
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

500 | P a g e

www.ijacsa.thesai.org

Recurrence Relation for Projectile Simulation Project

and Game based Learning

Humera Tariq
1
, Tahseen Jilani

2
,

Usman Amjad
5

Department of Computer Science

University of Karachi

Karachi, Pakistan

Ebad Ali
3

School of Computing

National College of Ireland

Dublin, Ireland

Syed Faraz
4

Center for Intelligent Signal and

Imaging Research (CISIR)

Universiti Teknologi Petronas

Perak, Malaysia

Abstract—Huge Gap has been observed on study of projectile

simulation models relating it to speed of camera or frame per

seconds. The objective of this paper is to explore and investigate

time driven simulation models to mimic projectile trajectory;

with an intent to highlight importance of game programming on

native platforms. The proposed projectile recurrence relation

and extensive mathematical modeling based on Triangular Series

is an innovative outcome of project and game based learning

used in BSCS-514 Computer Graphics Course at Department of

Computer Science (DCS) University of Karachi (UOK). Box2D

Replica of Popular 2D Mobile Game Angry Bird has been

created on desktop to have an in depth mathematical and

programming insight of commercial physics engine and discrete

event simulation. Analysis has also been performed to answer

certain key questions for progressive projectile trajectory for e.g.

(1) With What angle, projectile should be launched? (2) What is

the maximum height it will reach? (3) How long it will take for

landing? (4) What will be its velocity to reach a desired height?

(4) Where it will hit? (5) How it will bounce? The above stated

questions are important to answer so that projectile motion

within engineering, Gaming and other CAD Applications can be

taught and programmed correctly specially on native platforms

like OpenGL. Besides reporting Numerical results, a successful

projectile based game making has been compiled and reported to

validate the significance of project based learning in classrooms

and labs.

Keywords—Projectile; game programming; simulation; angry

birds; linear drag; trajectory; impulse

I. INTRODUCTION

Understanding projectiles in an interdisciplinary manner is
exceedingly important at variety of levels to incorporate them
in real life applications. Engineering applications involving
projectile use deep and precise analytical equations which are
difficult to grasp and requires an in depth domain knowledge
[1][2][3]. Classical literature documented Physical class room
experiments to study and build understanding about projectile
models [4][5]. CAD and gaming applications requires the
same background knowledge along with programming skill
for simulation and visualization of projectile trajectory. In this
paper, an attempt to unlock the projectile behavior of available
game development platforms from simulation perspective on
computers. Platforms are available to facilitate engineers and
programmers for building these physical models without
handling the pressure of complex analytical mathematics and
statistics. As a senior computer science faculty, I strongly

believe that understanding these mathematical foundation has
played an immense important role in polishing ones‟
cognitive, engineering and programming skills [6] - [12].
There exist three common models to simulate projectile in
computer applications for gaming and simulation; they are: (1)
No drag model (2) Linear drag model and (3) Quadratic drag
model. In no drag model, the motion of projectile is mainly
dependent on initial velocity and the angle of launch. On the
other hand, both linear and quadratic drag model taken into
account, the air resistance effect on projectile trajectory.
Demonstration of projectile has been done through replica of
famous angry bird game using Box2D [13] [14] and figure out
that which model has been used in this physics engine? Rest
of the paper is organized as follows: Section II and III discuss
standard No drag and linear drag trajectory models
respectively. Section IV till Section VII comprise of extensive
derivations based on recurrence relation, triangular numbers
and Frames Per Second Criteria (FPS). The derivations are
inspired by Box2D and OpenGL experiments discussed in
[13] -[17]. Experiments on spread sheet and through game
programming has been discussed in Section VIII which
follows Results and Discussion described in Section IX.
Conclusion and Future Work has been presented in the end of
this paper.

II. NO DRAG TRAJECTORY MODEL

In general, the motion produced by a body which follows
projectile trajectory reached a certain elevation and then allow
to descending as a mirror of elevation. The vector of the
motion can be divided into two components, „x‟: the
horizontal component and „y‟: the vertical component of the
motion. The force at the horizontal vector remains unchanged
throughout the motion while the vertical forces applied at the
birds frequently changes due to the effect of gravity and height
of the bird. For computing the velocity of the birds during the
flight time, following equation can be used.

CosVVx 0
 (1)

gtSinVVy  0 (2)

The acceleration of the object, in both the components of
motion remains constant throughout the flight time. Horizontal

component of acceleration remains equal to zero and

negative gravitational value at vertical . During flight

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

501 | P a g e

www.ijacsa.thesai.org

time, highest point of the bird can achieve with the given
initial angle and velocity applied

g

Sin
h

V
2

22

0



 (3)

Equation (3) will compute the height of the flight with
respect to the ground. Range of the projectile launched is also
important to calculate because this information will enable us
to determine the landing position of the object. The
mathematical model for computing total range of the bird is
mentioned below

g

Sin
R

V x
222



 (4)

Range of the bird depends on two independent variables in
the projectile motion of a game, first is the adjusted angle and
second is the adjusted velocity of the bird. The angles of the
launch greatly affect the range of the bird due to the
trigonometric function of Sine on the angle. It is computed
that at any velocity the bird will achieve the maximum range
value if the angle adjusted is 45

0
 because of () in Eq

(4). When the value of is equal to 45 then becomes
equal to 90 degrees and thus maximum range will be

g
R

V x

2

 (5)

From simulation perspective, total time of flight is
calculated by manipulation of Eq. (2) and Eq. (3) and finally
putting h =0 to attain maximum range at ground. It is not
difficult to have following equation for computation of total
time of flight „T‟ in advance as follows

g

V
T

y

*2
 (6)

Once total time of flight is calculated, computation of
points (X, Y) on trajectory will become possible by dividing
time T into small equal space intervals t +delT as follows

ttX V x
*)(

 (7)

2

22

0

)()
1

(
2

1
tan)()(tX

Cosg
tXtY

V 
 

 (8)

Eq (7) and Eq (8) are used to determine instantaneous
position of projectile given initial Velocity as „V‟ and initial
angle „theta‟. It is important to note that Y(t) depends on X(t).

III. LINEAR DRAG TRAJECTORY MODEL

Linear impulse is defined as a linear force applied on
anybody i.e. . In many games, an external backward
force is applied on body before launching it as projectile for
e.g. drag of the bird in game “Angry bird” is applied through a
slingshot controlled by user. This drag force will of course be

decomposed into its components along x and y-axis. The area
for dragging the object is specified with reference to the initial
position of the projectile. The drag backward is restricted on
x-axis; the same will be true for y-axis. Drag displacement
will be directly proportional to drag force. . If represents
the change in distance due to drag then

dF  (9)

Eq (9) can be decomposed into two independent equations
with respect to x and as follows:

xx dF 
 ; yy dF 

 (10)

The objective is to find final velocity with the help of
initial velocity so that we can determine the launch speed
with which it moves along projectile trajectory. Assume fixed
time incremental approach with = 1. Assume that the
Forces will remain constant throughout the projectile motion.
The body will then move with uniform acceleration on x-axis.
The y-component of launch velocity will be affected by the
acceleration due to gravity g. The expression for final velocity
along x-axis can be formulated as follows

xx maF 
;

)(12 xxx VVmF 

)(12 xx

x VV
m

F


xx

x VV
m

F
21 

x

x

x V
m

F
V 12 

 (11)

Along y-axis; following simplified drag model has
proposed to determine final velocity progressively

gtmaF yy 
 (12)

Aa per our assumption, the change in momentum of
projectile can be compared with change in vertical forces as
follows

gtVVmF yyy )(12

)(12 yyy VVmgtF 

y

y

y V
m

gtF
V 12 




 (13)

IV. RECURRENCE RELATION FOR HEIGHT

Our recurrence relation is inspired by Box2D description
on projectile [13 [14]. To derive a general formula, that can be
used to find the final velocity () at any given point in time;

each velocity assume to contain the sum of all the previous
velocities. In a general way the velocities are in the arithmetic
progression manner. If we use Eq (14) at each frame display in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

502 | P a g e

www.ijacsa.thesai.org

games, then the general expression for finding the height at
any instant can be figure out by working from Eq (14) till Eq
(17)

)0(1)1(2

)
1

(

y

y

y V
m

fps
gF

V 




 (14)

)1(1)2(2

)
2

(

y

y

y V
m

fps
gF

V 





)2(1)3(2

)
3

(

y

y

y V
m

fps
gF

V 





m

fps
gF

m

fps
gF

m

fps
gF

V

yyy

y

)
1

()
2

()
3

(

)3(2













)
1

()
2

()
3

((
1

)3(2
fps

gF
fps

gF
fps

gF
m

V yyyy 

)}
1

(1)
2

(1)
3

(1{)3(2
fpsF

g

fpsF

g

fpsF

g

m

F
V

yyy

y

y 

)}
1

()
2

()
3

(3{)3(2
fpsF

g

fpsF

g

fpsF

g

m

F
V

yyy

y

y 

)}({ 1

)(2
fps

i

F

g
n

m

F
V

n

i

y

y

ny


 (15)

If we use Eq(15) to find instant launch speed and we are
given the initial height of the projectile then following
equation can be used to find the height at any instance of time:

02 HVH ynn 
 (16)

This above equation can be further expanded into Eq (17)
as we substitute final velocity from Eq(15). Here
represents the initial height of the projectile at which it was
launched

0

1)}({ H
fps

i

F

g
n

m

F
H

n

i

y

y

n 




 (17)

Where i is the counter to track time instants while
projectile is flying above the ground.

V. TIME OF FLIGHT AS TRIANGULAR SERIES

The total time for the flight of the projectile can be
obtained by substituting final velocity as zero because the
projectile will come to rest as it hits the ground,
therefore where is used to represent instantaneous

time of flight

)}({ 1

)(2
fps

i

F

g
n

m

F
V

n

i

y

total

y

ny




 (18)

)}({0 1

fps

i

F

g
n

m

F

n

i

y

total

y



)}({0 1

fps

i

F

g
n

n

i

y

total




)(1

fps

i

F

g
n

n

i

y

total




 (19)

The sign of summation can be interchanged by
2

)1(nn

because this series is the nth partial sum of the series of
triangular numbers.

2

)1(

1






nn
i

n

i (20)

)2

)1(

(
fps

nn

F

g
n

totaltotal

y

total





12  total

y
n

g

F
fps

total

y
n

g

F
fps  21

g

fpsFg
n

y

total

2


 (21)

VI. RELATING VELOCITY AND HEIGHT

The derivation to find the velocity at the maximum height
will follows from Eq (22) till Eq (25). Substituting time of
flight from Eq (20) into Eq (15) of final velocity, we will get
Eq (22)

)}
2

)1(
({)(2

fps

nn

F

g
n

m

F
V

y

y

ny




 (22)

Eq (20) provides the total time of flight but maximim
height will be achieved at half time of the total therefore Eq
(21) will turn into Eq (23) as follows

g

gfpsF
n

y 


))((

2
1

 (23)

Assuming gFfpsx y )(; Eq (23) become

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

503 | P a g e

www.ijacsa.thesai.org

 g

x
n 

2
1

Substituting above fact into Eq (22), We have

)}
2

)1(

({2
fps

g

x

g

x

F

g

g

x

m

F
V

y

y

y





)}
)(2

)(2)1(

({
2

2
gfps

xFfps
g

x

g

x

F

g

m

F
V

y

y

y

y





)}
)(2

)(2)1(

({
1 2

2
gfps

xFfps
g

x

g

x

g
m

V

y

y





)}
2

)(2)(

({
1 2

2

2
fps

xFfps
g

xgx

g
m

V

y

y






)}
2

)
)(2

(

({
1 2

22

2
fps

g

gxFfpsxgx

g
m

V

y

y





)}
2

)(2
{(

1
22

2
fpsg

gxFfpsxgx

m
V

y

y




)}
2

)(2
{(

2

2
fpsg

gFfpsgx

m

x
V

y

y




 (24)

)}
2

)(2)(
{(

)(2

2
fpsg

gFfpsggFfps

m

gFfps
V

yyy

y




)}
2

)(2)(
{(

)(2

2
fpsg

gFfpsFfps

m

gFfps
V

yyy

y




)}
2

)21()(
{(

)(2

2
fpsg

gFfps

m

gFfps
V

yy

y




)}
2

)21(
{(

)(2

2
g

gF

m

gFfps
V

yy

y




gm

gFgFfps
V

yy

y
2

)}21(}{){(2

2




 (25)

Eq (24) and Eq (25) respectively represent the relation
which represent velocity of projectile with respect to displayed
frame in game and illustrate frame animation.

VII. IMPULSE FORCE AND FINAL VELOCITY

The equation for the final velocity due to the impulse force
will be considered as follows

gtatVV  12

tgaVV)(12 
 (26)

Where is the final velocity which is the consequence of
the initial impulse, and is the initial velocity, is the
acceleration provided to the body whereas represent the
force of gravity applied on the motion of the body. This
equation only tells us about the instantaneous velocity of a
body at any given time. Indeed, apart from calculating the
velocity, we are more interested in getting the current
displacement at y-axis by the body with a given value of
velocity. For e.g. What will be the distance covered by the
body when and ? In this scenario, it can be
said that every displacement is dependent upon the previous
displacement that is why the following equation is given to
fulfill our requirement.

11 VS 
 ; 122 VVS 

1233 VVVS 

12344 VVVVS 

)0)(()1)(()2)(()3)((11114 gaVgaVgaVgaVS 

 


n

in igaVnS
11)()1(

 (27)

Converting  

n

i
i

1
 notation to the general formula of

triangular series
2

)1(nn

2

)1(
)()1(1




nn
gaVnSn

 (28)

The total time taken by the body to complete its trajectory

where the velocity of the body becomes equal to zero. The

equation for total time taken for the flight is as follows:

2

)1(
)()1(




nn
gaVnS in

2

)1(
)()1(0




nn
gaVn i

}
2

)(){1(0
n

agVn i 

}
2

)({0
n

agVi 
 2

)(
n

agVi 

nagVi)(2 
; n

ag

Vi 
)(

2
;

)(

2

ag

V
n i




 29

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

504 | P a g e

www.ijacsa.thesai.org

The equation for calculating the maximum height achieved
by the body during the flight is derived by substituting EQ
(29) into EQ (27) as follows

)
2

)1
)(

(
)(

)(()1
)(

(max








ag

V

ag

V

gaV
ag

V
S

ii

i
i

)
)(2

)(
()

)(

)(
(max

ag

agVV

ag

agVV
S iiii











)(2

)()}({2
max

ag

agVVagVV
S iiii






)(2

)(
max

ag

agVV
S ii






 (30)

VIII. EXPERIMENTATION

A. Spread Sheet Simulaiton of Pojectile Trajectory

The purpose of spread sheet simulation is to visualize and
test our proposed linear impulse based recursive projectile
model. We already discussed Linear Drag Model in Section
III. The force along x-axis is assumed to be constant according
to our simulation assumption. The required initial parameters
are set as follows for demonstration purpose

With above initial conditions we use Eq (11) and Eq (13)
to update velocity along each axis respectively at each frame
or display of projectile. For simplicity, the change in time
between frame displays is taken to be unit which means that
time instances are taken as a fraction of 60. Table 1 and Table
2 Presents Numerical Results of progression in velocity along
each axis. From Table 1, it has been observed, that the
projectile is moving with uniform acceleration along x-axis as
the difference between two adjacent velocities remained a
constant.

It has been observed from Table 1 and Table 2 that the
generated impulsive force has enough large magnitude over a
very small interval of time (fraction of a second) that it causes
a significant change in the momentum which in turn lift the
projectile up in the air in response to initial drag during its
flight. To build simulation start with ; compute

 as described in Eq (11)

TABLE I. SIMULATION SAMPLE EQ (11)

 V x1
 V 1.1

 V x2

1 0 0.086957 0.086957

2 0.08695652 0.173913 0.173913

3 0.17391304 0.26087 0.26087

4 0.26086957 0.347826 0.347826

5 0.34782609 0.434783 0.434783

6 0.43478261 0.521739 0.521739

7 0.52173913 0.608696 0.608696

8 0.60869565 0.695652 0.695652

9 0.69565217 0.782609 0.782609

10 0.7826087 0.869565 0.869565

11 0.86956522 0.956522 0.956522

12 0.95652174 1.043478 1.043478

13 1.04347826 1.130435 1.130435

14 1.13043478 1.217391 1.217391

15 1.2173913 1.304348 1.304348

16 1.30434783 1.391304 1.391304

TABLE II. SIMULATION SAMPLE EQ (13), EQ (17)

V y1

V y2

1 0.016 0 36.5217391 0

2 0.033 36.52174 72.1913043 36.52174

3 0.05 72.1913 107.008696 72.1913

4 0.066 107.0087 140.973913 107.0087

5 0.083 140.9739 174.086957 140.9739

6 0.1 174.087 206.347826 174.087

7 0.116 206.3478 237.756522 206.3478

8 0.133 237.7565 268.313043 237.7565

9 0.150 268.313 298.017391 268.313

10 0.166 298.0174 326.869565 298.0174

11 0.183 326.8696 354.869565 326.8696

12 0.200 354.8696 382.017391 354.8696

13 0.216667 382.0174 408.313043 382.0174

14 0.233333 408.313 433.756522 408.313

15 0.25 433.7565 458.347826 433.7565

16 0.266667 458.3478 482.086957 458.3478

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

505 | P a g e

www.ijacsa.thesai.org

B. Spread Sheet Simulation of Time as Triangular Series

It has been observed that current displacement of projectile
can be seen as series of instantaneous velocities sum together
where each instant can take the form of triangular number in
series. The simulation sample of model described in Section
VII is illustrated in Table 3 below. Some initial parameters for
demonstration purpose are given following values

 * +
 ()

TABLE III. SIMULATION SAMPLE EQ (22)

t g/(Fy*FPS)t
n +

 g/(Fy*FPS)t
Fy/m* (g/(Fy*FPS)t

0 0 0 0

1 -0.023333 0.976666667 0.594492754

3 -0.07 1.93 1.174782609

6 -0.14 2.86 1.740869565

10 -0.233333 3.766666667 2.292753623

15 -0.35 4.65 2.830434783

21 -0.49 5.51 3.353913043

28 -0.653333 6.346666667 3.863188406

36 -0.84 7.16 4.35826087

45 -1.05 7.95 4.839130435

55 -1.283333 8.716666667 5.305797101

66 -1.54 9.46 5.75826087

78 -1.82 10.18 6.196521739

91 -2.123333 10.87666667 6.62057971

105 -2.45 11.55 7.030434783

120 -2.8 12.2 7.426086957

Fig. 1. Background Modeling and Translation Concept.

Fig. 2. Foreground Entities of Game as Textured Polygon.

C. Projectile Simulation on Box 2D and OpenGL

Game Programming is an important and impressive tool to
practice simulation. Box2D is used to simulate core projectile
functionality whereas OpenGL „freeglut‟ library on windows
is used for rendering and to interact with user through mouse
and keyboard. Box2D modeled projectile as linear impulse
force [13] [14]. The 2D game pipeline consist of following
minimal basic steps to experiment with projectile. (1)
Modeling (2) Animation (3) Collision Detection. Modeling of
game world means setting up background and foreground.
Background is indeed a flat polygon with height of 480 and
width of 1920 pixels. The wide polygon is split into smaller
polygon to be used as textured sheet. Fig. 1 demonstrate
simple UV mapping on a rectangle to model background
comprising of clouds, grassy land, and sun. So textured
polygon made it convenient for a programmer to have nice
background using glossy images. Fore ground entities
Comprises of main characters such as Birds, Pigs, walls
(Boxes) and slingshot. Game Characters are designed with
simple polygons and we employ uv mapping to animate
characters. These characters are represented by Bitmap images
as shown in Fig. 2. As a matter of fact, all foreground objects
are modelled at origin; later they are translated to specific
position by using coordinate system transformation as
illustrated in the for the Bird.

The land type and background in the game need to change
as projectile launces and trying to hit the target at distance
ahead of its current position. This effect is achieved by setting
predefined multiple polygons shown in Fig. 3 as Polygon A, B
and C. When the game starts, user will able to see the initial
background but when it uses sling shot to launch projectile,
the coordinates get changed and user will experience change
of background at the output screen. These multiple lands or
polygons will be visible to the user at its screen and the view
will be updated at runtime. Foreground modeling is another
important part of the game as they will change with their state
on different triggers and events. All Game character (birds),
pigs (enemy), boxes, hurdles and other bitmaps are counted as
foreground elements. The foreground is divided into two
section of the screen. The left portion of the foreground is
dedicated for modeling the slingshot and the birds which are
in the control of the user. This portion will enable the user to
adjust the angle and the speed for launching the birds at a
trajectory of projectile motion through the slingshot in order to
hit the walls and to eliminate the pig. The other portion of the
foreground consists of the defensive walls for the pigs. All the
Birds in game are modeled by drawing circles and then
applying bird texture on them. While Boxes and slingshots are
modeled by applying texture on to the rectangles. When the
game is initialized, all the characters and the objects in the
game are drawn at the initial position of the screen, at (0, 0).
The positions of these various models in this game are
translated with respect to their functionality and behavior, as
the initial bird is set near the slingshot elevated by default
ready to be shot by the user, on the other hand other birds wait
for their turn in a row wise manner. The pigs are modeled in
between the walls or the boxes on the other side of the screen.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

506 | P a g e

www.ijacsa.thesai.org

Fig. 3. Wide Polygon Design to Map Levels in Game.

Physics played a vital role in animation of all characters.
Following aspects need to be considered in order to model the
desired animation. (1) In which direction it should be launched
to meet the desired result? (2) How high it will go? (3) How
long it will take to land on the floor? (4) Where it will hit the
ground? (5) How far away from the ground? (6) Collision
Detection. Slingshot is used in this game in order to set the
launching direction and to make accurate shot at the pigs. The
slingshot uses the birds for attacking pigs confined in a
defensive wall. The slingshot is animated with the help of
mouse events and buttons. Slingshot is stretched with the left
button of the mouse for adjusting the force or the speed and
the angle at which the bird will be shot. The right button is
used to launch the bird at the pigs with the angles and the
force adjusted earlier. Birds being shot through the slingshot
are translated at an angle with an initial velocity and become
projectile under the influence of gravity. The animation of the
bird is handled according to trajectory model already
described in detail from Eq (1) till Eq (13). Observe the
arrangement of Woods in Fig 4. Falling of wood Boxes is
established under the acceleration due to gravity and is
achieved by using Newton‟s second equation of motion.

 But, the initial velocity

Therefore, the rate at which body is falling is:

Another Noticeable construct is once again the application
of parametric equation to generate points on the curve as
already described in Eq (7) and Eq (8). After modeling and
animation, the last aspect of a basic 2D game is to detect
collision between entities. Principal of Separating Axis
Theorem (SAT) states that: “If two convex objects are not

penetrating, there exists an axis for which the projection of
the objects will not overlap.” To detect whether two objects
are being collided, projection of their axis are calculated. If the
distance between all the projections is equals to or less than
zero, then it is said that the object has collided with each other.
If projection of bird overlaps with projection of box on both
horizontal and vertical, animation event is triggered. This
concept has been extended and applied on every polygon as
shown in Fig. 5.

Fig. 4. Animation to Show Fall of Woods or Boxes.

One can note that how a 2D collision detection problem
can be transformed into 1D problem. Orange and Blue Lines
in Fig. 5. are Projection of Polygons A and B on axes
respectively. Black Line represents the Portion on the line
where a plane can be inserted separating A and B. Two steps
are needed to perform SAT: (1) Finding axis (2) Projection of
shapes (3) Collision detection. Axes are simply normal of each
shape‟s edges. This can be calculated by subtracting the
vertices of the respective edges and then taking perpendicular
of it as show in the Pseudocode of Table 4. Projecting shapes
onto Axes and then comparing overlapped portion of the
projection would result in Collision Detection. Pseudo code in
Table 5 models this idea

Fig. 5. Overlapping Projections for Collision Detection.

TABLE IV. FINDING AXIS BY VECTOR SUBTRACTION

for all Edges in A

 P1 = First Vertex of A

 P2 = Second Vertex of A

 Vector edge = P1.subtract (P2);

 Vector normal = edge.perp (); // Axis

 arrayOfAxis.add (normal);

end for

TABLE V. COLLISION DETECTION BY OVERLAPPING TECHNIQUE

for all Shapes in S

 for all Axes of S in A

 Projection p1 = s.project (A);

 Projection p2 = s2.project (A); // s2 is the second shape.

if (!p1.overlap(p2)) return false;

 end for Axes

end for S

IX. RESULT AND DISCUSSION

Successful Simulation of extensive mathematical models
has been demonstrated using both Spread Sheet and C++
programming by integrating Box2D and OpenGL. Fig. 6
shows the result of applying impulse force as agent at initial
time of the motion, after which the velocity produced by this
impulse and force of gravitation contributes for further
movement of the projectile. In our scenario the impulse is
being applied at the center of the body. The y-component of
the force mimics the angle of launching the projectile towards
the target while x-component is the linear force or speed with
which the bird is supposed to launch. FPS is 60 frames per

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

507 | P a g e

www.ijacsa.thesai.org

second and is the rate at which box2D updates or refreshes its
View Window. Fig. 7 shows that it is possible that flight time
will take form of triangular series and the projectile trajectory
is successfully followed if triangular increment is used for
simulation. The simulation of linear impulse in box2D and
OpenGL requires two arguments: (1) An initial vector V0
containing and component of velocity (2) A Point from
where impulse has to be triggered. Y-component of final
velocity is denoted with () i.e. velocity at time instance t in

future; g is 9.8 m/s, „F‟ represents y-component of force
applied on mass „m‟. FPS is defined as the default frame per
second value of box2D which is 60. Reciprocal of „FPS‟
provides us with time to render single frame which in turn plot
the position of body. To mimic original game, projectile is
fired and controlled through mouse pointer. To aim pigs at a
certain angle; birds are controlled by click buttons of the
mouse. Left button is used for adjusting speed value of the
bird whereas the right button controls the angle of the shot
being made. All the variable setup is shown in Fig. 8 for
reader convenience. By using Mouse interactions with the
system we developed multiple techniques to deal with the
angle, at which the bird would fly, and magnitude of force,
with which the bird would be fired, from the slingshot. The
movement of mouse on the horizontal axis (xFactor) would
modify the magnitude of force by some fraction. Similarly, the
vertical displacement (yFactor) would intervened the angel of
flight by some value as shown in the Fig. 9. In the end we
have presented a comparison of OpenGL and Box2D
simulation loop in Table 6.

Fig. 6. Simulation Result of EQ (17) Recurrence Relation of Projectile

Height as a Function of Projectile Final Velocity and Frame Per Second.

Fig. 7. Simulation Result of EQ (22) Where Flight Time Takes the form of

Triangular Series and Mimics Projectile.

Fig. 8. Simulation Settings of Projectile Linear Drag Model using Box2D and GLUT API.

Fig. 9. Mapping of Mouse Drag Action in Game onto Impulse Force (xFactor) and Angle of Projectile (yFactor).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

508 | P a g e

www.ijacsa.thesai.org

TABLE VI. COMPARISON OF GLUT AND BOX2D SIMULATION LOOP

 OpenGL (glut) Simulation Loop Box2D Simulation Loop

Step 1 System-dependent initialization

• setup a window on the screen

• bind OpenGL to this window

Step 2 OGL and CS initialization

• setup coordinate system

• setup initial values

Step 3 Begin eternal loop

• wait for system to deliver event (e.g., mouse moved)

• If redraw event, execute OpenGL commands to draw scene by calling
Draw ()

Step 1 Creation of World

 Create a gravity vector

 Create Global b2world object with gravity vector

Step 2 Creation of Bodies

 Create body object

 Insert it into the world

 Create its fixture

 Create a shape for the fixture

 Assign the fixture to the body

Step 3 Rendering of world‟s Bodies

For all bodies n in the world { Draw n }

X. CONCLUSION AND FUTURE WORK

Replica of popular angry bird game has been successfully
implemented during BSCS-Computer Graphics class project at
Department of computer Science, University of Karachi.
Integration of physics engine Box2D and OpenGL on Visual
Studio and windows platform has been successfully achieved.
Linear Drag Simulation on Spread Sheet doesn‟t exactly
match with functionality available in Box 2D and hence It has
been concluded that mathematical modeling and simulation is
an essential ingredient of learning which cannot be excluded
from class environment due to easy access of commercial
engines and open source libraries. Instead it is very important
to exercise elementary pipeline of engines as a class project.
This will enhance one‟s programming skills and also inculcate
bottom up approach for building innovative software‟s either
on the top of existing one or by developing it from scratch.
Future work will comprise of dimension analysis of drag
model presented in this paper. The work is also extended by
demonstration of projectile using Vulkun API instead of glut
or free glut with intention of handling physics and rendering in
separate threads for effective GPU utilization.

REFERENCES

[1] Semih M.Olcmen, Gray C.Cheng, Richard Branam and Stanley E Jones.
“Minimum drag and heating 0.3 caliber projectile nose geometry.” doi:
10.1177/0954406218779094

[2] G.P.de Carpentier, “Analytical ballistic trajectories with approximately
linear drag”, Int. J. Comp. gam. Tech.2014.

[3] O.A. Lasode , O.T.Popolla, Olaleya. “Modeling the Projectile Motion of
a soccer ball under linear drag influence” J. Research Info. Civil Engg,
Vol 6, No.2 2009.

[4] P.Coutis, “Modelling the prpjection motion of a cricket ball”, Int. J.
Math. Edu. Sci. Tech., vol. 29, pp.789-798, 2006.

[5] N.Azarnia, “A progression of projectiles: examples from sports”, The
Coll. Math. J., vol.25, no.05, pp.436-442,1994.

[6] J.Yang, G.K.W.Wong and C.Dawes, “An exploratory study on learning
attitude in computer programming for the twenty-first century”, N. Med.
Edu. Change, pp.59-70, 2018.

[7] F.J.G.Penalvo and A.J.Mendes, “Exploring the computational thinking
effects in pre-university education”, Comp. Hu.Behav., vol.80, pp.407-
411, 2018.

[8] M.J.Nathan, M.Wolfgram, R.Srisurichan, C.Walkington and
M.W.Alibali, “Threading mathematics through
symbols,sketches,software,silicon and wood: Teachers produce and
maintain cohesion to support STEM integration”, J. Edu. Res., vol.110,
no.3, pp.272-293, 2017.

[9] M.J.Rodrigues and P.S.Carvalho, “Teaching physics with angry birds:
Exploring the kinematics and dynamics of the game”, Phy. Edu.,
pp.431-437, 2013.

[10] R.Bidarra, “Interdisciplinary game project: Opening the graphics (Back)
door with the soft skills key”, Edu. Paper, p.9-16, 2011.

[11] M.Shaker,N.Shaker and J.Togelius, “Evolving playable content for cut
the rope through a simulation-based approach”,proc.9th AAAI conf. on
AI and interactive digital entertainment, pp.72-78, 2013.

[12] S.Leutenegger and J.Edgington, “A game first approach to teaching
introductory programming”, proc. 38th SIGCSE Technical Symposium
on Comp. Sci. Edu., vol.39, pp.115-118, 2007.

[13] A.R. Shankar, “Physics Engine Basics”. In: Pro HTML5 Games. Apress,
Berkeley, CA, 2012.

[14] I. Parbarry, “Introduction to Game Physics with Box2D” CRC Press,
2013.

[15] D. Shreiner and OpenGL, OPENGL PROGRAMMING GUIDE, 7th ed.,
Addison-Wesley Professional, Aug. 2009.

[16] A. Changjan and W. Mueanploy.” Projectile motion in real-life
situation: Kinematics of basketball shooting” J. Phys.: Conf. Ser. 622,
2015.

[17] N.Henelsmith. “Projectile Motion: Finding the Optimal Launch Angle”,
Whitman college, 2016.

