
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

99 | P a g e

www.ijacsa.thesai.org

A Mapping Approach for Fully Virtual Data

Integration System Processes

Ali Z. El Qutaany
1

PhD Student, Faculty of Computers

and Information,

Cairo University

Cairo, Egypt

Osman M. Hegazi
2

Professor, Faculty of Computers and

Information,

Cairo University

Cairo, Egypt

Ali H. El Bastawissy
3

Professor, Faculty of Computer

Science,

MSA University

Cairo, Egypt

Abstract—Nowadays, organizations cannot satisfy their

information needs from one data source. Moreover, multiple data

sources across the organization fuels the need for data

integration. Data integration system’s users pose queries in terms

of an integrated schema and expect accurate, unambiguous, and

complete answers. So the data integration system is not limited

to, getting the answers to the queries from the sources, but also it

is extended to detect and resolve the data quality problems

appeared due to the integration process. The most crucial

component in any data integration system is the mappings

constructed between the data sources and the integrated schema.

In this paper a new mapping approach is proposed to map not

only the elements of the integrated schema as done by the

existing approaches, but also it maps other elements required in

detecting and resolving the duplicates. It provides a means to

facilitate future extensibility and changes to both the sources and

the integrated schema. The proposed approach provides a

linkage between the fundamental components required to

provide accurate and unambiguous answers to the users’ queries

from the integration system.

Keywords—Data integration; inconsistency detection;

inconsistency resolution; mapping; virtual data integration

I. INTRODUCTION

Data integration refers to the problem of combining data
residing at autonomous, homogenous/heterogeneous sources,
and providing users with a unified global schema [1]. Data
integration system I is formalized in terms of a triple (GS, S,
M) [2], where; GS is the integrated schema to represent the
participating data sources or the data integration requirements
based on predetermined business objectives, it is also called
mediated schema between the users and the data sources, S is
the “data Sources” participating in the integration process, and
M is to map GS to S. There are two radically different
integration methods: virtualization and materialization.
Virtualization leaves the data where it is, as it is, and
dynamically retrieves, merges and transforms it on request.
Materialization does the integration up front, creating a new
dataset of requests to run against. The authors of this research
are interested in virtualization. Two main concepts constitute
the architecture of a virtual data integration system: wrappers
and mediators. Wrapper wraps and models the source using a
source schema while the mediator maintains a global schema
and mappings between the global and source schemas [3].
Users are posing their queries to the integrated system in terms

of the global schema and expecting to receive accurate,
complete and unambiguous answers. To ensure users‟
expectations; the integration system should perform three
main processes; Data Integration (DI) process, including
getting the raw answers from the sources, Inconsistency
Detection (ID) process, and Inconsistency Resolution (IR)
process. The three main processes can be detailed as follows.

Data Integration (DI) Process: In this process, the GS is
constructed, the S is marked, and M is built. Users pose
queries in terms of the GS, and the data integration system
converts these queries using M into a set of subqueries over S.
Each data source answers the subquery with the help of its
wrapper(s). Data sources were created in heterogeneous
environments; thus data quality problems [4] appear in the
collected answers from the sources. These problems occur
because the sources often contain redundant data in different
representations. Even if, the sources are clean, accurate and
the data representations are unified across all the participating
sources; some data quality problems appear due to the
integration process. One of these problems is mutual
inconsistencies which need efforts to be detected and resolved
as functions of the successive processes to the integration
process. The collected answers to each user‟s query should be
sent as an input to the inconsistency detection process.

Inconsistency Detection Process: This process is called
“Duplicate Records Detection” or “Entity Matching”, and due
to the duplicates; inconsistencies appear, so this process also
called “Inconsistencies Detection”. In this process; duplicates
are detected [5, 6, 7, 8, 9, 10] in preparation to remove the
ambiguities in the generated answers and to fuse
inconsistencies before passing the answers to the user.
Detected duplicates are marked in the answer set, and passed
as an input to the successive process to resolve the
inconsistencies.

Inconsistency Resolution Process: In this process; detected
inconsistencies are resolved [11, 12, 13, 14, 15, 16, 17, 18, 31]
before passing the generated answers to the users. In the
literature; there are 3 different strategies [19] to deal with the
inconsistencies, some researchers ignore the conflicts
resolving process at all, this strategy called “conflict
ignorance”, others are avoiding [20, 21] dealing with conflicts
by defining a pre-determined decision to be taken in case of
conflicts called “conflict avoidance”, and the rest [22, 23, 24,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

100 | P a g e

www.ijacsa.thesai.org

25] are trying to resolve the inconsistencies once detected
called “conflict resolution”.

Obviously, one of the main tasks in the design of a data
integration system is to establish the mapping M between S
and GS, such mapping should be suitably taken into
consideration in formalizing a data integration system to serve
all of its processes not only the DI process. Basically, there are
two mapping approaches [1] to define M: Global-as-View
(GAV) and Local-as-View (LAV). However, both approaches
have their limitations. To overcome these limitations, another
mapping approach is introduced to combine the best of GAV
and LAV called Both-as-View BAV. Other derivatives of
these approaches, such as Global-Local-as-View GLAV, and
Both-Global-Local-as-View provide alternatives for more
flexible and scalable data integration but still has a set of
limitations. GAV, LAV, and BAV have a common limitation,
which is; while defining M, they are not considering the data
integration successive processes, they only used for the
integration and query answering process, and they are also
facing a lot of issues when no shared identifier is used for the
integrated real world object from different sources. In this
paper, a mapping approach is proposed not only to define the
mappings between GS and S, but also to prepare parameters
assisting in performing the after integration processes; i.e. the
inconsistency detection and resolution processes, and provide
means to facilitate future changes, extensibility, flexibility,
and scalability of the integrated system, and to work with the
non-federated and heterogeneous data sources as well as the
federated and homogenous ones. The rest of the paper is
organized as follows, GAV, LAV, and BAV will be detailed
in section II showing their principles, advantages, and
limitations, while section III introduces the proposed
approach, section and finally section V concludes the work
and states the future work.

II. RELATED WORK

One of the most important aspects in the design of a data
integration system is the specification of the correspondence
between GS and S. It is exactly this correspondence that will
determine how the users‟ queries posed to the integration
system are answered. Three basic approaches for specifying
such mapping in a data integration system have been proposed
in the literature: LAV, GAV, and BAV. Some derivations are
also examined to avoid drawbacks noticed in both GAV and
LAV, e.g. BGLAV and GLAV. In this section; the basic
approaches are investigated, showing their principles, pros and
cons. Then the common limitations faced in the approaches
are listed, and a demonstration example is shown to be used
throughout the full paper.

A. Mapping Approaches

Global as View (GAV) approach: Mappings in data
integration systems based on GAV as shown in Figure 1 (a)
associates each global relation symbols with views over local
relation symbols. In GAV based mapping integration systems,
the same GS relation may have more than one mapping
assertions over S in case of the unavailability of global
relation elements in all data sources. Query processing and
simple query reformulation is the most important advantage of

GAV. GAV is effective whenever the data integration system
is based on a set of stable (do not change too much) sources,
but it does not support scalability for the data integration
system as changes in GS and/or local schemes derive the
designer to revise and alter the mappings. GS in the systems
based on GAV approach; can only contain available elements
in S at the design time. Finally it does not prepare parameters
for the successive data integration processes as it only
considers the data integration and query answering process.
IBIS [26], Multiplex, Fusionplex and Autoplex [21] are GAV
data integration systems examples.

Local as View (LAV) approach: The mapping in data
integration systems based on the LAV as shown in figure 1 (b)
associates local relation symbols with a view over global
relation symbols. LAV approach favors the extensibility of the
system where adding a new source simply means enriching
the mapping with new assertions, without other changes, so it
is effective whenever the data integration system is based on a
global schema that is stable and well-established in the
organization. But query reformulation has exponential time
complexity with respect to query and source schema
definitions. GS in the systems based on LAV approach; can
only contain available elements in S at the design time. Like
GAV; LAV does not prepare parameters for the successive
data integration processes as it only considers the data
integration and query answering process. Information
Manifold [27], System described in [22] are LAV data
integration systems examples.

Both-as-View (BAV) approach: BAV as shown in figure 1
(c) is an alternative point of view that is neither GAV nor
LAV as it uses source to-target mappings based on a
predefined conceptual target schema, which is specified
ontologically and independently of any of the sources. In BAV
for each pair (vS, vG) incrementally modify vS / vG using
primitive schema transformations to match vG /vS. BAV [28]
is easier to maintain than both GAV and LAV, and query
reformulation reduces to rule unfolding [1]. GS can only
contain available elements in the sources at the design time.
And like both LAV and GAV; BAV does not prepare
parameters for the successive data integration processes as it
only considers the data integration and query answering
process. Clio [29] is a BAV data integration systems example.

Fig. 1. Mapping Approaches GAV, LAV and BAV.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

101 | P a g e

www.ijacsa.thesai.org

B. Common Limitations for all Existing Mapping Approaches

These mapping approaches are used to define the
mappings between a global schema GS which was designed to
integrate data existing in 8 heterogeneous data sources S built
under different platforms, these sources use different
identification method for the same real world object, i.e. no
common identifier for the integrated object from all sources,
but some sources may agree on one identifier and others may
agree on another identifier. The 8 sources contain data for
around 5,000,000 real world objects. In S; the same object
may have records in different sources, but each source does
not have duplicates for the same object, the GS contains
around 80 relations. Attributes within each GS relation are not
mapped to all data sources and none of the sources has all
attributes of one GS relation. The issues faced during the
implementation:

1) None of the mapping approaches, allows the possibility

of adding elements to GS for future extensibility of the

business objectives, if they are not existing in sources at the

design time,

2) As number of the participating information sources

increases [30], as the mappings construction, the query

answering, and adding new information source or modifying

existing one becomes more complicated processes.

3) More than one mapping assertion built for each global

schema relation, as not all data sources provide the same

attributes and the same number of attributes for the global

schema relation.

4) None of the mapping approaches considering the data

integration successive processes. As they do not consider

mapping the parameters which may help in the detection and

resolution processes, e.g. source qualifications.

5) When two of the participating information sources

share an identifier for the real world object; then some

duplicates are prevented by the mapping assertions definition.

In this case, the accurate and most recent information is not

always presented in the chosen source of providing

information in the mappings.

6) Changes in the data sources and/or the global schema

require extensive efforts to keep the mappings consistent.

These limitations in the existing mapping approaches
become challenges for the proposed approach.

C. Demonstration Example

To explain and approve the limitations and drawbacks of
the existing approaches, let‟s start by hypothetically
demonstrate the following schemes, later the same hypothesis
will be also used to highlight the advantages of the proposed
mapping approach.

Example 1. Suppose we have 5 data sources, representing
oil and gas wells data with their semantics and a global
schema which is designed and uses notations and naming
independently from the sources.

GS: Well (WellAPI, WellName, Latitude, Longitude,
FieldName, County, CompIntervalID) – GS is designed to
integrate USA wells.

Data sources S – heterogeneous data sources; as the real
world object (Well Object) represented in the 5 sources does
not has the same identification key across all sources, sources
are partially agree on the well object identifier.

S1: WellDetails (WellAPI, WellName, Latitude,
Longitude, MeasuredDepthFt, HorizontalWell, Country) –
Contains data about wells from different countries.

S2: Well (APINo, WellName1, Lat, Long) – Contains data
about wells from GOM (Gulf of Mexico).

S3: USAWellData (WellName, WellSuffix, Latitude,
Longitude, FieldName, County, WellMD, HWFlag) –
Contains data about wells from USA.

S4: GulfArabiaOilWells (Name, TopLatitude,
TopLongitude, PrimaryField, Country, MD, HWFlag) –
contains data about wells from Gulf of Arabia countries. This
is irrelevant source to the integration objective.

S5: NorthDakotaWells (Name, APICompSTR, SurfaceLat,
SurfaceLong, FieldLocation, Field) – contains data about
wells from only North Dakota state (USA).

Detectors (this term will be explained and used while
exploring the proposed approach, these detectors can be
automatically detected or defined by domain experts. Here in
this paper, they defined by domain expert): Detectors for the
well object in S1 are {WellAPI} and {Latitude, Longitude,
MeasuredDepthFt, HorizontalWell}, S2 uses {APINo}, S3
uses {Latitude, Longitude, WellMD, HWFlag}, and finally S5
uses {Substring (APICompSTR, 0, CharIndex („ „)-1)} as
WellAPINumber. WellAPI from S1 is equivalent to both
APINo from S2 and Substring (APICompSTR, 0, CharIndex
(„ „)-1) from S5. WellMD from S3 and MeasuredDepthFt from
S1 are equivalent and HorizontalWell from S1 and HWFlag
from S3 are equivalent.

III. PROPOSED MAPPING APPROACH

Not all of the participating sources in the data integration
process are federated as they do not use the same identifier for
the real world object. A new term called detector is invented
to be used in this case. Detector is an identifier for the real
world object in its origin and it may not be shared between all
the sources mapped to the GS relation Ri. Real world objects
indicated in some sources may agree on a set of detectors
while others may agree on another set. Detectors may be one
or many for the real world object in its data source. A detector
may be single or composite. As Ri will be mapped to data
coming from different sources, so the union of these detectors
constructs the detectors of Ri although the attributes of these
detectors may not be appearing in Ri, by default if the sources
are sharing the same identifier then the detector of Ri will be
the shared identifier between all sources. One detector or
many may be existing per the GS relation. None of the
detectors can be considered as an identifier for the GS relation
as it will contain nulls for the records extracted from the
source(s) which do not agree on these detectors and then

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

102 | P a g e

www.ijacsa.thesai.org

violates the entity integrity constraints. Each detector
identifies only the objects which extracted from the sources
agreed on such detector(s). All the detectors will be used in
the duplicate detection process in a hierarchy based, by
starting with the first detector and ending with the last
detector. Duplicate record detection is out of scope in this
paper, but mapping of the detectors for each GS relation is
considered. Figure 2 shows how detectors are collected from
the sources and processed to construct the GS relation Ri
detectors. In example 1 there is no unified identifier for the
well object in all the data sources, so each data source is
required to provide its detectors for the well object as shown
in the example. The union of these detectors will construct the
detectors of the GS relation. As in the example; S1, S2, and S5
agreed on the detector {WellAPI} and S1, and S3 agreed on
the detector {Latitude, Longitude, WellMD, HWFlag}. The
GS relation Well have two detectors {WellAPI} and
{Latitude, Longitude, WellMD, HWFlag}, these detectors will
be used during the duplicate record detection process.
Inconsistency resolution is required before passing the results
to the user and after the duplicate record detection process.
Source preference [22] is one of the fusion policies known in

the inconsistency resolution, which fuse the conflicting data
based on the preferred source, but to apply such policy, you
should have the source name in the result set passed to the
inconsistency resolution process. In order to accomplish this;
source name will be considered in the mapping construction
process with the detector sets even if they are not considered
in the GS design. The source qualifications, e.g. Timestamp,
Cost, Availability… used for the inconsistency resolution
process may also be extracted and mapped during the mapping
construction process. Here a mapping approach is proposed
which is unlike all of the existing mapping approaches, it does
not assume the homogeneity between all of the participating
data sources, as it works for federated and non-federated data
sources. The proposed approach provides means to facilitate
the process of defragmenting the results from the data sources,
add a new data source(s), remove an existing data source(s),
and modifying data source(s). The detectors and source name
element defined in this mapping approach may not be part of
the elements required in the GS relations for business
objectives, but they will be mapped only for performing the
data integration successive processes; entity matching and
resolution.

Fig. 2. Construction Process for Detectors of GS Relation Ri.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

103 | P a g e

www.ijacsa.thesai.org

Fig. 3. The Mapping Assertions Construction Process using the Proposed Approach.

A. Principles of the Proposed Approach

1) GS designed independently of the sources, and can

contain relations and elements which may not be present in the

available sources, but added for future scalability and

extensibility of the integration system objectives.

2) The mappings between GS constructs and S constructs

are built as shown in figure 3, where each GS relation Ri has

two assertions; one assertion to map Ri elements in the form

Ri  views Vs over all data sources linked by union, such

that a single view per each source appears in the union of local

views to map such source to Ri. View V over source s has the

same arity as Ri, such that each attribute appeared on Ri and

does not have correspondence with attribute from s is replaced

with Null and aliased with the corresponding attribute from Ri

to facilitate modifying of both the data sources and the GS

relations. The second assertion will be constructed to map the

Ri detectors and the source name element with the sources

participating in Ri mapping assertion, even if they are not

present in the GS for business objectives.

First mapping assertion for the GS relation will be used for
the traditional query answering, and the second mapping
assertion is used for the successive data integration processes.

Appearance of a specific data source in the mapping
assertions follows a specific ordering, where the ordering of
the view vS over sourcei is predetermined and stored in
MappingHelper table in a standalone repository, shown in the
next subsection B. This repository will aid in adding or
removing data source (s).

Users pose their queries in terms of the GS relations.

A query Q on the global relations must be translated to a
set of subqueries over the data sources.

As an example; the mapping assertions for the GS relation
WELL in example 1 with the sources will look like:

Assertion-1: Well (WellAPI, WellName, Latitude,
Longitude, FieldName, County, CompIntervalID)  Select
WellAPI, WellName, Latitude, Longitude, Null as FieldName,
Null as County, Null as CompIntervalID from S1.WellDetails
Where Country = „USA‟ Union Select APINo, WellName1,
Lat, Long, Null as FieldName, Null as County, Null as
CompIntervalID from S2.Well Union Select Substring
(APICompSTR, 0, CHARINDEX (APICompSTR, „ „)-1) as
WellAPI, Name, SurfaceLat, SurfaceLong, FieldLocation+ „-
‟+ Field as FieldName, Null as County, Substring
(APICompSTR, CHARINDEX (APICompSTR, „ „)+1, length
(APICompSTR)-1) as CompIntervalID from
S5.NorthDakotaWells Union Select Null as WellAPI,
WellSuffix +‟ –„+ WellName as WellName , Latitude,
Longitude, FieldName, County, Null as CompIntervalID from
S3.USAWellData

Assertion-2: Well_Detectors (WellMD,
HorizontalWellFlag, SourceName) Select
MeasuredDepthFt, HorizontalWell, „S1‟ as SourceName From
S1.WellDetails Where Country = „USA‟ Union Select Null as
WellMD, Null as HorizontalWellFlag, „S2‟ as SourceName
from S2.Well Union Select Null as WellMD, Null as
HorizontalWellFlag, „S5‟ as SourceName from
S5.NorthDakotaWells Union Select WellMD, HWFlag, „S3‟
as SourceName from S3.USAWellData.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

104 | P a g e

www.ijacsa.thesai.org

Well_Detectors only contains three attributes and it was
supposed to contain 6 attributes; 5 for detectors (WellAPI
Latitude, Longitude, WellMD, and HorizontalWellFlag) and
another attribute for SourceName. But as the Well relation
contains 3 attributes from these 6, so the difference process
between Well_Detectors and Well gives {WellMD,
HorizontalWellFlag, SourceName} which is used in the
Well_Detectors. In the first assertion (Well Assertion), all the
local attributes may be aliased with the GS corresponding
attributes names, even if they provided from the sources, to
facilitate the process of query answering afterwards. In
example 1 if the designer needs to add two elements WellType
and WellStatus to the GS relation Well, at the design time,
although they do not have correspondence with any of the data
sources, this is possible in the proposed approach; it becomes
as easy as; just adding them to the GS relation, modifying the
mapping assertion Well, and enriching each view over the
sources with two elements Null as WellType, Null as
WellStatus.

B. Mapping Maintenance Helper Repository

This repository contains 2 tables; one called
GSRelationDetector, and it has the detectors of each GS
relation, it takes the form GSRelationDetector
(GSRelationName, Detector), and it is used to help in the
query answering to prepare the answer for the duplicate record
detection and resolution processes. The second called
MappingHelper and it takes the form MappingHelper
(GSRelationName, SourceName, SourceIndex), where the
SourceIndex is the order of this data source‟s view within the
mapping assertion for the corresponding GS relation.

Mapping Helper table helps in adding, removing,
modifying data sources and/or GS relations.

TABLE I. MAPPINGHELPER FOR EXAMPLE 1

GSRelation
Properties

SourceName SourceIndex

Well S1 1

Well S2 2

Well S3 4

Well S 3

TABLE II. GSRELATIONDETECTOR FOR EXAMPLE 1

GSRelation
DetectorSet

Detector Index

Well WellAPINumber 1

Well
Latitude, Longitude, WellMd,
HorizontalWellFlag

2

In example 1, the MappingHelper table takes the form
shown in table 1. These ordering was used in the previous
section A. To build the mappings. And table 2 shows the
GSRelationDetector for example 1.

C. Data Sources Management in the Proposed Approach

In this section, the operations applied in the data sources
are shown, such operations are:

1) Addition and removal of a data source: One of the

features in the proposed mapping approach is the way of

adding and removing a data source(s) to and from the

integration system. Figure 4 shows an algorithm for the

addition process, and Figure 5 shows an algorithm to be used

to remove a data source. The same 2 algorithms can be used

when adding a relation to a data source or removing a relation

from a data source.

Fig. 4. Algorithm for Addition of a New Data Source to the Integration System using the Proposed Approach.

Fig. 5. Algorithm for Removal of an Existing Data Source using the Proposed Approach.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

105 | P a g e

www.ijacsa.thesai.org

Fig. 6. Algorithm for Addition of a New Attribute to a Data Source.

Fig. 7. Algorithm for Removal of an Attribute from a Data Source.

2) Addition/removal of an element to a data source: In the

proposed mapping approach; the views built over the data

sources have the same arity as the GS relation in the mapping

assertion. Thus adding and removing attributes to and from a

data source become an easy process. Figure 6 presents an

algorithm to remove an old attribute from a data source and

Figure 7 presents an algorithm to show how a new attribute

can be added to a data source. In Figure 6, if sA is a detector

and does not exist in Ri and Ri_Detectors, it will be added to

the Ri_Detectors as the last element, and added to the view

representing s in the detectors assertion and finally add a new

field to the other sources‟ views to represent this attribute, this

new field will take the form Null as gA, where gA is the GS

relation element corresponding to sA.

D. GS Management in the Proposed Approach

In this section the operations done over the GS are
detailed, such operations are

1) Addition and removal of a GS relation: To remove a

GS relation Ri from an integration system; search in the

mapping assertions for Ri and Ri_Detectors and remove them.

If a new GS relation Ri needed to be added to the GS:

a) Construct the views sV over the relevant sources,

perform a union over all the constructed views, fill in the

MappingHelper table with the order of the sources appearing

in the union, and build the mapping assertion.

b) Collect the detectors as shown in Figure 2, fill in the

GSRelationDetector with Ri detectors and construct another

mapping assertion for Ri_Detectors.

2) Addition and removal of an element with a GS relation:

Figure 8 presents an algorithm to add a new attribute gA to a

GS relation Ri, while Figure 9 presents an algorithm to

remove an attribute gA from a GS relation R.

Fig. 8. Algorithm for Addition of an Attribute gA to a GS relation Ri.

Fig. 9. Algorithm for Removal of an Attribute gA from a GS Relation Ri.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

106 | P a g e

www.ijacsa.thesai.org

E. Query Answering in the Proposed Approach

Figure 10 shows the query answering in the proposed
approach. A query Q is answered as follows:

1) The query Q is parsed against the GS relations.

2) The queried GS relations are extracted using the query

reformulation and unfolding module and asks the mapping

helper repository for the detectors of the queried relations. The

query Q is reformulated to add the detectors (if they are not in

Q), the source name, and the filtering attributes, ask for the 2

mapping assertions for each queried relation which serve the

query elements, merge the elements/attributes of the 2

assertions of each GS relation and at the end replace each GS

relation with its corresponding merged assertion to construct

Q*.

3) The reformulated query Q* is passed to the query

translator to prepare a subquery for each data source. The

subqueries prepared for the sources are adjusted to include the

filtering attributes of Q, such that any of the filtering attributes

corresponds to Null value in the view is removed from the

filtering clause of the subquery, and if the filtering attribute is

one and corresponds to null in any of the source views or have

“and” condition with any of the other attributes, then this

means the subquery will not return any answers from the

source, so it will not be sent to the source from the beginning.

This serves as a huge optimization since a whole data source

will not be visited in this case.

4) The answers are collected from the sources.

The answers of Q* are sent to the duplicate detection process,

to detect the duplicates using the detectors, send the answers

with detected duplicates to duplicate resolution to resolve the

conflicts, and finally project over the original query attributes

to be sent to the user as the final query answer. As an

example, using example 1 and the mapping assertions defined

in 3.1. If a user poses a query Q (Select WellAPI, WellName,

Latitude from Well where FieldName = ‘CHARLES KRAMER

1608’), this Q will be answered as follows:

a) The query is parsed against GS.

b) The query reformulation and unfolding module

extracts the queried relation(s) from Q, in this case it will be

the relation Well. It then asks the mapping maintenance helper

repository for the detectors of the Well GS relation and the

source name attribute, it will be WellAPI, Latitude, Longitude,

WellMD, and HorizontalWellFlag, reformulates Q to be

(Select WellAPI, WellName, Latitude, Longitude, WellMD,

HorizontalWellFlag, FieldName SourceName from Well

where FieldName = „CHARLES KRAMER 1608‟) after union

the query projection part, the query selection part, the

detectors, and the SourceName attribute. The query

reformulation and unfolding module asks for the mapping

assertions of the relation Well, this will result in the 2

mapping assertions in section A.

c) The query reformulation and unfolding module

merges the 2 mapping assertions to be one assertion to serve Q

elements, the merged assertion looks like: Well (WellAPI,

WellName, Latitude, Longitude, WellMD,

HorizontalWellFlag, FieldName, SourceName)  Select

WellAPI, WellName, Latitude, Longitude, MeasuredDepthFt,

HorizontalWell, Null as FieldName , „S1‟ as SourceName

From S1.WellDetails Where Country = „USA‟ Union Select

APINo, WellName1, Lat, Long, Null as WellMD, Null as

HorizontalWellFlag, Null as FieldName , „S2‟ as SourceName

From S2.Well Union Select Substring (APICompSTR, 0,

CHARINDEX (APICompSTR ,„ „)-1) as WellAPINumber,

Name, SurfaceLat, SurfaceLong, , Null as WellMD, Null as

HorizontalWellFlag, FieldLocation+ „-‟+ Field as FieldName,

„S5‟ as SourceName From S5.NorthDakotaWells Union

Select Null as WellAPI, WellSuffix +‟ –„+ WellName as

WellName , Latitude, Longitude, WellMD, HWFlag,

FieldName, „S3‟ as SourceName From S3.USAWellData.

Finally, replace Well by the new merged assertion to construct

Q* and pass Q* to the query translator.

d) The query translator translates the Q* into a set of

sub-queries for the data sources, so query on S1 will be Select

WellAPI, WellName, Latitude, Longitude, MeasuredDepthFt,

HorizontalWell, Null as FieldName , „S1‟ as SourceName

from S1.WellDetails Where Country = „USA‟ and FieldName

= „CHARLES KRAMER 1608‟. Query on S2 will be Select

APINo, WellName1, Lat, Long, Null as WellMD, Null as

HorizontalWellFlag, Null as FieldName, „S2‟ as SourceName

from S2.Well where FieldName = „CHARLES KRAMER

1608‟. Query on S5 will be Select Substring (APICompSTR,

0, CHARINDEX (APICompSTR,„ „) -1) as WellAPI, Name,

SurfaceLat, SurfaceLong, Null as WellMD, Null as

HorizontalWellFlag, FieldLocation+ „-‟+ Field as FieldName,

„S5‟ as SourceName from S5.NorthDakotaWells. where

FieldName = „CHARLES KRAMER 1608‟ Query on S3 will

be Select Null as WellAPI, WellSuffix +‟ –„+ WellName as

WellName , Latitude, Longitude, WellMD, HWFlag,

FieldName, „S3‟ as SourceName from S3.USAWellData

where FieldName = „CHARLES KRAMER 1608‟

e) Subqueries over S1and S2 will not be sent to the

sources as they will not retrieve answers, while sub-queries

over S3 and S5 will be sent.

f) The query translator will collect the answers from the

sources, do simple union between the collected answers, as all

subqueries are with the same arity and the columns headers of

the query result will be using the GS corresponding headers.

The answers sent to the duplicate detection and resolution

modules.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

107 | P a g e

www.ijacsa.thesai.org

Fig. 10. Query Answering in the Proposed Mapping Approach.

IV. COMPARISON BETWEEN THE PROPOSED AND THE

EXISTING APPROACHES

In this section, a comparison is performed between the
proposed mapping approach and the existing ones, through
showing how all the operations are done using the different
approaches.

A. Mapping Assertions Construction

When using the mapping approaches to define the
mapping assertions between the GS relation and the data
sources shown in example 1; the mapping assertions using the
existing mapping approaches will be done as follows:

1) Mapping assertions in GAV: GAV produces 4

assertions, for example. 1 as below

a) Well (WellName, Latitude, Longitude)  Select

WellName, Latitude, Longitude from S1.WellDetails Where

Country = „USA‟ Union Select WellName1, Lat, Long from

S2.Well Union Select, Name, SurfaceLat, SurfaceLong from

S5. NorthDakotaWells

b) Well (WellAPI)  Select WellAPI from

S1.WellDetails Where Country = „USA‟ Union Select

Substring (APICompSTR, 0, CHARINDEX (APICompSTR ,„

„)-1) As WellAPI from S5.NorthDakotaWells Where WellAPI

not in (Select WellAPI from S1.WellDetails) Union Select

APINo from S2.Well Where WellAPI not in (Select WellAPI

from S1.WellDetails union Select WellAPI from

S5.NorthDakotaWells)

c) Well (FieldName, County)  Select FieldLocation

+„-‟+Field As FieldName, „North Dakota‟ as County from

S5.NorthDakotaWells union Select FieldName, County from

S3.USAWellData

d) Well (CompIntervalID)  Select Substring

(APICompSTR, CHARINDEX (APICompSTR ,„ „)+1,

Length (APICompSTR) As CompIntervalID from

S5.NorthDakotaWells

2) Drawbacks of GAV assertions: drawbacks noticed

when using GAV in example 1

a) When a shared identifier found as mapping assertion

2, incomplete answer may be generated due to the mapping

assertion construction as when the real world object extracted

from S1, it will not be extracted from the other sources S2 and

S5. This means the most recent data, the complete data, and/or

the accurate data may not be extracted for the resolution

process.

b) GAV cannot add elements which have not previously

existed in the sources to the GS relation.

c) More than one mapping assertions represent the same

GS relation.

d) The source name is not considered in the mappings

as it does not appear in the GS relation Well, so the successive

processes will not have enough parameters to be done

effectively. As the source preferences will not be performed,

and the duplicates will be checked between all records,

including the ones coming from the same data source, even if

there are no duplicates in the data coming from the same data

source which is time consuming.

e) In case of no shared identifier defined commonly

between all sources for the same real world object, shared

identifier may be available partially between some sources,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

108 | P a g e

www.ijacsa.thesai.org

but these identifiers will not be mapped if they are not

requested in the GS relations, so they will not be leveraged in

the successive processes.

3) Mapping assertions in LAV: LAV produces 4

assertions for, example.1 as below

a) S1.WellDetails (WellAPI, WellName, Latitude,

Longitude, Country)Select WellAPI, WellName, Latitude,

Longitude, „USA‟ as Country from GS.Well

b) S2.Well (APINo, WellName1, Lat, Long)  Select

WellAPI, WellName, Latitude, Longitude from GS.Well

where Latitude between 26.01614 and 30.23556 and longitude

between - 97.14265 and -86.594202.

c) S3.USAWellData (WellName, WellSuffix, Latitude,

Longitude, FieldName, County) Select Substring

(WellName, CHARINDEX (WellName,„-‟) + 1, Length

(WellName)) as WellName, Substring (WellName, 0,

CHARINDEX (WellName ,„-‟)-1) as WellSuffix, Latitude,

Longitude, FieldName, County from GS. Well

d) S5.NorthDakotaWells (Name, APICompSTR,

SurfaceLat, SurfaceLong, FieldLocation, Field) Select

WellName, WellAPI + „ „+ CompIntervalID as APICompSTR

,Latitude, Longitude, Substring (FieldName, 0 ,

CHARINDEX (FieldName ,„-‟)-1) as FieldLocation,

Substring (FieldName, CHARINDEX (FieldName ,„-‟)+ 1,

Length (FieldName)) as Field, from GS. Well where County =

„North Dakota‟

4) Drawbacks of LAV assertions: drawbacks noticed

when using LAV in example 1

a) Source views may be mapped to the complete set of

objects of the GS view; e.g. assertion1 associates all records of

GS relation Well to S1.WellDetails. And this causes,

complexities in the query translations and answering.

b) Requires extra information about the source

semantics, e.g. mapping assertion 2 requires information about

how we can determine the GOM wells, the min/max of

latitude and longitude for GOM wells which stored in S2.

c) Drawbacks 2, 3, 4, and 5 noticed in GAV are also

noticed here in LAV.

Mapping assertions in BAV: BAV produces 4 assertions for

example.1 as below

d) Select WellAPI, WellName, Latitude, Longitude

from GS.Well  Select WellAPI, WellName, Latitude,

Longitude from S1.WellDetails Where Country = „USA‟

e) Select WellAPI, WellName, Latitude, Longitude

from GS.Well where Latitude between 26.01614 and

30.235566 and longitude between - 97.14265 and -86.59420

Select APINo, WellName1, Lat, Long from S2.Well.

f) Select WellName, Substring (WellName, 0,

CHARINDEX (WellName ,„-‟)-1) as WellSuffix, Substring

(WellName, CHARINDEX (WellName ,„-‟) + 1, Length

(WellName)) as WellName, Latitude, Longitude, FieldName,

County from GS. WellSelect (WellSuffix +‟-„+ WellName)

As WellName, WellSuffix, WellName, Latitude, Longitude,

FieldName, County from S3.USAWellData

g) Select WellAPI, WellName, Latitude, Longitude,

Substring (FieldName, 0 , CHARINDEX (FieldName ,„-‟)-1)

As FieldLocation, Substring (FieldName, CHARINDEX

(FieldName ,„-‟)+ 1, Length (FieldName)) as Field,

FieldName, CompIntervalID, WellAPINumber + „ „+

CompIntervalID as APICompSTR from GS. Well Where

County = „North Dakota‟  Select Substring (APICompSTR,

0, CHARINDEX (APICompSTR ,„ „)-1) as WellAPI, Name,

SurfaceLat, SurfaceLong, FieldLocation , field,

(FieldLocation+ „-‟+ Field) as FieldName, Substring

(APICompSTR , CharIndex (APICompSTR ,„ „)+1, Length

(APICompSTR)) as CompIntervalID, APICompSTR from

S5.NorthDakotaWells

5) Drawbacks of BAV assertions: drawbacks noticed

when using BAV in example 1 are

a) Drawbacks 2, 3, 4, and 5 noticed in GAV are noticed

also here in BAV.

b) Needs extra efforts and time to keep matching

between the local and global views.

B. Data Sources Management using the Existing and

Proposed Approaches

1) Addition of a data source: A new source S6 with

WellData (API, Name, Field, County, Comp, Country) will be

added to the integration system in example 1
Using GAV: In GAV, adding a new data source leads to

revisiting all the mapping assertions to see which one should
be altered and may lead to the addition of a new assertion. The
addition of the relation WellData will cause:

a) Changes to the mapping assertion 2, 3, and 4 under the

GAV mapping assertions shown in section 4.1 to include

union with new views Select API from S6.WellData where

Country = „USA‟ and API not in (Select WellAPI from

S1.WellDetails union Select WellAPI from

S5.NorthDakotaWells Union Select APINo from S2.Well),

Select Field, County from S6.WellData where Country

=‟USA‟, and Select Comp from S6.WellData where Country

=‟USA‟ respectively.

b) Adding of a new mapping assertion to map the Name

element to the GS relation Well. The new mapping assertion

will be number 5, and will take this form Well (WellName) 

Select Name from S5.NorthDakotaWells Where Country =

„USA‟

Using LAV: In LAV, adding a new data source S6 will
only cause adding a new mapping assertion 5, for the LAV
mapping assertion Select API, Name, Field, County, Comp,
Country from S6.WellData Where Country= „USA‟Select
WellAPI, WellName, FieldName, County , CompIntervalID,
“USA” as Country from GS.Well

Using BAV: Adding S6 to the integrated system in
example 3.1 using BAV approach, will be done by building a
view vG over the GS relation Well and a view vS over the
WellData relation from S6, and mapping vG to vS.

Using the proposed approach: In the proposed approach,
adding a new data source S6 will be performed by adding a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

109 | P a g e

www.ijacsa.thesai.org

new union in the Well assertion with a view over the added
source and the Well_Detectors assertion will be modified to
include a new detector view of the added source. The two
views are Select API, Name, Null as Latitude, Null as
Longitude, Null as FieldName, County, Comp from
S6.WellData Where Country = „USA‟. And the detectors view
will be Select Null as WellMD, Null as HorizontalWellFlag,
„S6‟ as SourceName from S6.USAWell Where Country =
„USA‟ Afterwards the MappingHelper table will be updated to
have this record („Well‟, „S6‟, 5)

2) Removal of a data source
If S5 in example 1 will be removed from the integration

system built:

Using GAV: The following steps will be required to
remove the S5 source:

a) Reconstruct the mapping assertion number 1 under

the GAV mapping assertions shown in section 4.1. To remove

the view representing S5.

b) Remove the mapping assertion number 4 as it

contains CompIntervalID which comes only from S5,

c) Revisit the GS relation Well to remove the element

CompIntervalID as it only exists in S5.

Using LAV: If S5 is removed from the integration system
in example 1 LAV will remove the mapping assertion number
4, and revisit the GS relation Well to remove the
CompIntervalID from there.

Using BAV: Removal of S5 in example 1 from the
integration system built using BAV will cause to remove the
mapping assertion number 4 underneath the BAV assertions,
and revise the GS to remove the CompIntervalID from there.

Using the proposed approach: Removing S5 from the
integration system build using the proposed approach in
example 1 will be performed as follows:

a) Remove the view 3 from both the Well_Detectors

and Well mapping assertions.

b) Remove from MappingHelper the records related to

S5 and GS relation Well, finally update the MappingHelper

data to keep the consistency of the ordering of the sources in

the mappings caused by the removal of S5.

3) Removal and the addition of an attribute in a data

source
Using GAV: To add API attribute to S3 in GAV, the

mapping assertions which will be affected are:

a) The mapping assertion number 2 will be removed as

it will not be needed.

b) The mapping assertion1 will be modified to include

WellAPI attribute from all sources.

To remove APICompSTR attribute from S5 in GAV, both the

mappings and the GS will be affected, where:

c) The mapping assertion number 2 will be revised to

remove the view over S5.

d) The mapping assertion number 4 will be removed.

e) The GS will be revised to remove the

CompIntervalID attribute from there.

Using BAV and LAV: To add API attribute to S3 in LAV
and BAV, only the mapping assertion number 3 will be
modified to include the API attribute. And to remove
APICompSTR attribute from S5 in LAV and BAV, the
mappings and the GS will be affected, where:

f) The mapping assertion number 4 modified to not

include two attributes WellAPI and CompIntervalID

g) The GS will be revised to remove the

CompIntervalID attribute from there.

Using the proposed approach: To add API attribute to S3
in the proposed approach, only the local view corresponding
to S3 will be extracted and modified such that Null as
WellAPI will be replaced by API. And to remove
APICompSTR attribute from S5 in the proposed approach,
only the local view corresponding to S5 will be extracted and
modified to replace Substring (APICompSTR, 0,
CHARINDEX (APICompSTR ,„ „)-1) as WellAPI by Null as
WellAPI and Substring (APICompSTR, CHARINDEX
(APICompSTR,„ „)+1, Length(APICompSTR)) as
CompIntervalID by Null as CompIntervalID.

C. GS Management using the Existing and Proposed

Approaches

If the attribute WellType intended to be added to the GS
relation Well, for future usage, and at the same time the
attribute WellAPI will be removed from GS relation Well, the
existing mapping approaches will refuse the addition process
and can handle the removal process as follows:

Using GAV: The removal of the attribute in GAV will
cause to modify all the mapping assertions with
correspondence to this attribute. E.g. assertion2 will be
removed.

Using LAV and BAV: The removal of the attribute in LAV
and BAV will cause to modify most of the mapping assertions
with correspondence to this attribute. Explicitly mapping
assertions number 1, 2, and 4 will be revised.

Using the proposed approach: For the addition, the
proposed approach will be considering it, and will modify the
mapping assertion of GS relation Well to include such
attribute as the last attribute in the relation and map it with the
sources as usual. If the attribute existing in any source will be
mapped normally, else on the other case, the view over such
source will have an extra attribute NULL as WellType. In
example 1 all local views will have NULL as WellType.
Moreover the removal of an attribute will be simpler as no
need to revise the GS relation Well, what will be done is
parsing only the local views and replace the attribute mapping
with a NULL as WellAPI.

Finally, these are other features provided by the proposed
approach:

a) Prepares the environment for the successive process,

duplicate detection and resolution.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

110 | P a g e

www.ijacsa.thesai.org

b) Handles the situation where no shared identifier for

the real world object was common between the data sources in

the integration system.

c) Ensures correctness and efficiency of collecting the

answers from the different data sources as the views already

linked with a traditional union operator and all the views have

the same arity as the GS relation.

d) Ensures the completeness of the query answers, as it

allows all alternatives for the same real world object from all

data sources, and does not prevent any source to participate in

the mapping construction.

D. Approach Limitations

This approach is limited to mapping of the relational
schemes of the available data sources and the GS should be in

relational form. Another limitation is; the detectors mapped
should be defined prior to the integration system development
and should be defined by the domain expert.

E. Complexities in the Proposed Approach Compared to

other Approaches

Table 3 shows the mapping assertions complexities for the
proposed approach compared to other approaches.

The notations used in the comparison and calculations of
the complexities are; N: # GS relations, n: # relevant
information sources, Ys: # GS relations a data source s has
correspondence with, R: # GS relations appear in the user‟s
query, and Tr: # Mappings for a given GS relation R, Ai is
number of sources used to map GS relation Ri.

TABLE III. COMPARISON BETWEEN THE PROPOSED AND EXISTING APPROACHES

 GAV LAV BAV
Proposed

Approach

mapping assertions ∑Ai where i=1 ..N. ∑Ys where s=1, ..n Min: N, Max = N * n 2 * N

assertions revised for

adding/removing data source

Min: 1, Max = Ai for removing,

and max. N for addition.

Ys for removing and max.

N for addition

Ys and max. N for

addition
2 * Ys

mapping assertions extracted for

answering user query
∑Tr where r=1 …R. Min: R, Max = n * R ∑Tr where r=1, …R 2 * R

mapping assertions revised for
removing GS relation

Min: 1, Max = n Min: 1, Max = n Min: 1, Max = n 2

mapping assertions revised for adding

GS relation
Min: 1, Max = n Min: 1, Max = n Min: 1, Max = n 2

V. CONCLUSION AND FUTURE WORK

In this paper a new mapping approach is introduced to
avoid most of the noticed limitations in the existing
approaches; as it is not only mapping the GS elements with
the local schemes, but also mapping the elements required for
detecting and resolving the conflicts happened due to the
integration process. The proposed approach facilitates the
extensibility of the GS, and the sources. The proposed
approach provides improvement in adding, removing and
updating the global schema GS and the sources S. The
proposed approach links the 3 main processes required to
answer the user‟s queries to help in providing complete, and
unambiguous answers to those queries. As a future work;
formalizing a duplicate detection algorithm to leverage this
mapping approach and the detectors defined to detect the
duplicates, and use the sources of the data to resolve the
duplicate through source preferences.

REFERENCES

[1] M. Lenzerini, “Data integration: A theoretical perspective”, Proceedings
of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, Madison, Wisconsin, USA, June 2002.

[2] B. Golshan, A. Y.Halevy, M. Mihaila and W. C. Tan. “Data integration:
after the teenage years”, Proceedings of the 36th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems
(PODS‟17), Chicago, Illinois, USA, 2017.

[3] L. Xu and D. W. Embley, “Combining the best of Global-as-View and
Local-as-View for data integration”, Proceedings of the 3rd ISTA, Salt
Lake city, Utah, USA, 2004.

[4] E. Rahm and H. H. Do. “Data cleaning: problems and current
approaches”, Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering, vol. 23, 2001, pp. 103-113.

[5] X. Chu, I. F. Ilyas, and P. Koutris, “Distributed data deduplication”,
Proceedings of the VLDB Endowment, vol. 9, 2016, pp. 864-875.

[6] A. Elmagaramid, P. G. Ipeirotis, and V.S. Verykios, “Duplicate record
detection: a survey”, IEEE Transactions on Knowledge and Data
engineering, vol.19, 2007, pp. 1– 16.

[7] M. Nentwig, M. Hartung, A. Ngomo and E. Rahm, “A survey of current
link discovery frameworks”, Semantic Web Journal, vol. 8, 2016, pp.
419-436.

[8] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R.
Deep, E. Arcaute and V. Raghavendra, “Deep learning for entity
matching: a design space exploration”, Proceedings of the International
Conference on Management of Data SIGMOD‟18, TX, USA, June
2018.

[9] Y. Yang, Y. Sun, J. Tang, B. Ma and J. Li, “Entity matching across
heterogeneous sources”, Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD‟15), Sydney, NSW, Australia, August 2015.

[10] A. Gruenheid, X. L. Dong and D. Srivastava, “Incremental record
linkage”, VLDB Endowment, vol. 7, 2014, pp. 697-708.

[11] E. K. Rezig, E. C. Dragut, M. Ouzzani and A. K. Elmagarmid, “Query-
time record linkage and fusion over Web databases”, Proceedings of
IEEE 31st International Conference on Data Engineering, Seoul, South
Korea, April 2015.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

111 | P a g e

www.ijacsa.thesai.org

[12] E. K. Rezig, E. C. Dragut, M. Ouzzani, A. K. Elmagarmid and W. G.
Aref, “ORLF: A flexible framework for online record linkage and
fusion”, Proceedings of IEEE 32nd International Conference on Data
Engineering, Helsinki, Finland, May 2016.

[13] I. F. Ilyas and X. Chu, “Trends in cleaning relational data: consistency
and deduplication”, Foundations and Trends in Databases Journal, vol.
5, 2015, pp. 281-393.

[14] A. Bronselaer, D.V. Britsom and G.D. Tre, “Pointwise multi-values
fusion", Proceedings of the 18th International Conference on
Information Fusion, Washington, USA, July 2015.

[15] D. Dubois, W. Liu, J. Ma and H. Prade, “The basic principles of
uncertain information fusion. An organized review of merging rules in
different representation frameworks”, Proceedings of Information
Fusion Heidelberg, Germany, July 2016.

[16] A. Bronselaer, D.V. Britsom and G.D. Tre, “Propagation of data fusion”,
IEEE Tran. on Knowledge and data engineering, vol. 27, 2015, pp. 1330
– 1342.

[17] X. Chen, E. Schallehn and G. Saake, “Cloud-scale entity resolution:
current state and open challenges”, Open Journal of Big Data (OJBD),
vol. 4, pp. 30-51, 2018.

[18] A. Gal, “Tutorial: uncertain entity resolution”, VLDB Endowment, vol.
7, 2014, pp. 1711-1712.

[19] J. Bleiholder and F. Neumann, “Conflict handling strategies in an
integrated information system”, Workshop on Information Integration
on the Web (IIWeb), Edinburgh, UK, May 2006.

[20] A. Bilke, J. Bleiholder, C. Bohm, K. Draba, F. Naumann and M. Weis,
“Automatic data fusion with HumMer”, Proceedings of the 31st VLDB,
Trondheim, Norway, September 2005.

[21] A Motro, J Berlin, and P. Anokhin, “Multiplex, Fusionplex and
Autoplex: three generations of information integration”, ACM SIGMOD
Record, vol. 33, 2004, pp. 51-57.

[22] G. D. Giacomo, D. Lembo, M. Lenzerini and R. Rosati, “Tackling
inconsistencies in data integration through source preferences”,
Proceedings of the International Workshop on Information Quality in
Information Systems, Paris, France, June 2004.

[23] Y. Katsis, A. Deutsch, Y. Papakonstantinou and V. Vassalos,
“Inconsistency resolution in online databases”, proceedings of IEEE
26th International Conference on Data Engineering (ICDE), Long
Beach, California, USA, March 2004.

[24] P. N. Mendes, H. Muhleisen, and C. Bizer, “Sieve: linked data quality
assessment and fusion”, 2nd International Workshop on Linked Web
Data Management (LWDM 2012) at the 15th International Conference
on Extending Database Technology, Berlin, Germany, March 2012.

[25] W. Fan, F. Geerts, N. Tang and W. Yu, “Inferring data currency and
consistency for conflict resolution”, in Proceedings of the 2013 IEEE
International Conference on Data Engineering, Brisbane, Australia,
April 2013.

[26] A. Cali, D. Calvanese, G. De Giacomo and M. Lenzerini, “Data
integration under integrity constraints”, In Proceedings of the 14th
International Conference on Advanced Information Systems
Engineering, Ontario, Canada, May 2002.

[27] T. Kirk, A. Y. Levy, Y. Sagiv and D. Srivastava, “The information
manifold”, in Proceedings of the AAAI Spring Symp. On Information
Gathering from Heterogeneous, Distributed Enviroments, Cambridge,
Massachusetts, United States, November 1995.

[28] P.J. McBrien and A. Poulovassilis, “Data integration by bi-directional
schema transformation rules”, Proceedings 19th International
Conference on Data Engineering, Bangalore, India, March 2003.

[29] R. Fagin, L. M. Haas, M. Hernandez, R. J. Miller, L. Popa and Y.
Velegrakis, “Clio: schema mapping creation and data exchange”,
Conceptual Modeling: Foundations and Applications, Springer-Verlag,
Berlin, Heidelberg, 2009.

[30] E. Rahm. “The case for holistic data integration”, in Proceedings of East
European Conference on Advances in Databases and Information
Systems, Prague, Czech Republic, August 2016.

[31] A. Alsarkhi, and J. R. Talburt, “A method for implementing
probabilistic entity resolution”, IJACSA, vol. 9 (11), November 2018,
pp 8-15.

https://scholar.google.com/scholar?oi=bibs&cluster=5209622341180679714&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=5209622341180679714&btnI=1&hl=en
https://dl.acm.org/citation.cfm?id=1577347&CFID=848586363&CFTOKEN=68794248
https://dl.acm.org/citation.cfm?id=1577347&CFID=848586363&CFTOKEN=68794248
https://dl.acm.org/citation.cfm?id=1577347&CFID=848586363&CFTOKEN=68794248
https://dl.acm.org/citation.cfm?id=1577347&CFID=848586363&CFTOKEN=68794248

