of a state-sapce representations that make it
easier to study the internal behavior of systems and adapt better
to MIMO systems.

The first section of this article quotes the different represen-
tations of fractional systems as well as the transition between
them. A second section explores the method used to pass from
a continuous model to a discrete model. Section 3 will present
the predictive control that will be applied on the fractional
model. In Section 5 we have implemented different methods
to compare commensurate and non-commensurate fractional
systems.

II. GENERAL FRACTIONAL SYSTEM REPRESENTATION

A generalized fractional system can be represented by the
following equation [6, 7]:

y(t) +

n∑
i=1

aiD
αiy(t) =

m∑
i=1

biD
βiu(t) (1)

As the system is relaxed y(t) = u(t) = 0 for t 6 0, the
Laplace transform of Dαiy(t) and Dβiu(t) are respectively
sαiY (s) and sβiU(s), where Y (s) and U(s) are the Laplace
transforms of y(t) and u(t). Applying the Laplace transforma-
tion to (1) we obtain:

Y (s) +

n∑
i=1

ais
αiY (s) =

m∑
i=1

bis
βiU(s) (2)
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The transfer function can be deduced from the previous
equation:

G(s) =
Y (s)

U(s)
=

∑m
i=1 bis

βi

1 +
∑n
i=1 ais

αi
(3)

The generalized state space model corresponding to the
multivariable transfer function is:{

D(α)(x) = Ax+Bu
y = Cx+Du

(4)

Where:

D(α)(x) =
[ dα1

dtα1
x1,

dα2

dtα2
x2 · · ·

dαn

dtαn
xn
]T

(5)

The passage from the state-space representation to the
transfer-function representation can be deduced as in the
integer case by taking the Laplace transform and considering
the zero initial conditions [8], it is given by:

G(s) = C
[

(s(α)In − A)−1
]
B + D (6)

On the other hand, to go from the transfer function to the
state representation there is a difference. This difference is
due to the presence of fractional derivation orders that must
be taken into account during transformation. As mentioned,
the transfer function of fractional systems is represented as
follows:

G(s) =
bms

βm + bm−1s
βm−1 + · · ·+ b1s

β1 + b0
sαn + a1sαn−1 + · · ·+ an−1sα1 + an

(7)

With
αn > αn−1 > · · · > α2 > α1

and
βm > βm−1 > · · · > β2 > β1

Let α̃ be the vector obtained from the concatenation of the
fractional numbers αi and βi such that:

α̃ =
[
α̃n+m α̃n+m−1 α̃n+m−2 · · · α̃2 α̃1

]
(8)

With

α̃n+m > α̃n+m−1 > α̃n+m−2 > · · · > α̃2 > α̃1

Let consider the continuous state-space model given by:{
Dγ(x) = Acx+Bcu
y = Ccx

(9)

with

Ac =


0 1 · · · 0 0
0 0 0 0
...

. . .
...

0 0 0 1
ãn+m ãn+m−1 · · · ã2 ã1

 , Bc =


0
0
...
0
1



Cc = (c̃1 c̃2 · · · c̃n+m−1 c̃n+m)

and

Dγx =
[
Dα̃1x1 · · · D(α̃n+m−α̃n+m−1)xn+m

]
(10)

Where the corresponding transfer function model H(s) is
given by:

H(s) =
c̃1 + c̃2s

α̃1 + c̃3s
α̃1+α̃2 + · · ·

sα̃1+α̃2+···+α̃n+m + · · ·
· · ·+ c̃n+ms

α̃1+α̃2+···+α̃n+m−1

· · ·+ ãn+m−2sα̃1+α̃2 + ãn+m−1sα̃1 ãn+m

(11)

Since H(s) numerator and denominator contain (n + m)
terms, it is then sufficient to sort them in order to isolate m
terms for witch the fractional orders correspond to those of
G(s) numerator and n terms for witch the fractional orders
correspond to those of G(s) denominator. The procedure of
selection of the terms c̃i and ãi is summarized in (12).


ãn+m = an c̃1 = b0
if α̃i = βj then c̃i+1 = bj and ãn+m−i = 0

if α̃i = αj then c̃i+1 = 0 and ãn+m−i = an−j

(12)

i = 1, · · · , n+m− 1 and j = 1, · · · , n+m− 1

In this case of generalized fractional systems, the number
of state variables is equal to the sum of dimensions of
the numerator and denominator polynomials of the transfer
function (n+m).

III. DISCRITIZATION OF FRACTIONAL STATE-SPACE
MODEL

Contrary to the commensurate case, discretization in the
case of non-commensurate fractional systems must take into
account the plurality of derivations of state variables.

To move from a continuous model to a discrete model it
is necessary to use this approximation [9, 10, 11]:

Dγx(t) =
1

T γs

p∑
j=0

(−1)j
(
γ
j

)
x((k − j)Ts) (13)

Let’s assume that the vector of continuous model derivation
γ =

[
γ1 γ2 · · · γr

]T
, Ts is the sampling time and p ∈ N

is the number of past samples with which the derivation was
computed.

If (i = 1, · · · , r), the term
(
γ
j

)
can be written as follows:(

γ
j

)T
=
[(

γ1
j

) (
γ2
j

)
· · ·

(
γr
j

)]
(14)

(
γi
j

)
=

 1 for j = 0
γi(γi − 1)...(γi − j + 1)

j!
for j > 0

(15)
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By multiplying (13) by T γs and developing the terms of
j = 0 and j = 1 the following result is found:

T γs D
γx(t) =x(kTs)− γx((k − 1)Ts)+

+

p∑
j=2

(−1)j
(
γ
j

)
x((k − j)Ts)

(16)

Now let consider the following continuous fractional state-
space model [12]:{

Dγx(t) = Acx(t) +Bcu(t)
y(t) = Ccx(t)

(17)

With Ac ∈ Rr×r, Bc ∈ Rr×1 and Cc ∈ R1×r are the
state matrices of the continuous fractional model and r is the
number of varibales in state-space model.

T γs Acx(kTs)− x(kTs) = −γx((k − 1)Ts)+

+

p∑
j=2

(−1)j
(
γ
j

)
x((k − j)Ts)−BcTsu(kTs)

(18)

Note that Ir ∈ Rr×r the identity matrix and T γs the
diagonal matrix filled by ( T γ1s · · ·T γrs ).

To facilitate writing, note

Z = (T γs Ac − Ir)−1 (19)

x(kTs) =− Zγx((k − 1)Ts) + Z
p∑
j=2

(−1)j
(
γ
j

)
x((k − j)Ts)

− ZBcT γs u(kTs)
(20)

and with (i = 1, · · · , r)

cj = diag{(−1)j
(
γi
j

)
(21)

The above equation can be written as:

x(k) = Z c1x(k−1) + Z
p∑
j=2

cjx(k− j)−ZBcT γs u(k) (22)

To simplify the equation:

Aj = Z cj (23)

By expanding all terms and simplifying, (22) becomes in
the form:

x(k) = A1x(k−1)+A2x(k−2)+· · ·+Akx(0)−ZBcT γs u(k)
(24)

The system can therefore be described by a discrete state-
space representation [13]:{

Xd(k + 1) = AdXd(k) +Bdu(k)
y(k) = CdXd(k)

(25)

With

Ad =


A1 A2 · · · Ap−1

I 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 · · · I 0

, Bd =


−ZBcT γs

0
...
0

,

Cd = (C 0 · · · 0)

Xd(k + 1) =


x(k + 1)
x(k)

...
x(k − p+ 1)

 and

Xd(k) =


x(k)

x(k − 1)
...

x(k − p)


with u, y, Xd are respectively the input, output and

variables state of the process. p is the number of past iterations
which the system takes into account for calculating a variable,
Ad ∈ Rrp×rp, Bd ∈ Rrp×1 , Cd ∈ R1×rp and Xd ∈ Rrp×1 .

By increasing the number of iterations taken into account
p the computation time increases, so it is reasonable to choose
a number large enough to represent the system correctly but
not too large to reduce the calculation time.

IV. FRACTIONAL MODEL PREDICTIVE CONTROL

The principle of the predictive control is to create an
anticipatory effect for the system with respecting the trajectory
to follow known in advance, based on the prediction of the
future behavior of the system and minimizing the gap of these
predictions to the trajectory and by minimizing a certain cost
function J , while respecting operating constraints [14, 15, 16].

This section will develop a predictive control from the
discrete fractional state-space model described in previous
section. For that we will make a variable change : ∆Xd(k) =
Xd(k) − Xd(k − 1) the input variable difference: ∆u(k) =
u(k) − u(k − 1), and using it in (25) this transformation is
found:

∆Xd(k + 1) = Ad∆Xd(k) +Bd∆u(k) (26)

The new state variable vector is:

X(k) = [∆Xd(k)T y(k)]T

with y(k) is the output and:

y(k + 1)− y(k) = CdAd∆Xd(k) + CdBd∆u(k) (27)

The system can be written in the form:{
X(k + 1) = AX(k) +B∆u(k)
y(k) = CX(k)

(28)

A =

(
Ad 0Td
CdAd 1

)
; B =

(
Bd
CdBd

)
;
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C = (0d 1); 0d ∈ R1×rp

Future state variables can be predicted and written in the
form:

X(k + 1) = AX(k) +B∆u(k)
X(k + 2) = AX(k + 1) +B∆u(k + 1)

= A2X(k) +AB∆u(k) +B∆u(k + 1)
...

X(k +Hp) = AHpX(k) +AHp−1B∆u(k)+
AHp−2B∆u(k + 1) + · · ·
+AHp−HcB∆u(k +Hc − 1)

(29)

Based on (29) future system outputs can be predicted:

y(k + 1) = CAX(k) + CB∆u(k)
y(k + 2) = CAX(k + 1) + CB∆u(k + 1)

= CA2X(k) + CAB∆u(k)+
CB∆u(k + 1)

...
y(k +Hp) = CAHpX(k) + CAHp−1B∆u(k)+

CAHp−2B∆u(k + 1) + · · ·
+CAHp−HcB∆u(k +Hc − 1)

(30)

Hp and Hc are respectively the prediction horizon and the
control horizon with Hp ≥ Hc. Assume the vector Y which
contains Hp system’s predicted future outputs and ∆u contains
Hc future controls:

Y T = [y(k + 1) y(k + 2) · · · y(k +Hp)]

∆uT = [∆u(k) ∆u(k + 1) · · ·∆u(k +Hc − 1)]

The vector Y can also be written as :

Y = FX(k) + Φ∆u (31)

F =


CA
CA2

CA3

...
CAHp

 (32)

ΦT =


CB CAB CA2B · · · CAHp−1B
0 CB CAB · · · CAHp−2B
0 0 CB · · · CAHp−3B
...

...
...

. . .
...

0 0 0 CAHp−HcB

 (33)

The aim of predictive control is to find the control vector
∆u which forces the system’s output y to follow the setpoint

ys. In order to achieve this we must optimize a criterion J
which represents the control objective:

J =

Hp∑
i=1

(ys(k + i)− y(k + i))2 + λ

Hc−1∑
i=0

∆u2(k + i) (34)

The criterion J can be written in matrix form:

J = (Ys − Y )T (Ys − Y ) + ∆uTλ∆u (35)

With Y Ts = [ys(k + 1) ys(k + 2) · · · ys(k + Hp)] is the
vector filled by the future values of the set-points and λ is
weight coefficient on the control.

By minimizing J we obtain optimal control sequence [17]:

∆u = (ΦTΦ + λI)−1ΦT (Ys − FX(k)) (36)

V. SIMULATION RESULTS

In this section the matlab FOMCON toolbox is used to
find a continuous fractional transfer function from the input-
output data of a thermal system. The input signal used for
identification is shown in the Fig.1. In this case we chose a
free identification to find the better result.
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Fig. 1. System input.

The result obtained is compared with the output signal used
in the identification, the Fig.2 illustrates the two signals as well
as the error.
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Fig. 2. Identification result.

This method gaves as result a continuous fractional transfer
function (7)

G(s) =
b0

s2.46 + ã1s1.97 + ã2s1.39 + ã3s0.97 + ã4s0.88 + ã5
(37)
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So the parameters are deduced: b0 = −0.0041, ã1 =
−1.5977, ã2 = 0.551, ã3 = −0.3517, ã4 = −0.0011and
ã5 = −0.002.

By applying the above method, the founded result is
the fractional state-space representation for previous transfer
function and which is described by the matrices:

Ac =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0.002 0.0011 0.3517 −0.551 1.5977

,

Bc =


0
0
0
0
1

, Cc = (−0.0041 0 0 0 0)

α̃1 = 0.88, α̃2 = 0.97, α̃3 = 1.39, α̃4 = 1.97 and α̃5 =
2.46.

and using (8) and (10) we can fill the vector γ by :

γ =


α̃1

α̃2 − α̃1

α̃3 − α̃2

α̃4 − α̃3

α̃5 − α̃4

, then γ =


0.88
0.09
0.42
0.58
0.49


From transfer function (37) the commensurate model that

can be found by matlab FOMCON toolbox has a very high
order, in this case rc = 246 and α = 0.01 With Acc ∈ Rrc×rc ,
Bcc ∈ Rrc×1 and Ccc ∈ R1×rc are the state matrices of the
continuous fractional model, α is the commensurate order and
rc is the number of varibales in state-space commensurate
model.

For discretization the chosen sampling period is Ts = 5s
and the history will be limited to 20 past values so p = 20,
these parameters will be the same for the rest of this paper.

In what follows (Fractional Model Predictive Control)
FMPC will be applied for both models, the necessary param-
eters for the FMPC will be fixed for this section Hp = 10,
Hc = 1 and λ = 2 .

The system output (temperature) and the set-point are
shown in the Fig.3 while the Fig.4 shows the control signal
generated by the FMPC. A disturbance is added to the system
in the interval of time k ∈ [120, 150] to test the ability of
FMPC to anticipate it, the amplitude of this disturbance is
+10%.

Fig.3 compares the output of the non-comensurate model
with the commensurate model, these two models are deduced
from the same transfer function presented by (37).

The Fig.3 and Fig.4 show that the FMPC is able to mitigate
the effect of the disturbance on the output. On the other hand
the Fig.5 shows peaks with a very large amplitude which
appears in the control increment signal.

The figures show that the predictive control is able to force
the system to follow the set-point in both cases, but it is clear
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Fig. 3. Output with disturbance.
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Fig. 4. Control with disturbance.

that for the non-commensurate model the control expends less
energy to achieve it.
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Fig. 5. Control increment with disturbance.

In the Fig.5, the control increases by a large amount
instantly. To cancel this undesirable spike we will add a
constraint to the calculation of control.

The principle of constraint control [18, 19] is to add to the
main problem one or more conditions, it is therefore necessary
to minimize criterion J while respecting these conditions. The
most used constraint form is the one on the rate of change of
the control variables ∆u(k). Suppose that for a single-input
system the upper limit is ∆umax and the lower limit is ∆umin.
The constraints are specified in the form:

∆umin ≤ ∆u(k) ≤ ∆umax (38)

Assuming that the control variable ∆u(k) can only increase
or decrease in a unit of magnitude less than 2.5, the operational
constraint is:

−2.5 ≤ ∆u(k) ≤ 2.5
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Now let’s test the performance of the system under con-
straint and with a disturbance of amplitude +10% in the
interval of time k ∈ [120, 150], the constraint is the same
used before.
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Fig. 6. Output with constraint and disturbance.

Even under constraint the FMPC can ensure that the output
(temperature) follows the set-point. Constrains on the control
increment guarantees that there is no peaks in the control
signal. In return, the output porsuite becomes slower as shown
in the Fig.6.
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Fig. 7. Control with constraint and disturbance.

The choice of the the interval [∆umin, ∆umax] is very
important because if the interval is too wide the condition will
not be taken into account when minimizing criterion J , and if
the interval is too small the control will no longer be able to
bring the output to follow the set-point, even if it happen the
system will be too slow.
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Fig. 8. Control increment with constraint and disturbance.

Fig.7 and Fig.8 show that the constraint is taken into
account in optimisation and show that the non-commensurate
model still expends less energy than the commensurate model.

One of the disadvantages of fractional systems is the
increase of the dimensions of the matrices at each iteration. For

example if p = 20, the calculation of the state variables will
depend on 20 previous values. The dimensions of the matrices
will increase to multiply by p. This increase has a negative
effect on the calculation time which increases considerably.

Now let’s focus on the calculation time for both models.
This part compares the time spent on each iteration to calculate
the control increment ∆u for different value of p. In this
simulation the used processor is a i3 with 1.9 GHz frequency,
the results are presented in Table I:

TABLE I. CALCULATE TIME (MS)

p 20 50 100 180

Non-commensurate 22.7 23.6 27.9 30.5

Commensurate 53.2 56.1 61.5 74.1

Even if fractional models better represent physical systems,
their use can be complicated. The commensurate model has
a very high order rc = 246 whereas in the case non-
commensurate model r = 5, this difference is manifested in
the computation time.

These results show that the use of the commensurate model
can provide the same performance as non-commensurate
model with a longer computing time. The non-commensurate
model consecutively reduces the calculation time for the con-
trol because the matrices have a smaller dimension. On the
other hand, the determination of a non-commensurate model
is more complicated than the commensurate model.

VI. CONCLUSION

The use of fractional models becomes more and more
frequent given the efficiency they provide in the discription
of certain physical systems. Nevertheless it remains a little
difficult to handle. The majority of research [20, 21, 22] deals
with commensurate fractional models that have proved effi-
ciency at describing several physical phenomena, but the major
inconvenience is that computation time increases in discrete
models because of the use of history in the calculation. This
article has shown that the limitation of the used history and the
use of non-commensurate models in modeling or identification
can remedy this problem. It has also adapted predictive control
to apply it to a non-commensurate fractional system. The
importance of this work is that it deals with the state-space
representation of the non-commensurate fractional systems
from identification to control. It also compares the use of
commensurate and non-commensurate fractional systems and
explores the advantages and disadvantages of each model. At
first it introduced the transition between the transfer-function
and the state-space representation in the non-commensurate
fractional case. Then for the same kind of system, it explained
the discretization and we closed by a comparison with the
commensurate model in therm of performance and computa-
tion time.
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