(IJACSA) International Journal of Advanced Computer Sméeand Applications,
Vol. 9, No. 12, 2018

A Review of Data Synchronization and Consistency
Frameworks for Mobile Cloud Applications

Yunus Parvej FanibarddIskandar Ishak Fatimah Sidi, Marzanah A. Jabér
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia

Abstract—Mobile devices are rapidly becoming the predom- the need to always be connected to the data server. Theyabilit
inant means of accessing the Internet due to advances in to disconnect with the network, do local changes, and then
wireless communication techniques. The development of Mobile reintegrating (synchronize) these changes back into thieisy
applications (“apps”) for various platforms is on the rise due makes the mobile gadget an essential extension to modern

to growth in the number of connected devices. Numerous apps gjstribyuted databases and collaborative tools [1].
rely on cloud infrastructure for data storage and sharing. Apart

from advances in wireless communication and device technology, Data synchronization is an empowering process that elim-
there is a lot of research on special data management techniques inates the critical requirement of having steady connitgtiv
that addressed the limitations of mobile wireless computing to 59 permits users to run data-centric mobile applicatiomitew
_rl'_ﬁ;e ;hir ?:tgn aé’f?;?rtosg3w§ssth;°;ra?ﬁg$§£§ ”?;‘tdsﬂet”;’r‘{al' being offline. Hence data synchronization allows users tryca
pap y PP out operations of additions, deletions, and updates on the

data consistency and synchronization for mobile devices. These ffline d hile di df h K
frameworks offer a solution for the unreliable connection prob- offine data, while disconnected from the network.

lem with customized synchronization and replication processes

and hence helps in synchronizing with multiple clients. The ‘) ; ;
frameworks are compared for the parameters of consistency refer to as ‘Apps’) are developed according to the different

and data models (table, objects or both) support along with application programming |nt¢rfac¢s (API) abStraCt.'onq""Su
techniques of synchronization protocol and conflict resolution, ~Ported by the underlying mobile middleware. The middleware
The review paper has produced interesting results from the ~May provide a simple file-based API (possibly extended with
selected studies in areas such as data consistency, handling offline replication-specific methods). It may also support complex
data, data replication, synchronization strategy. The paper is abstraction such as objects, tuples, relational entitiesiro
focused on client-centric data consistency and the offline data object which may contain pointers to other interdependent

Generally, the mobile applications (which we generally

synchronization feature of various frameworks. objects. Middleware with database replication primarikp-p
Keywords—Mobile cloud computing; data consistency; mobile ~ Vides query oriented CRUD APIs(Create, Read, Update and
back-end as a service; distributed systems; mobile apps Delete) to application developers for typical operatioms o

data with declaratively defined by SQL queries for the update

| INTRODUCTION creation/insertion, and deletion of records.

This section covers the introduction to replication, data-
centric and client-centric consistency models. Secti@nd ||
lassify and describe various consistency and synchrioiza
rameworks in mobile cloud computing. In Section IV we
discuss research findings and recommendations followed by

The model of mobile cloud computing utilizes the services
of cloud computing. The mobile cloud environment consi$ts o
portable computing devices, mobile Web and location-base
services, supported by wireless communication infrasirec
to provide mobile devices online access to large stora a . ; :
ang unlimited computing power [1]. A Wirelesg networﬁ?h related work (Section V) and conclusion with future work
mobile clients is fundamentally a distributed system bifiesu (Section VI). Table | shows the list of acronyms used in the
from the primary challenges such as limited computationapaper'
capacity and storage of mobile devices, intermittent loss o
connectivity and battery power restrictions. The transiois A. Mobile Computing Environment and Limitations
bandwidth of the mobile device is likely to be lesser than

the transmission bandwidth of the mobile support station}gw Generally, a mobile cloud computing environment has

0 unique sets of entities namely Fixed Hosts (FH) and
obile Hosts (MH) [1]. FHs are machines (Works stations and
ervers) with efficient computation power and reliable ager
of data and run large databases. FHs that are connectedithrou
él?e fixed network. MHs with limited processing and storage
power(cellular phone, palmtops, laptops, notebooks) ate n
continually communicating with the fixed network. They may
To provide the illusion of uninterrupted data access, thebe disconnected for various reasons such as due to theybatter
data management must hide the constraints of mobile wielegpower saving measures and also due to disconnections during
computing. The technique of replicating data locally on thefrequent relocation between different cells. Additionadd
mobile device enables the user to carry offline data withoutated fixed hosts called mobile support stations (MSSs) acts

(MSSs) and this leads to the phenomenon of communicatio
asymmetry. The effective management of data in system,
with the mobile client is affected by these limitations. The
environment of frequent disconnections and limited badthyi
impact the data and transaction management as well as the d
consistency guarantees.

www.ijacsa.thesai.org 60lP age

(IJACSA) International Journal of Advanced Computer Sméeand Applications,

Vol. 9, No. 12, 2018

Fig. 1.

TABLE |I. LIST OF ACRONYMS. TABLE II. | SSUES INDISCONNECTEDOPERATION.(SOURCE[1])
Symbol Description State Problem Resolution

C Causal Consistency Unit of | System dependent (e.g. a file or |a

CMP Consistency scheme with PRACTI property [2] caching/hoarding database fragment)

CRDT Conflict-Free Replicated Data Types Which items to cachel Application dependent , based on pur-

AU Hoarding Unit o (hoard)? pose of th_e system

E Eventual Consistency £ Defined distinctly by the user

- ! B Generate from the knowledge of past

FSC Fork—seq_uentlal consistency 8 operations

MRC Monotonic read consistency T When to _ execute| Based on regular intervals

MwWC Monotonic write consistency hoarding ? Before disconnection

PRACTI PR - Partial Replication, AC - Arbitrary Consistency, [l Callfor focally unavail- | Add requests to queue for future ser-

-Topology Independence able data vice)
RAWC Read after writes consistency 5 Raise an exception/error
RYWC Read your writes consistency What to log? Timestamps
- Data Values

S Strong Q0n5|stency 5 Operations

SC Sequential Consistency S When to optimize the| Before synchronization

T,0 Table , Objects g log? Incrementally

WFRC Write Follows Read Consistency 8 How to optimize the| System dependent
2 log?
e How to synchronize? | Re-execute an operational Tog
Reintegration How to resolve con-| Automatic resolution

Data Hoarding or Synchro- | flicts? Use application-semantics

nization Provide utility to aid the user

Reintegration

States of Disconnected Operation.

these multiple objects (replicas) are persistently maieth
over time in order to allow the workload to be divided
over the possible number of replicas. The replication agat
involved in a different distributed system depends on the
requirements of data freshness tolerance. The use cases in
some applications need only read operations, while ottigls h

Disconnected
operation

as the channel between the FH and MH through wireless LANatio of writes(updates) compared to read. Banking systems
(local area network) connections, cells or connectionsho t require that data is always consistent over time and sonialsoc

network with standard modems.

networks may tolerate stale data.

When the network connectivity becomes unavailable or un-
acceptable, the MH enters the disconnected state. Disctathe C. Consistency Models
operation (see Fig. 1) is a three-stage changeover betwieen t

following states [3]:

1

2)

3)

For a given distributed system, the complexity of opera-
tions in each of the above three states is determined by the
interdependence of data operated on. The issues pertaaing
three states is summarized in Table II.

B. Replication

Replication is a basic strategy to support fault resilience 2)
high data availability and quick response for universallgiba
able services. Replication process creates many instasfces
the identical object in different machines, over a distieob
or local network ([3], [4], [5], [6], [7], [8])- The copies of

The literature [9] [10] describes data-centric and client-
centric consistency as the two principle viewpoints on con-
Data hoarding: This is the process of preloading orsistency. The data-centric consistency manages the abtern
prefetching the data in anticipation of a foreseeablestate details by guaranteeing that all the replicas are sate
disconnection. Before going to offline mode (discon-ensures system maintains consistency for updates. Datdece
nection), the data structures necessary for operationonsistency is important to system developers. Clientricen
during disconnection are either replicated (catched)konsistency deals with only observing data updates as & blac
or moved (partitioned) at the MH. box and hence application developers focus on client-icentr
Disconnected operation: When the MH is offline (dis- guarantees. Ordering and Staleness are the two criteria for
connected from the network), data might be changedmeasuring guarantees of both data-centric and clienticent
added or even removed at either the MH or the FH.consistency. Staleness is measured in the unit of time (t-
Synchronization or Reintegration: When the con-perceivability) or versions (k-staleness), calculatedeloaon
nection is reestablished, each operation executed &ow much a given copy is falling behind [11] [12].
the MH should be synchronized (reintegrated) with

appropriate updates executed at other sites in order . . .
to attain seamless consistency. D. Data-Centric Models (Server-Side Consistency Models)

1) Strong consistency - A system adopting a strong
consistency model is in a consistent state all times.
The strong consistency is a single-copy consistency
model that is not suitable for mobile applications
dealing with cloud data due to the availability and
performance issues as mandated by CAP theorem
[13].

Sequential consistency - This is a slightly weaker
form of strong consistency with the condition that,
same order of execution is maintained for all the se-
quentially related requests. Subsequently, the clients
observe the same order and sequence of updates.

www.ijacsa.thesai.org 60RP age

3)

4)

(IJACSA) International Journal of Advanced Computer Sméeand Applications,
Vol. 9, No. 12, 2018

Causal consistency - In a system adopting the Causl 8], [19]). Systems like Coda [3] and Ficus [19] address the
Consistency (CC), the same sequence of execution issues in handling disconnected operations and replidate fi
maintained on all replicas, for all the causally relatedproviding high availability at the cost of consistency. Bay
requests. The non-related requests are followed 4] is a distributed relational database system that pewid
random order. eventual data consistency, under offline mode. These sgstem
Grouping operations - This model deals with handlingdiffer on their procedures to handle conflicts. For instance
the cases of, series of reading and write operationsBayou performs application-level conflict resolution, lghi
The Grouping Operation model allows raising the Coda and Ficus allow system level resolution of conflicts.
level of granularity to span multiple reads and writes, Some Systems (like Simba [20]) are aimed to provide more
into an atomically executed unit. control for mobile applications to select suitable coresisy
abstractions for data synchronization services.

E. Client-Centric Models (Client-Side Consistency Mogels There are several studies which explicitly focus on the

1)

2)

Weak consistency - A weak consistency model doegfficiency of data management systems for weakly connected
not guarantee that subsequent accesses will returglients ([21], [22], [23], [24]). In compliance to differen
the updated value. The term ‘inconsistency window’ requirements of apps, Odyssey [23] system give OS support fo

[10] attribute to the time between the update and theapplications to modify the fidelity of their data to accomrate
instant when it is guaranteed that any observer willresource changes, such as wireless network bandwidthfluctu

always see the refreshed value. ations and battery conditions. Cedar [24] increase theyguer
Eventual consistency - Eventual consistency is conProcessing capability by identifying the commonality beem
sidered as another model of Weak consistency wittelient and server query results and hence provides pragucti
an added guarantee that when no new updates af8obile database access. In LBFS [21] (low-bandwidth networ
made to an object, eventually all replicas will see thefile system), the content-based chunking technique prsvent
last. Eventual consistency provides the following four redundant transfer of files and also detect inter-file siritiés.
main ordering guarantees [14]: o

a) Monotonic Read Consistency (MRC) - In this B Geo-Replication

model after reading a version ‘n’ of an object, There are several studies which focus on the tradeoff
the same client will never access a versionpetween consistency, availability, and performance foo-ge
less than ‘n’ on a subsequent read. distributed services. These system handle data replizatio
b) Read Your Writes Consistency (RYWC) - In yjthin and across and data centers. Some systems primarily
this model, after writing version ‘'n’, the same gimed at providing low-latency causal consistency at scale
client will never again read_an older version (e.g. , COPS [25] and Eiger [26]) and others (e.g., Red
less than ‘n’. This is a unique case of the gjye consistency [27], Walter [8], Transaction Chains [28]
causal consistency model [9] [10]. and) focus to reduce the latency involved in supporting
¢) Monotonic Write Consistency (MWC) - In qther forms of stronger-than-eventual consistency, dioly
this model, all writes by the same client guar- seriaizability under limited conditions. Arbitrary castency
anteed to be serialized in the order of time of sejection systems (e.g., Pileus [29] and SPANStore [30])
update It guarantees that a write operation isattempt to provide more control for applications to choose

always ended prior to any subsequent writegitable consistency across data centers, to meet SLAS or to
operation on the same data item [9] [10] minimize operating costs.

d) Write Follows Read Consistency (WFRC) - It
guarantees that an update succeeding a reag praCT] Paradigm
of version ‘X’ will never be carried out on
replicas that are prior to version ‘x’ [9]. In a distributed system, an optimal replication system
should support all the three PRACTI [2] properties. 1) PR-

The studies [15] [16] conclude that it is mandatory to guar-system (Partial Replication) allow any node to store a sufifse
antee all four client-centric models (MRC, RYWC, MWC, and data and metadata. 2) AC-system (Arbitrary Consistenay) pr
WFRC) for the system to achieve client-centric consistency. vide flexibility of selection of consistency semantics feliént

types of configurable consistency guarantees like botmgtro

Il. CLASSIFICATION OF CONSISTENCY, and weak consistency) for applications. 3) The TI-systems
SYNCHRONIZATION AND REPLICATION SYSTEMS IN (Topology Independence) permit all nodes to send updates to
MOBILE COMPUTING all other nodes (TI).
This section classifies the current efforts into differgipiets Applying PRACTI taxonomy to the current studies, the ex-

such as systems for weakly connected clients, sync servicésting replication systems fall into the following four pocol
and systems supporting geo-replication. The studies a@ al groups. Each system compliant to most two of the PRACTI
classified based on three PRACTI properties [2]. paradigm properties.

A. Systems for Weakly-Connected Clients

1) Server replication: Some systems use the log-based
peer-to-peer update exchange protocol for server-

Many previous attempts have dealt with data replication side replication. This protocol follows full replication
and management in systems where mobile clients intermit- mechanism and allow all nodes to store complete
tently connected either to servers or to peers ([3], [4].[121, data from any volume and also all nodes collect

www.ijacsa.thesai.org 60BP age

(IJACSA) International Journal of Advanced Computer Sméeand Applications,
Vol. 9, No. 12, 2018

all updates. This protocol helps to achieve topologymanagement services but provides smooth application execu
independence (TI) in some systems (e.g., Bayou [4}ion. The work on Pebbles[54] revealed that apps massively
and Replicated Dictionary [31]), where any node todepend on structured data (table) to manage unstructured
send updates to any other node. Some Systems likebjects (files). Simba [20] extended the table interfacezay |
in TACT [32] and Lazy Replication [33]) use this [43] to provide a unified abstraction for both table and objec
protocol to provide more control to select suitable the benefits of which are explored the context of local system
consistency guarantees for data synchronization (AC)in these studies [[55], [56]].
Sg;%eetzla eprt?)t?ﬁﬁlrigﬁiar:gn?liﬁggg (sa;fglee;tsnriz\;/o[)ke CouchDB [57] is a schema-free _“dociument stoEe” support-
not suitable for devices with limited resources. Ing eventual consistency and provide “document” sync with
2) Some systems with client-server architecture (e_g_f:oordmanon from its client TouchDB [58].
Coda [3] and Sprite [34]) and hierarchical caching SwiftCloud [59] and Cloud types [60] provide cloud-
systems (e.g., hierarchical AFS [35]) implement aenabled programming interface to facilitate the mobilessfop
protocol to selectively replicate/cache arbitrary sub-storing local replicas of data on the devices and subselyuent
sets of content (PR). Apart from supporting a groupsync with the cloud servers. The programmer needs to handle
of consistency policy by the system, a supplementarysynchronization in SwiftCloud and Cloud types, while Simba
extension of consistency guarantees are provided bpgermits automatic synchronization.

changing the basic architecture (AC). In order to ! : . ki f
support consistency, the partial replication protocols _Mobile operating systems provide some kinds of data

need intercommunication between a child and itsStorage abstractions to developers. Apple expanded iGdCl
parent and also serialize control messages at thit/] service with CloudKit [61], a new means for applicaton
central server node [36]. Due to these communicatiof© store and access data stored in iCloud [47]. There are some
complexities, the performance, availability and data®P€n sSource mobile back-end-as-a-service offering, ssch a
sharing features may be paralyzed in such systems Parse Server platform [62] and StackSync [51].

3) In the Distributed hash table (DHT)-based storage Many commercial services provide back-end cloud storage
systems (e.g., PAST [37], CFS [38] and BH [39]), the services to link mobile and web applications to the cloudhsu
scalability is achieved by load balancing the serveras |BM Bluemix Mobile Cloud Service [63] [64]. Services

across various nodes, on a per-object or per-bloclef Firebase [65] and Kinvey [66], also aid app developers to
basis. For high availability, the data is also replicatedconnect their apps to cloud backend.

to multiple nodes and such architecture becomes
challenging for providing the consistency guarantees. || - pscyssion ONLITERATURE OF CONSISTENCY AND
4) Object replication systems (e.g., WinFS [40], Ficus SYNCHRONIZATION FRAMEWORKS

[41] and Pangaea [42]) permit nodes for selective

replication/caching of arbitrary subsets of data (PR) The existing literature from the database community and
and communication with every other peer (T1).Thesedistributed systems community focus on consistency models
protocols lack consistency guarantees since they déheir implementations and their measurement. This paper fo
not mandate ordering constraints on updates acrosguses on the reference implementations helping the mobile

multiple objects. clients for end-to-end data consistency and data synctaeni
tion service utilizing the cloud resources. The literathees
D. Synchronization Service Frameworks case studies investigating the difficulties related to istest

replication across mobile devices with intermittent natwo
€onnectivity and bandwidth constraints. Some studies @ th
literature address the frameworks designed to handle the cu
rent constraints in Mobile app development.

The existing services mainly offer sync services into thre
categories: (1) File-only, (2) Table-only and combinatioin
(3) Table and Object. I1zzy [43] and Mobius [44] sync services
provide a platform for structured data like tables only, % e
pedite the development and deployment of data-centric lmobi ~ Coda [3], was one of the initial client-server architecture
apps. Mobius guarantee that all clients observe write dijpeia ~ systems, to emphasize the difficulties in addressing the of-
in the same order, maintaining the flexibility of local clien fline operations. BlueFS [67] is another system that focuses
views to diverge (fork-sequential consistency [45]).0sop on energy efficiency in resource-constrained mobile device
sync service provides dedicated API for tables and do noBayou [4] is based on client-server architecture and suppor
store files and tables together. Many Mobile apps are degdlop a disconnected system and provides a programming interface
using the file sync services of Google Drive [46], iCloud [47] to application-specific conflict detection and resolutian t
Dropbox[48] [49] and Box Sync[50]. StackSync [51] is an handle optimistic updates (eventual consistency). Ogy{&33
open-source Personal Cloud framework that provides dealabsupport application-aware adaptation based on typefspeci
file synchronization and sharing. QuickSync [52] is a systenpperations. The Rover [68] toolkit is a client-server, niebi
that focuses on improving the synchronization performanc@pplications development platform that relocatable dyinam
of cloud storage, in wireless networks depending on networkbject (RDO) and queued remote procedure call (QRPC) for
conditions. data communication.

Sapphire [53] is a cloud-enabled distributed programming Simba [20] provides end-to-end data consistency frame-
platform for mobile and cloud applications. Sapphire makesvork with a data abstraction for a combination of tabular and
a smooth application execution using the techniques of-codebject data models. Additionally, the applications writte
offloading, caching, and fault-tolerance. Sapphire laokdata this abstraction are allowed to select from a set of disteithu

www.ijacsa.thesai.org 604P age

(IJACSA) International Journal of Advanced Computer Sméeand Applications,
Vol. 9, No. 12, 2018

consistency schemes and sync data with the cloud. Simka the CALM theorem, logically monotonic programs are
Server implementation of data Storage use OpenStack Swiffuaranteed to be eventually consistent without the reongre

[69] for object data and Cassandra [6] to store tabular dataf any coordination protocols (distributed locks, two-pha
Simba configure OpenStack Swift and Cassandra to utilizeommit, paxos, etc.). Hence CALM approach ensures eventual
three-way replication, in order to achieve high avail&jili consistency by necessitating a monotonic logic [79]. Indog
Also, the framework mentioned in [70] support using Cassantanguages (e.g. Bloom[80]) CALM analysis helps to analyze
dra as a backend datastore. Our work [71] proposes to extendhether the code flow is sufficient towards consistency witho
Simba with support for large data objects. the integrating co-ordination protocols [79].

Mobius [44] is designed as a cloud-enabled data replication

and messaging platform for the mobile applications. It ftes The study claimed [81] that the use of revision diagrams
table consistency and uses PNUTS [7] as the back-end storgjong with special abstract Cloud Types is a useful techeiqu
for eventually consistent distributed programs. Revisidia-
grams are semi lattices designed for the context of multipie
sions and eventual consistency and work same as the version

A middleware framework for a mobile network that per-
forms reliable and real-time data synchronization is psagb

by Xue [72]. Izzy [43] and Mobius [44] frameworks provide X . ;
a platform for structured data like tables only, to expediteCONto! systems. In this approach, the distributed staseored

the development and deployment of data-centric mobile .app&SiNd special cloud abstract data types. These Cloud types
Simba [20] is built upon the sync framework of 1zzy and Sup_expose interface with well defines update and query opestio

ports cloud-based data synchronization service, whichaesl [00]- Cloud types provide eventually consistent storagd an
development complexity of mobile apps. ' hide the complex backend implementation details of network

and coordination protocols. They offer the functionality t
Cimbiosys [17] is a peer-to-peer system platform (clientsperform the optimized fork and join implementations and
share updates directly with each other) that enables \@riowstoring of updates in the form of logs [60]. The prototype
apps to manage cloud-based data on personal computers antplementation of this technique is available in TouchDepe
mobile devices. Perspective [73] is another platform likelanguage and as a library in C# [82]. While the CRDTs
Cimbiosys that use filters for selective replication of date help to carry out only commutative operations, the cloud
mobile devices. PRACTI [2] is a unique replication systemtypes support non-commutative operations still accorlis
that supports all the three ideal PRACTI properties of phrti eventual consistency.
replication, arbitrary consistency and topology-indejesrce.

. Currently, re;earchers are proposing new principles tb dea Open Data Kit (ODK) 2.0 [83] support to build Android-
with weak consistency. Strong correctness guarantees €an Based application-specific information modules for offlope
achieved without the use of costly global synchronizatit'emw erations. StoArranger [84] is another system framewori tha
all operations in a program are purely monotonic. Built onajd the programmers to manage cloud data storage on mobile
this monotonic prInCIple, some data StrUCt.UreS like setd aNdevices by addressing issues of rearranging, and Codm:tilnat
sequences can be correctly replicated without the need @fioud storage communications. BlueMountain [85] is a moder
synchronization. mobile data management platform supporting solutions for

The Conflict-Free Replicated Data Types (CRDTS) ([74]file and database management, which allow to achieve wider
[75] [76]) are asynchronous data types that do not need€Ployability and help app developers to spend more efforts
synchronization for updates. They comply Strong EventuaP" a8PP Ioglg. Unidrive [86.] IS a chent-s@gmlddlewarg synt
Consistency Model [75] and can be utilized to build otherWhich can integrate multi-cloud capabilities to mobile spp
data models, required by applications. Asynchronous tali Gachekeeper [87] allows caching of browser data on mobile
of CRDTs makes it more qualified for replication in eventualdeVices using system-wide, kernel level caching suppart fo

consistency environments. mobile applications.

More recently researchers utilize these special data types
(CRDTSs) to build the frameworks using Key-Value stores. Parse [62] is a back-end as a service platform that uses
Riak [77] distributed database is used as a back-end store %OHQODB as the back-end datastore. Parse platform allow the
systems like SwiftCloud [59] to implement a Key-CRDT. In developer to create loosely or strongly typed objects asidyea
order to support strong eventual consistency, the Switt€lo save, update, query, and delete these in a backend data store
middleware, convert a Key-Value store in a Key-CRDT store,
into a data-model that utilize properties of CRDT. The gyste
allows clients to execute updates concurrently withouthyo-
nization. By executing automatic conflict resolution sfiedi
in CRDTSs, the systems guarantees the clients with zero confli
for simultaneous updates. Walter [8] and Gemini [27] arepth
systems that use CRDT for providing eventual consistenc
Indigo [78] enhance SwiftCloud, wherein an applicationcspe
ifies the invariants, or consistency rules, that the systemtm
maintain.

Mobile apps are developed using the file sync services of
Google Drive [46], iCloud [47], Dropbox [48] [49] and Box
Sync[50]. StackSync [51] is an open-source Personal Cloud
framework that provides scalable file synchronization drats
ing. QuickSync [52] is a system that optimizes cloud storage
synchronization performance in wireless networks based on
network conditions. IBM Bluemix Mobile Cloud Service [63]
[64] provides back-end cloud storage services to link naobil
and web applications to the cloud. Other commercial platfor

Consistency As Logical Monotonicity (CALM) is another such as Kinvey [66] and Firebase [65], help app developers to
technique used in built consistency frameworks. Accordingconnect the apps to cloud backend.

www.ijacsa.thesai.org 606P age

TABLE Il

(IJACSA) International Journal of Advanced Computer Sméeand Applications,

C OMPARISON OF THREE REFERENCE IMPLEMENTATIONS

Reference
Design

Strength

Weaknesses

Simba [20]

- Allow apps for the program-
matic delay tolerant data trans-
fer
- Uses a single persistent TCP
connection to the cloud data |,
resulting in bandwidth saving

Since multiple apps access th
same instance of client, certai
poorly written apps may ad
versely affect other Simba app|

Mobius [44]

- All in one solution with a
combination of messaging angd
data platform

- Linear scalability for number
of applications, users and sizg
of data

Can be improved in the are

of cross-app synchronization,

optimization and

caching

strategies

SwiftCloud [59]

- Allow execution of transac-
tions in the client side as wel
as at the data centers

- Lack support for combined

weak and strong consistency,

h

5

A

Vol. 9, No. 12, 2018

or per-request, per-table.

Caching Policy and Offline support: The strategies of
caching (replication) data at the client side enable higher
availability and improve latency. Caching policies need to
take care of the consistency semantic (ordering, updatés an
fetching of fresh updates). Solutions provide options toeas
data from client-side storage or remotely. Cache policéste
determined by the server-side back-end. The server-gexdera
policies can be context-aware, globally configurable and dy
namic. These policies are created based on run-time usage or
access patterns of all users collected from each applicatio
Efficient write caching capabilities group possible nunsber
of write operations in a one network message to reduce
bandwidth. A Prototype of Mobius clients uses the trained

and for object composition

- Efficient use of caching meth{ - DC implementation is not
ods, executing both reads and modular

updates at the client

decision tree model (policy selector) to determine whether

fetch locally or remotely. Mobius uses cost-sensitive sieci

tree classifiers to write batch updates. In SwiftCloud tlents

can access the causally- consistent view of the stableoveosi

data (cached at multiple servers). In Mobius, MUD tables are

IV. RESEARCHFINDINGS, DISCUSSION AND partitioned across mobile nodes and one or more server back-
RECOMMENDATIONS ends. Data access during offline is from the local tables. The

This section discusses the selected case studies, based ‘$fite updates are stored locally and forwarded to the batken
the criteria to understand the different technologies used ON reconciliation of cI_|ent. During offline, reads are delied
building the frameworks. SwiftCloud uses the CRDT with fro.m the local scout in SW|ftCIo.ud._.Scou.t cache hand!es the
the Riak key store. Mobius uses PNUTS distributed databas#'ite updates. On network availability, finally, they willeb
and supports P2P communication model. Simba supporemmitted at its DC.
configuring different consistency levels using Cassandic a
OpenStack Swift object storage. TouchDevelop libraryiagd
the Cloudtypes using the Revision diagrams. BloomL libraryc. Limitations of Reference Frameworks
covers the BloomL language supported framework. Due to
space constraints, we are only covering the three framework Even though incredible researches have been done in pro-
Swiftcloud, Simba and Mobius. These reference solutionyiding end-to-end data consistency solutions, many chgée
are aimed at providing data replication, synchronizatemg still remain. This section points out some of the challerthas
offline services to ease the development complexity of neobil are needed to be addressed in various reference frameworks.
apps. The solutions use the client side caching technique tBor app developers, currently, Mobius [44] provide higher
offer offline services. The solutions are backed by the cloudevel APIs (blocking or asynchronous) abstracted arourd th
storage to store the data. Table Ill summarizes the stremgth basic MUD APIs. The researchers propose the opportunity to
weaknesses of the studied three reference implementatiorsupport richer interfaces with the declarative query laggu
Table IV (See Appendix) summarizes the consistency and/obius can be improved in the area of cross-app synchro-
data models (table, object or both) support in the variousiization, optimization strategies and caching. Mobius ban
reference implementations. Table IV also lists PRACTI prop improved in cache operations such as dynamic caching strate
erty supported by each framework along with mechanism ogies, clearance policies and push-based cache mainterkamice
synchronization protocol and conflict resolution. bandwidth consumption and improving access, the outstgndi
updates stored locally should be compressed. There sheuld b
a smooth deterioration of response quality during discotate
operation. For the scalability improvements, the authdrs o
Some of the solutions provide the sync services for strucmMobius [44] propose to improve partitioning schemes by

tured data like table only (Mobius and SwiftCloud). Simbaadapting their earlier efforts on automatic and fine-grdine
supports both tabular and objects data models. Synchtamza partitioning ([89], [90]).

operation execution required to be handled by the prograsime
in case of Mobius and Swiftcloud. In contrast, Simba sugport
automatic synchronization process in the background.

A. Synchronization Services

Simba’s [20] sync protocol does not support streaming APls
to handle big size objects (e.g. Media file like Videos).
Simba proposes to handle atomic multi-row transactions as

_ _ _ prospective enhancement and currently support only atomic
In order to satisfy the diverse consistency needs the frameransactions on individual rows.

works should support different types of data and indepethgen

define their consistency. Mobius provides per-record setiple

[88] and fork-sequential [45] consistency through the egisle SwiftCloud [59] can be enhanced with a better caching mech-
type of read operations. Simba provides three consistencgnism and support for transaction migration. Also, bettad
semantics, resembling strong, causal and eventual censjst encapsulation across software stack through API level, to
The extent of consistency specification permit may be per-ro address efficient data access.

B. Consistency Support

www.ijacsa.thesai.org 606P age

(IJACSA) International Journal of Advanced Computer Sméeand Applications,

V. RELATED WORK

The work of [91] conducts an analysis of concepts o
mobile client-server computing and mobile data access wit
a detailed review of early research prototypes (Bayou [4]
Odyssey [23] and Rover [68]) for mobile data management;
Our work extends this work by analyzing the consistency
support for the latest frameworks. The survey of contribu-
tions on data dissemination and support for data consigtenc
techniques for mobiles devices is discussed here [92]. Th
paper [93] compares and analyze the several contributimns
models for mobile transaction. A survey of literature work
on synchronization between the mobile device and serder-si
databases can be found here [94]. A survey of academic work
on mobile/cloud computing can be found here [95]. The paper
[96] conducts a comprehensive review of the data replinatio
techniques in the cloud environments. Recent review articl
deals with the comparison of different categories of datd’
synchronization algorithms based on scalability, copsisy,
accuracy parameters in ubiquitous network [97].

VI.

In this paper, we presented a review of data consistency
and synchronization frameworks in Mobile Cloud Comput-
ing for Mobile Apps. We considered the latest studies done[1]
from 2010 to 2017, and the advantages and disadvantages of
three reference implementations in the literature haven bee [2]
presented. Then, the approaches to handle consistency sup-
port, sync services, conflict handling and offline operation
reference solutions have been discussed. Furthermorefout [
the review, several findings and potential future works have
been identified. We believe that this is an important researc [4]
area, that will attract more contributions from the reskarc
community.

The Conflict free replicated data type, logically monotonic
programs (CALM approach) and Revisions diagrams as semis]
lattices are some of the techniques used in these frameworks
Frameworks make use of the backend stores implemented us-
ing these technologies to support the data consistenayréesat

Out of the three frameworks explore®&jmbais a superior [6]
framework ensuring three types of consistency guarantees
(strong, causal and eventual consistency) for both tabte an |,
objects data models. Simba reduces programmer’s effoits as
supports automatic synchronization process in the baackgro
Simba lacks multi-row transactions and streaming APIs to
access to large objects. (8]
Swiftclouduses a client-assisted failover solution with CRDT
store to support both mergeable and strongly consistems$-tra
actions. Programmers need to manage the synchronizatioib]
process. It utilizes properties of CRDTs to support aut@nat
conflict resolution. SwiftCloud needs to improve in prowgi
efficient data access through APIs.

Mobius provides table consistency and uses PNUTS as thg
back-end store to support cloud-enabled data replicatimh a
messaging platform. Mobius provides per-record sequentia
and fork-sequential consistency through the exclusivee typ
of read operations. Programmers need to manage the syii<l
chronization process. Mobius uses cost-sensitive decisee
classifiers to write the batch update. Mobius needs improve-
ments in the area of caching and optimization strategiels wit[13]
richer client interfaces. It has to be noted that the liteeat
review is limited by sources and keywords, terminologiesdus

CONCLUSION AND FUTURE WORK

[20]

Authors acknowledge Universiti
Faculty of Computer
ology,
Is funded by Ministry of Education of Malaysia un-
der
(FRGS/1/2015/ICT04/UPM/02/07).

Vol. 9, No. 12, 2018

in the search, and the search date. Hence it is possible to
finclude more relevant papers while replicating this study i
rtihe future. Our final outputs of this research are limited to
the current availability of frameworks that address theadat
consistency, synchronization , and other features. Whige th
current study did not deal with the full details of measuretae

of numerical deviation, order deviation and staleneseifiat)

of each framework, we intend to conduct detailed research
ith simulations on the comparison of these performance
arameters for each platform.

ACKNOWLEDGMENT

Putra Malaysia and
Science and Information Tech-

Malaysia, for all the support. This research

the Fundamental Research Grant Scheme (FRGS)

REFERENCES

E. Pitoura and G. SamaraBata management for mobile computing
Springer Science & Business Media, 2012, vol. 10.

N. M. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkaarani,
P. Yalagandula, and J. Zheng, “Practi replication.Ni&D|, vol. 6, 2006,
pp. 5-5.

J. J. Kistler and M. Satyanarayanan, “Disconnected afjp@r in the
coda file system,ACM Transactions on Computer Systems (TQCS)
vol. 10, no. 1, pp. 3-25, 1992.

D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. Jredaer,
and C. H. Hauser, “Managing update conflicts in bayou, a weakl
connected replicated storage system,” ACM SIGOPS Operating
Systems Reviewol. 29. ACM, 1995, pp. 172-182.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, Akdtaman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogdlg;rfamo:

amazon'’s highly available key-value store,”"ACM SIGOPS operating
systems reviewol. 41. ACM, 2007, pp. 205-220.

A. Lakshman and P. Malik, “Cassandra: structured stosygtem on a
p2p network,” inProceedings of the 28th ACM symposium on Principles
of distributed computing ACM, 2009, pp. 5-5.

B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. SillenstP. Bo-
hannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yernemit$
Yahoo!’s hosted data serving platformProceedings of the VLDB
Endowmentvol. 1, no. 2, pp. 1277-1288, 2008.

Y. Sovran, R. Power, M. K. Aguilera, and J. Li, “Transaxtal storage
for geo-replicated systems,” iRroceedings of the Twenty-Third ACM
Symposium on Operating Systems PrincipleACM, 2011, pp. 385—
400.

A. S. Tanenbaum and M. Van Steebistributed systems: principles
and paradigms Prentice-Hall, 2007.

W. Vogels, “Eventually consistent;,Communications of the ACM
vol. 52, no. 1, pp. 40-44, 2009.

M. Klems, D. Bermbach, and R. Weinert, “A runtime quality mea
surement framework for cloud database service system§uality of
Information and Communications Technology (QUATIC), 2&lghth
International Conference on the IEEE, 2012, pp. 38-46.

D. Bermbach and S. Tai, “Eventual consistency: How s@ogeventual?
an evaluation of amazon s3's consistency behavior,Pinceedings
of the 6th Workshop on Middleware for Service Oriented Cdmgu
ACM, 2011, p. 1.

A. Bradic, “The cap theorem : Brewer ' s conjecture ane fbasibility

of consistent , available , partition-tolerant web sersjt@o. August,
2010.

www.ijacsa.thesai.org

60fP age

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(IJACSA) International Journal of Advanced Computer Sméeand Applications,

D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. [33]
Theimer, and B. B. Welch, “Session guarantees for weakly istarg
replicated data,” ifParallel and Distributed Information Systems, 1994.,
Proceedings of the Third International Conference orlEEE, 1994, [34]
pp. 140-149.

J. Brzezinski, C. Sobaniec, and D. Wawrzyniak, “Fromsséen causality [35]

to causal consistency.” iRDP, 2004, pp. 152—-158.

——, “Session guarantees to achieve pram consistenaemfcated
shared objects,” itnternational Conference on Parallel Processing and [36]
Applied Mathematics Springer, 2003, pp. 1-8.

V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry, M. \&at-
Sullivan, T. Wobber, C. C. Marshall, and A. Vahdat, “CimbissyA
platform for content-based partial replication,”®moceedings of the 6th
USENIX symposium on Networked systems design and impbgroant
2009, pp. 261-276.

A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen, §ivA
read/write peer-to-peer file systenACM SIGOPS Operating Systems [38]
Review vol. 36, no. Sl, pp. 31-44, 2002.

R. G. Guy, J. S. Heidemann, and T. W. Page Jr, “The ficuscatpd
file system,”ACM SIGOPS Operating Systems Reyigal. 26, no. 2,
p. 26, 1992.

D. Perkins, N. Agrawal, A. Aranya, C. Yu, Y. Go, H. V. Maglistha,

and C. Ungureanu, “Simba: Tunable end-to-end data conejstem

mobile apps,” in Proceedings of the Tenth European Conference [40]
on Computer Systems ACM, 2015, p. 7. [Online]. Available:
https://github.com/SimbaService/Simba

A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-dandth
network file system,” inACM SIGOPS Operating Systems Reyiew
vol. 35. ACM, 2001, pp. 174-187.

N. Tolia, J. Harkes, M. Kozuch, and M. Satyanarayandntefrating
portable and distributed storage.” BRAST, vol. 4, 2004, pp. 227-238.

B. D. Noble, M. Satyanarayanan, D. Narayanan, J. EofjltJ. Flinn,
and K. R. Walker, “Agile application-aware adaptation forbility,” in
ACM SIGOPS Operating Systems Revigal. 31. ACM, 1997, pp.
276-287.

N. Tolia, M. Satyanarayanan, and A. Wolbach, “Improvingpbile
database access over wide-area networks without degradingis-
tency,” in Proceedings of the 5th international conference on Mobile
systems, applications and serviceACM, 2007, pp. 71-84.

W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. AnderseDpf't
settle for eventual: scalable causal consistency for i@ storage
with cops,” in Proceedings of the Twenty-Third ACM Symposium on
Operating Systems PrinciplesACM, 2011, pp. 401-416.

[37]

[39]

[41]

[42]

[43]

[44]

[45]

——, “Stronger semantics for low-latency geo-replichtgtorage.” in [46]
NSDI, vol. 13, 2013, pp. 313-328. [47]
C. Li, D. Porto, A. Clement, J. Gehrke, N. M. Preguicadar. Ro-

; “ : ; ; . [48]
drigues, “Making geo-replicated systems fast as possilesistent
when necessary.” i©OSD|, vol. 12, 2012, pp. 265-278. -
Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguileradah Li, [49]
“Transaction chains: achieving serializability with loaténcy in geo-
distributed storage systems,” Rroceedings of the Twenty-Fourth ACM
Symposium on Operating Systems PrincipleACM, 2013, pp. 276—
291. [50]
D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishn&h,K. Aguilera, [51]

and H. Abu-Libdeh, “Consistency-based service level agesgs for
cloud storage,” inProceedings of the Twenty-Fourth ACM Symposium
on Operating Systems PrinciplesACM, 2013, pp. 309-324.

Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and ¥ Mad-
hyastha, “Spanstore: Cost-effective geo-replicatedagerspanning
multiple cloud services,” inProceedings of the Twenty-Fourth ACM [53]
Symposium on Operating Systems PrincipleACM, 2013, pp. 292—

308.

G. T. Wuu and A. J. Bernstein, “Efficient solutions to theplicated
log and dictionary problems,” iRroceedings of the third annual ACM

[52]

symposium on Principles of distributed computindACM, 1984, pp. [54]
233-242.

H. Yu and A. Vahdat, “Design and evaluation of a coniséd contin-

uous consistency model for replicated servicds&M Transactions on
Computer Systems (TOCSpI. 20, no. 3, pp. 239-282, 2002. [55]

Vol. 9, No. 12, 2018

R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat, “Prowigli high
availability using lazy replicationACM Transactions on Computer
Systems (TOCSYol. 10, no. 4, pp. 360-391, 1992.

M. Nelson, B. Welch, and J. Ousterho@aching in the Sprite network
file system ACM, 1987, vol. 21, no. 5.

D. Muntz and P. Honeyman, “Multi-level caching in diswied file
systems,” Center for Information Technology Integration¢cileRep.,
1991.

S. Chandra, M. Dahlin, B. Richards, R. Y. Wang, T. E. Arsds, and

J. R. Larus, “Experience with a language for writing coheeeproto-
cols,” in Proceedings of the Conference on Domain-Specific Languages
on Conference on Domain-Specific Languages (DSL), .199%senix
Association, 1997, pp. 5-5.

A. Rowstron and P. Druschel, “Storage management andrgaghpast,
a large-scale, persistent peer-to-peer storage utililyACM SIGOPS
Operating Systems Revigwol. 35. ACM, 2001, pp. 188-201.

F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and |.i&ip“Wide-
area cooperative storage with cfs,”ACM SIGOPS Operating Systems
Review vol. 35. ACM, 2001, pp. 202-215.

R. Tewari, M. Dahlin, H. M. Vin, and J. S. Kay, “Design caiderations
for distributed caching on the internet,” iDistributed Computing
Systems, 1999. Proceedings. 19th IEEE International Cenée on
IEEE, 1999, pp. 273-284.

D. Malkhi and D. Terry, “Concise version vectors in watifin Inter-
national Symposium on Distributed ComputingSpringer, 2005, pp.
339-353.

R. G. Guy, J. S. Heidemann, W.-K. Mak, T. W. Page Jr, G. jeRp
D. Rothmeieret al,, “Implementation of the ficus replicated file system.”
in USENIX Summerl990, pp. 63-72.

Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingdffaming
aggressive replication in the pangaea wide-area file syst&@M
SIGOPS Operating Systems Reviewl. 36, no. S, pp. 15-30, 2002.

S. Hao, N. Agrawal, A. Aranya, and C. Ungureanu, “Builglia
delay-tolerant cloud for mobile data,” @013 IEEE 14th International
Conference on Mobile Data Managemewiol. 1. |EEE, 2013, pp.
293-300.

B.-G. Chun, C. Curino, R. Sears, A. Shraer, S. Maddeud, Rn Ra-
makrishnan, “Mobius: unified messaging and data serving forileob
apps,” in Proceedings of the 10th international conference on Mobile
systems, applications, and services\CM, 2012, pp. 141-154.

A. Oprea and M. K. Reiter, “On consistency of encrypteésf’ in
International Symposium on Distributed ComputingSpringer, 2006,
pp. 254-268.

G. Drive, “Google drive,” 2016, https://developersogle.com/drive/.
A. Inc, “icloud for developers,” 2016.

Dropbox, “Build your app on the dropbox platform,”
https://www.dropbox.com/developers.

I. Drago, M. Mellia, M. M Munafo, A. Sperotto, R. Sadrehy@dA. Pras,
“Inside dropbox: understanding personal cloud storageices,” in
Proceedings of the 2012 ACM conference on Internet measutem
conference ACM, 2012, pp. 481-494.

B. Inc, “Box sync app,” 2016, "http://box.com”.

P. Garcia-Lopez, M. Sanchez-Artigas, C. Cotes, G. uer
A. Moreno, and S. Toda, “Stacksync: architecturing the queas cloud
to be in sync.”

Y. Cui, Z. Lai, X. Wang, and N. Dai, “Quicksync: Improvirgynchro-
nization efficiency for mobile cloud storage serviceEE Transac-
tions on Mobile Computingvol. 16, no. 12, pp. 3513-3526, 2017.

I. Zhang, A. Szekeres, D. Van Aken, |. Ackerman, S. D. Gl
A. Krishnamurthy, and H. M. Levy, “Customizable and exterssibl
deployment for mobile/cloud applications,” irith USENIX Symposium
on Operating Systems Design and Implementation (OSDI2DAM4, pp.
97-112.

R. Spahn, J. Bell, M. Lee, S. Bhamidipati, R. Geambasu,@&nidaiser,
“Pebbles: Fine-grained data management abstractions forrmage
erating systems,” inl1th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14014, pp. 113-129.

P. Shetty, R. P. Spillane, R. Malpani, B. Andrews, J. skeyy and

2016,

www.ijacsa.thesai.org

60BP age

[56]

[57]

[58]

[59]

[60]

[61]

[62]
[63]

[64]

(65]
[66]
[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

(78]

[76]

(77

[78]

[79]

(IJACSA) International Journal of Advanced Computer Sméeand Applications,

E. Zadok, “Building workload-independent storage withtnees.” in
FAST, 2013, pp. 17-30.

K. Ren and G. Gibson, “Tablefs: Embedding a nosql datbaside
the local file system,” iAPMRC, 2012 Digest IEEE, 2012, pp. 1-6.

“Apache couchdb,” 2018, http://couchdb.apache.org.

“Touchdb,” 2018, http://tinyurl.com/touchdb.

N. Preguica, M. Zawirski, A. Bieniusa, S. Duarte, V.l8gas, C. Ba-
quero, and M. Shapiro, “Swiftcloud: Fault-tolerant geplieation
integrated all the way to the client machine,” #2014 IEEE 33rd
International Symposium on Reliable Distributed Systeroskdtiops
(SRDSW) IEEE, 2014, pp. 30-33.

S. Burckhardt, M. Bhndrich, D. Leijen, and B. P. Wood, “Cloud types
for eventual consistency,” iEuropean Conference on Object-Oriented
Programming Springer, 2012, pp. 283-307.

A. Shraer, A. Aybes, B. Davis, C. Chrysafis, D. Browniig, Krugler,
E. Stone, H. Chandler, J. Farkas, J. Quetral, “Cloudkit: structured
storage for mobile applications?roceedings of the VLDB Endowment
vol. 11, no. 5, pp. 540-552, 2018.

P. Platform, “Parse platform,” 2016, https://parsefplan.github.io/.

A. Gheith, R. Rajamony, P. Bohrer, K. Agarwal, M. Kistl&:. W. Eagle,
C. Hambridge, J. Carter, and T. Kaplinger, “lbm bluemix mobiteud
services,”IBM Journal of Research and Developmevil. 60, no. 2-3,
pp. 7-1, 2016.

A. Popov, A. Proletarsky, S. Belov, and A. Sorokin, “Easototyping
of the internet of things solutions with ibm bluemix,” Rroceedings of
the 50th Hawaii International Conference on System Scierl 7.
Firebase, “Firebase,” 2017, https://firebase.gocogla/.

Kinvey, “Kinvey baas,” 2016, https://www.kinvey.com/

E. B. Nightingale and J. Flinn, “Energy-efficiency artdrage flexibility
in the blue file system.” irOSD|, vol. 4, 2004, pp. 363—-378.

A. D. Joseph, A. F. de Lespinasse, J. A. Tauber, D. K. d&iff and
M. F. Kaashoek, “Rover: A toolkit for mobile information acsésin

ACM SIGOPS Operating Systems Reyigal. 29. ACM, 1995, pp.
156-171.
O. Swift, “Openstack swift object storage service,” 180

http.//swift.openstack.org.

D. Bermbach, J. Kuhlenkamp, B. Derre, M. Klems, and S. TAi, “
middleware guaranteeing client-centric consistency orofaventually
consistent datastores.” I€2E, 2013, pp. 114-123.

Y. P. Faniband, I. Ishak, F. Sidi, and M. A. Jabar, “Entiag mobile
backend as a service framework to support synchronizatiolarge
object,” in Proceedings of the 2017 International Conference on Infor-
mation Technology ACM, 2017, pp. 383-387.

Y. Xue, “The research on data synchronization of distied real-time
mobile network,” inComputer Science and Software Engineering, 2008
International Conference grvol. 3. |EEE, 2008, pp. 1104-1107.

B. Salmon, S. W. Schlosser, L. F. Cranor, and G. R. Garigerspec-
tive: Semantic data management for the home FAST, vol. 9, 2009,
pp. 167-182.

M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski,comprehen-
sive study of convergent and commutative replicated datastypé.D.
dissertation, Inria—Centre Paris-Rocquencourt; INRIB12

——, “Conflict-free replicated data types,” iBymposium on Self-
Stabilizing Systems Springer, 2011, pp. 386—400.

S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski, “Regted
data types: specification, verification, optimality,” ACM SIGPLAN
Notices vol. 49. ACM, 2014, pp. 271-284.

R. Klophaus, “Riak core: Building distributed applitas without
shared state,” iNnACM SIGPLAN Commercial Users of Functional
Programming ACM, 2010, p. 14.

V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, Ng&@=, M. Na-
jafzadeh, and M. Shapiro, “Putting consistency back intenaval
consistency,” inProceedings of the Tenth European Conference on
Computer Systems ACM, 2015, p. 6.

P. Alvaro, N. Conway, J. M. Hellerstein, and W. R. Markz&Con-
sistency analysis in bloom: a calm and collected approachCIDR.
Citeseer, 2011, pp. 249-260.

[80]

(81]

(82]

(83]

(84]

(85]

(86]

[87]

(88]

(89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

Vol. 9, No. 12, 2018

N. Conway, W. R. Marczak, P. Alvaro, J. M. HellersteimdeD. Maier,
“Logic and lattices for distributed programming,” Rroceedings of the
Third ACM Symposium on Cloud ComputingACM, 2012, p. 1.

S. Burckhardt, D. Leijen, M. &ndrich, and M. Sagiv, “Eventually
consistent transactions,” iEuropean Symposium on Programming
Springer, 2012, pp. 67-86.

S. Burckhardt, “Bringing touchdevelop to the cloud,”013,
https://www.microsoft.com/en-us/research/blog/briggiouchdevelop-
to-the-cloud/.

W. Brunette, S. Sudar, M. Sundt, C. Larson, J. Beorsd, RnAnder-
son, “Open data kit 2.0: A services-based application fraomkevior
disconnected data management,PFroceedings of the 15th Annual In-
ternational Conference on Mobile Systems, Applications|, &ervices
ACM, 2017, pp. 440-452.

Y. Bai and Y. Zhang, “Stoarranger: Enabling efficientge of cloud
storage services on mobile devices, Distributed Computing Systems
(ICDCS), 2017 IEEE 37th International Conference onEEE, 2017,
pp. 1476-1487.

S. Chandrashekhara, T. Ki, K. Jeon, K. Dantu, and S. Y, ‘B&iue-
mountain: An architecture for customized data management onlenobi
systems,” inProceedings of the 23rd Annual International Conference
on Mobile Computing and Networking ACM, 2017, pp. 396-408.

H. Tang, F. Liu, G. Shen, Y. Jin, and C. Guo, “Unidrive:rgygize
multiple consumer cloud storage services,’Hroceedings of the 16th
Annual Middleware Conference ACM, 2015, pp. 137-148.

Y. Zhang, C. Tan, and L. Qun, “Cachekeeper: a system-wigé®
caching service for smartphones,” Proceedings of the 2013 ACM
international joint conference on Pervasive and ubiquit@omputing
ACM, 2013, pp. 265-274.

L. Lamport, “How to make a multiprocessor computer that ectly
executes multiprocess program&EE transactions on computergol.
100, no. 9, pp. 690-691, 1979.

C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: eivad-
driven approach to database replication and partitiohiRgoceedings
of the VLDB Endowmentol. 3, no. 1-2, pp. 48-57, 2010.

A. L. Tatarowicz, C. Curino, E. P. Jones, and S. Madddmokup
tables: Fine-grained partitioning for distributed datdsm" in 2012
IEEE 28th International Conference on Data EngineeringEE, 2012,
pp. 102-113.

J. Jing, A. S. Helal, and A. EImagarmid, “Client-servemgmting in
mobile environments, ACM computing surveys (CSUR/pl. 31, no. 2,
pp. 117-157, 1999.

D. Barbag, “Mobile computing and databases-a survéyEE transac-
tions on Knowledge and Data Engineerjingl. 11, no. 1, pp. 108-117,
1999.

P. Serrano-Alvarado, C. Roncancio, and M. Adiba, “Avayrof mobile
transactions, Distributed and Parallel databasewol. 16, no. 2, pp.
193-230, 2004.

A. A. Imam, S. Basri, and R. Ahmad, “Data synchronizatiotwsen
mobile devices and server-side databases: a systematiatditerre-
view,” Journal of Theoretical and Applied Information Technolpgy
vol. 81, no. 2, p. 364, 2015.

T. Soyata, H. Ba, W. Heinzelman, M. Kwon, and J. Shi, “Aecating
mobile-cloud computing: A survey,” itCloud Technology: Concepts,
Methodologies, Tools, and ApplicationsiGI Global, 2015, pp. 1933—
1955.

B. A. Milani and N. J. Navimipour, “A comprehensive revienf the
data replication techniques in the cloud environments: Majends
and future directions,Journal of Network and Computer Applications
vol. 64, pp. 229-238, 2016.

L. B. Bhajantri and V. V. Ayyannavar, “Cognitive agerdsed data syn-
chronization in ubiquitous networks: A surveyiternational Journal
of Advanced Pervasive and Ubiquitous Computing (IJARU@). 10,

no. 2, pp. 1-17, 2018.

APPENDIX

www.ijacsa.thesai.org

60PP age

abed 1xau U0 panunuod

Vol. 9, No. 12, 2018

10}

(IJACSA) International Journal of Advanced Computer Sméeand Applications,

"SIy} Inoge arema|ppiw
YPPPIBPIAU JaSn pue paleald Siuandop Paldljluod ayl Jo Adod gIN19algo Ag S|ied poylaw 1o SOd¥ Uo paseq si [000101d JUAS O] 4d‘9°‘s [T5] ouAsyoRIS
21118100 3|puey 01 d|gisuodsal ale suonedlddy "pnojo ayy uiseoaid Buluuid, Aq S193[g04d 8yl 8AaLIal pue 310ls 0} pasn
uonaweEpI04ag, d11auab Buisn pajpuey ale S}oIu0d SpIS JSAISG URD YdIYm 810ISelep [ed0] B sapinoid syAS 1anIas asied ayl 1| dd‘3‘s fz9] J1an1as asred
J92UAS payoreg ay)
‘Aousioigaue ‘ Joyeulwi|g Aouepunpay ay) ‘1aquny) areme-3IoMmiaN oy}
S amenoidwi Ing Buipuey 1013U0d 10 ASUB1SISUOD SSalppe jou o¢sluauodwod Ay aaiyy Buisn Aq panoidwi si Aouaidlye JUAS o) 3 x[zg] ouAS2IND
suonelado peojumop pue peojdn aji ybnoiyy pakanuod si anbiuyoay Bujunyd
1e0QINWLWOI |[e pue Sa21Aap Juald Te pajuawaldwi Ajaind si 2160] @ @maoloid Bupjoo| painquisip paseq wnionb e Buisn sjualo
uauerjouAs yoiym ul abelols pnojd Jawnsuo) ajdnjnw 1oddns Jfe | 01 paduAs pue pnojo ul palols SI Jusluod JO erepelsiy 0| d4d‘3'‘s [98] anupiun
'S|dV ABJaua |reyuonowoid uoissiwsuel) Jo 10edw ayl
AdfFo) Yum elep elaw Jap|o} 8yl uo paseq SI uoidalap 1olucdyiwiuiw 03 sdde woly sisanbal dnyoeq pnojd yaleq pue Aejag 1 Hd ‘3 [8] 18bueinyols
euablanIas ay) pue abueyd [e20] ayl Jo xiw 1o ‘abueyd [ed0| ayl ‘uoIssiwsuRl) erep Jgjews ajgeua o) bupjoen-abueyd Jo
‘gbugIanIas ayl Buper Jayla Ag 101jU0d 8yl SAJ0SaJ I1SNW Jasmiejnielh [fews e asn pue Jiun aseq ay) Sl MoJ aseqgelep ajbuls 1 3 « [£8] 0°z 1Y ere@ uado
“(1o0p0
ams) Ag paiuapl) UOISISA 19eXa Jey) Ul Wnyep Jey) urejuod dd ‘ 3
eep Buipeojdpealje 10U SB0p ayoed ayl JI ‘ayded [eao| Si 0] wniep eyl Jo O OMAY [02] Aouaisisuod
Aq ysepliey-uone|oia e1ep ayl Jo aJed aye) Jsnw uonedldde aAgiod) e sppe pue walsAs abelols 8y wolj elep speal |020010.1d O | ‘' DY | 21jusd-juald Joj aJems|ppIN
‘abelols pnojo ul pue
Buibiaubelams 20| uo yioq palsisiad Ajjeanewolne si pue ‘sadlnap
eg|@ papasu apod [e10ads Ou pue uolN|OSal 101JU0D JNRWOINRR Udamiag paseys Ajeanewoine si erep sadAl pnojo [ernads (sadA1l pnojd) O 3 [09] H{zg] dojana@yoano)
A9y awes ay) 0] apew ‘'sdew 81018 [o8]
salr[liNoIju0d Saj0Ssal Ajjeolewoine uonouny abiaw dew), ayrAy, Jayr Buibueyoxa Ag paziuoiyouAs seoldal omy Jo a1elS S90Ipe| ul-jing 3 | Jwoo|g yim ai0iS anep-Aay
‘arepdn mau e anss| 1o sabueyd [ed0] S)I pJedsip ued pue ‘bonedldal snouolyduAse se yons sainiea) Auew Joy((gINA) oV
JMPUSAJOSSI 01 UOIBWLIOLUI JO puBy 931yl Yum juald ay) Alddmsyoig abessaln ooyeA) wsiueydaw agquasgns ysiignd e asn 1 |‘¥dd‘Ds4H [%7] snigqo
"101JU0D U0 Uoge ‘|o)u0d Aouaiinduod ansiwndo yum
suonoes@@inoid suonoesuel] onsiwundo uoisualxa ayl ‘Aouaisis Buypuey pue uonn)
-mEIUaAe /M Ssedljdal S-)\ padue[eg-peo| JO UoIedo|e JIWRUA@SP] 101JU0d INoge Jeajd Jou do0g-paroddns |ON ase suonoe
yoddns apinoid ays Joy (NQ) J9beuew juswAojdap sy Jo s8ERI} OS-SS0JO pue Juswabeuew (sOS) s1s8lqo aayddes ssoid Ol dd‘'3'‘s [eg] aayddes
SUEZI) YJOMIBU JUBIDIYD IO} SHUNYD BZIS-Paxl) JO UOND3||0D &
Se pedouAs pue palols are s18lgo awayds Buluoisian Sy uo
"1asn ay) Afjal ose sjapow Adu83ISISU0D €'SI0108A UOISISA [N} JO peals oV ‘ dd
paAjosanlfiHe |un 3|ge) 101u0d Sjeedas e ul palols aJe SPIJUCD! FIaguinu UOoISIaA 10edwod Sasn Yydiym awayds Buluoisian oO+1/'3‘o's x[0g] equis
©lep Isjsuel) 0} moy
UOIIN|QSAILIOD puB UORBZIUOIYIUAS 10} Suoisian moi-Jad suoddngug uaym uo Bumas Joj suoneoldde 01 sedualsjald apinoid 1 dd ‘3 [ey] Azz)
vV
‘¥d ‘ ad
uoiezIu0JYdUAS Inoyum pajepdn aq ued s1gyd |uoneliouodal ealdal uo snsuasuod alinbal Jou op s1ayd s1aydd |‘'s ‘D03 [8/] obipu|
dd ¢
uoIIeZIU0JYIOUAS INoyIM patepdn aq ued s]gyd |uoneliouodal ealjdal uo snsuasuod alinbal Jou op s1ayDd s1aydD | g4 ‘0 ‘3 [6S] pnojouims
2019ad abueyoxa Ho| asn suonepifeaul Jo sweains Buipuas 1o}
sonuewsas ovads-uonealdde jepagioid sy ‘sabessaw Apog palapioun "z pue suonepljenu] [TREe)"2
BuIp1029RIgUOD B1M -B11IMm Buinjosal pue Buoslap Joj 9JelSIYp SWeallS palapio Ajlesned T uopediunwuwod jo sadAl omi O |'dd ‘D0'‘s +[z] uoneoydas |10vyd
uonnjosal renuew Buipuabinosal WaISAS pue Yipimpueq Jo asn [ediwouods Bupfew Joy
SUOISyBZq 310]S 10 Aj[ediewone 1 9A|0Sal Jaylia pue 121jjuod ayl | apgisads-uoieziuoiyduAs 1oedwod et Aenbuls abpajmous
PpafBw suoisian BuidIIUO Ylo0g S109|9S JaYl} 9SOUM 921A8p Augenjuang jo anbiuyodal pue Aousisisuod Jayy renuang asn O | IL'¥9d ‘43 <[, T] sAsoiquid
‘uorrew.ojul
$aA|||N} B pUe J19AJ0S3I-91d)I9Aj0Sal 101ju0d aseyd om) aspapasau ayl Ajuo 01 sabueyoxa ay Jiwi| 0 Boj arepdn pauipoN T O |I1LYd ‘3 «{e/] annoadsiad
swiyiobe oioads-uoneandde Buisn (Ddd0) |1ed ainpasoid ajowal pananb
Ag Jonfo| [ansj-uoneoldde Ag papiroid si Aduaisisuod 10alg@ue (soay) s1oalgo odlweulp ajgeredojas Buisn Aem om) T 0 oY ‘- [89] 1anoy
uoinnjosal [aAs] uonealjddy j090104d abueyoxa Ho Aem om| 0 ‘L TE [7] noAeg
uonN|0Sal 101)JU0D [9A3] WBISAS Dd¥ U0 paseq syoeq|ed asn o) dd' 3 *[g] epoD
uonnjosay 191U0D 10901014 JUAS nH dIND MlomauwelH

subisap aoualaal Jo Alrewwns Al 3719V.L

61pP age

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Sméeand Applications,

Vol. 9, No. 12, 2018

92Jnos-uado :y

‘pasn S|oquIAS JO 1SI| 81 10} |-3]qe] 89S 810N

'01607 ssauisng yum pajuswajdwi ag ued
Il Juswabeuew 101UOD WOISND "AlUM e pawlopad eyl ualo

R S109|Ja1 puddoeq Byl Ul erep ayl eyl saldwi ydiym ‘ Suim ov
|3 Wsiueydaw Jneyap e Juswajdwi puaxdeq pue saleldl] ayKjuo sannus parepdn pue mau Jo JUAS AJuo Smojje JUAS elag O |‘'dd ‘3 ‘s [99] Aanury
uonN|oSal 101)}U0d paseq dweisawi] uolBIUBWINIOP JO Xoe| pue |02010id JuAs Arelaudold 0 yd ‘3 [g9] aseqali4
92IN9p B U0 Blep NOSC
S|re1ap 101JU0D UO paseq wayl | [eaenk pue xapul ‘a101s 01 (a)qiredwo9-j0o0104d-uoneoldal [e9]
9A|0S3J puBIBL0D 3y) 10319p 0] Aljigisuodsal s,uoneoljdde syl s11| [g@yonod syoedy ue) ouks juepnoj) a8sn suoneoljddy 0 dd ‘I [921A8S pNnojD 3JIqON Xiwan|g
“Jajsuel
uonN|oSaep JO JUNOWE Y} [eWIUIW O} pue JaISe} 10} Saal) 3p|aN pue
101pmsisse-uoneoldde pue Buluoisian 198lgo jo asn sayew 1] ojom (uoneziuoiydsuAs eoldas) Adonua-nue ue suswalduw] 0 yd ‘3 [g] oweuAq uozewy
101JUOD BY} BAj0Sal 0} papaau S| 2160] UoNN|oSal Janareym
lagbjued J1asn pue plodal Bunoljuod Byl JO SUOISISA JUBIBYIP ‘parepdn 1 awin s
aUp18aD Jey) S108lgo yum apod Jo4l8 3yl sulnial JaAIaS pnojTeYy) aduls sabueyd syl Ajuo 1o} yoia) 01 uoddns s|dy IMpNoiD 0 3'‘s [2¥] wpno|D yum pnojdi
* Bumiwisuesy uaym
Buipoouas eyap Buisn Aq erep pabueyoxa Jo Junowe ay) saonpay
SIOIIJUOD PIOAR puR YUME|D [eIaASS Olul J|ds ale Jey) uey Jabie| saji4 "giAy 01 dn
sabloajop 0] pasn Jaluapl uoisiAal anbiun e sey erep elaW 3| 9ZIS YIM Blep JO Junyd e si WwalsAs ayl ul 19alqo diseq ayl 0 MY [81] xoqdoig
uonn|osay VIU0D 1090]01d JUAS nH dND yJomawelH

abed snoinaid woly panunuod — Al 319VL

611P age

www.ijacsa.thesai.org

