
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

195 | P a g e

www.ijacsa.thesai.org

A New Task Scheduling Algorithm using Firefly and

Simulated Annealing Algorithms in Cloud Computing

Fakhrosadat Fanian

Department of Computer

Engineering, Kerman Branch,

Islamic Azad University,

Kerman, Iran

Vahid Khatibi Bardsiri

Department of Computer

Engineering, Bardsir Branch,

Islamic Azad University,

Kerman, Iran

Mohammad Shokouhifar

Department of Electrical

Engineering, Shahid Beheshti

University G.C.

 Tehran, Iran

Abstract—Task scheduling is a challenging and important

issue, which considering increases in data sizes and large volumes

of data, has turned into an NP-hard problem. This has attracted

the attention of many researchers throughout the world since

cloud environments are in fact homogenous systems for

maintaining and processing practical applications needed by

users. Thus, task scheduling has become extremely important in

order to provide better services to users. In this regard, the

present study aims at providing a new task-scheduling algorithm

using both firefly and simulated annealing algorithms. This

algorithm takes advantage of the merits of both firefly and

simulated annealing algorithms. Moreover, efforts have been

made in regards to changing the primary population or primary

solutions for the firefly algorithm. The presented algorithm uses

a better primary solution. Local search was another aspect

considered for the new algorithm. The presented algorithm was

compared and evaluated against common algorithms. As

indicated by the results, compared to other algorithms, the

presented method performs effectively better in reducing to

make span using different number of tasks and virtual machines.

Keywords—Firefly; make span; simulated annealing; task

scheduling; cloud

I. INTRODUCTION

Cloud computing has recently been introduced as a new
technology for users. From a historical perspective, the first
computers used were those of the first generation, mainly the
mainframes. As time went by, these computers became smaller
with higher processing power until personal computers were
developed and distributed amongst all users. Next, the
technology of networks providing higher processing power
emerged by connecting a few small personal computers.
However, processing requirements increased exponentially and
the need for bigger computing systems became crucially
essential.

Thus, smaller networks were privately joined to form
bigger networks across the internet. By then, millions of users
had access to the internet mostly never using their computers
processing power to its full capacity and preferring to give
away the idle processing time of their computers to be used for
computational tasks. Therefore, many small computational
resources were connected; however, it was not possible to
completely use these sources within the created network, since
these computers were not purposefully created to handle
commercial applications. This led to the establishment of a

new approach. An approach in which the details were hidden
from the user and users did not need to allocate or control
infrastructural cloud technologies they were using [1].

In layman’s terms, cloud computing was a new user-driven
model based on users demands with easy access to flexible and
configurable computational sources such as networks, servers,
storage areas, practical applications, and services, such that this
access is rapidly made with the minimum need for resource
management or intervention by the service provider. In
general, cloud-computing users are not proprietors of the cloud
infrastructure, but rather rent these services from third parties
in order to avoid large costs [2]. These users utilize the existing
resources in the form of services and only pay for whichever
sources they are using [3]. Like any other public service, the
costs are based on the amount of service the user requires [4].
Hence, considering that hundreds of people make use of virtual
machines, manual allocation of computational sources for
different tasks is very troublesome in cloud technology [5].
This highlights the need for an efficient algorithm for task
scheduling in cloud environments. This scheduler must be
consistent with environmental changes and change in task
types [6]. At any moment, millions of users are demanding
cloud resources. Scheduling this number of tasks is a serious
challenge in cloud processing environments, especially since
allocation of optimized resources or task scheduling in clouds
must be done in accordance with optimized number and need
of systems within the cloud environment so as to maintain the
clouds integrity. On the other hand, this scheduling must be
done in a way minimizing energy consumption within the
cloud. Ergo, this study tries to present an efficient algorithm for
task scheduling in clouds using the combination of both firefly
and simulated annealing optimization algorithms. This study is
organized as follows: Section II reviews related and previous
works. Section III discusses and presents a new method.
Section IV contains the results of the presented algorithm, and
finally Section V gives a conclusion of the entire study.

II. REVIEW OF LITERATURE

Cloud computing is currently made up of various aspects,
making it a challenging subject. Thus, many researchers have
made efforts to investigate the various aspects of cloud
computing [7] and have tried to make virtualization and
automation technologies focus on improving services in
clouds. In this regard, task scheduling and reducing energy
consumption in clouds is a very challenging issue for these

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

196 | P a g e

www.ijacsa.thesai.org

environments. Kusic [8] investigated the issue of energy
management in virtual heterogeneous environments and used
Kalman filters as a method complying with system demands
and as a means for prediction and actual implementation.

Kalman filters are used for estimating future demands in
order to predict system status and allocate resources
accordingly. On the other hand, some researchers focused on
the effects of scheduling virtual machines on I/O virtual
performance and emphasized on monitoring optimization for
better I/O performance. For instance, Ongaro et al. [9] studied
the effect of virtual machine observer on performance and
presented an idea for arranging processors in an executional
queue based on remaining and current value. They ultimately
presented an optimization algorithm for scheduling even I/O
distribution. However, this scheduling procedure did not take
into account the workload and the reallocation of virtual
machines. In [10], Kim presented a task-aware scheduler with
an emphasis on developing I/O performance.

This scheduler did not consider the heterogeneous
workload and variety of weights only focusing on I/O
performance. Liao [11] presented a scheduler for scheduling
real time applications for supporting respond time, and instead
of placing the processor at the end of the executive queue, this
method compute the state in which the virtual processor is
inserted based on its delay. Goiri [12] presented a task dynamic
scheduling policy for allocating informed sources at cloud data
centers. The presented scheduler worked to stabilize workload
by connecting large tasks of individual devices with necessary
hardware, in order to maintain service quality. In other words,
these methods reduced energy consumption at data centers
turning off servers. Wood [13] presented a virtual machine-
driven scheduling policy based on using resources including
processor, memory, and subnet components. However, instead
of optimizing and scheduling operational energy, his study
mainly focused on developing an algorithm for avoiding local
traps. Dorigo et al. presented the ACO algorithm [14]. The
ACO was a random search algorithm, which used positive
feedback and followed actual ant colony behavior. In [15] this
algorithm was used to allocate optimized sources for tasks in a
dynamic cloud environment in order to minimize make span.

Liu et al. [16] worked on a scheduling algorithm based on
genetic and ant colony algorithms. They tried to make use of
the advantages of both algorithms. This algorithm uses the
global search in genetic algorithm in order to reach the
optimized solution faster. It also utilizes initial values for
pheromones in the ACO algorithm. Guo et al. [17] used a
formulated particle swarm optimization (PSO) model for
minimizing process costs. They also tried to use crossover and
mutation functions of the genetic algorithm along with the PSO
model. Lakro et al. [18] investigated various variables and their
optimization in cloud computing environments. They tried to
present a multi-variable optimization algorithm for scheduling
and improving performance of data centers. Jia et al. [19]
investigated scheduling of various tasks of different sizes on a
set of parallel batch machine and presented a meta-heuristic
algorithm based on max-min and ant system for minimizing
make span.

III. METHODOLOGY AND SUGGESTED ALGORITHM

Cloud computing is one of the newest technologies today,
which allows users to send their requests to clouds and pay a
certain amount of fees based on the service provided. On the
other hand, cloud environments are in fact homogenous
systems suitably storing large applications and data for
services. Considering this, scheduling of these data and large
applications in these systems is of great importance. The
present study tries to present a new algorithm based on firefly
and simulated annealing algorithms called FA-SA in order to
schedule tasks in clouds. The details of the suggested
combination are expressed below. The general framework for
this study is shown in Fig. 1.

Fig. 1. General framework for the study.

A. Problem Statement

The allocation of tasks to virtual machines in cloud
computing systems is a problem, in which m number of tasks,
V= {t1, t2, …, tm } are to be allocated to certain virtual
machines. In this study, the total number of tasks are randomly
selected from 10 to 100 tasks and categorized into three
different data sets with different number of virtual machines.
The tasks are made randomly. Also P= { v1, v2, … , vn } are the
n virtual machines used. All systems are the same, meaning
tasks are performed in a homogeneous environment.

B. Possible Solutions

This study uses a combination of firefly algorithm (FA) and
simulated annealing (SA). The feasible solution in this study is
a string of m characters, where m is the total number of tasks.
According to (1), if task i is allocated to a virtual machine, j,
the ith place in the relative string, has a value of “j”. 20 virtual
machines are considered for all m tasks. A feasible solution for
the problem is shown in Fig. 2.

Presenting the FA-SA

Computing make span

Configuring three random data with

different VMs and tasks

Comparison of the suggested algorithm with FA,

Min-Min, Max-Min, and SA algorithms

Results

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

197 | P a g e

www.ijacsa.thesai.org

M

M 7 6 5 4 3 2 1

7 14 6 2 8 17 1 13 A Solution:

Fig. 2. A feasible solution: for example, the first task is given to machine I3

and the second task is given to machine 1.

C. Objective function in the Suggested Algorithms (FA, SA

and FA-SA)

As previously mentioned, an objective function is needed
for all algorithms in order to schedule tasks and minimize
amount of make span. Task scheduling is an optimization
problem in which tasks are to be allocated to sources at certain
times. In other words: n tasks, j1, j2, …, jn, with different sizes
are to be allocated to m identical scheduler machines such that
make span is minimized. Make span is defined as the total
amount of time required to perform all tasks (after all tasks
have been done). Recently, this problem has been introduced as
a dynamic scheduling problem, in which for every task, the
dynamic algorithm must use the existing information to make a
decision before the next task comes. This is one of the most
famous dynamic problems and the first for which a competitive
analysis was presented by Graham in 1966 [20].

D. Overall Stages of Allocating Tasks to Virtual Machines

using the Suggested FA-SA Algorithm

Evolutionary algorithms are generally based on population
and make use of a very suitable global search strategy. The
firefly algorithm [21] was used in this study. This algorithm is
a meta-heuristic algorithm inspired by the behavior and motion
of fireflies in nature. This algorithm is similar to other
population-based algorithms and computes the optimized
solution (or near to optimized) in an iterative manner. The
algorithm starts by performing a search procedure in a
randomly developed population. Each member of the
population (location of each firefly in the search space) is a
possible solution for the problem, which is shown in Fig. 2
according to (1). Each iteration in the FA algorithm has two
main stages: Stage 1, evaluating the suitability of the solutions
and Stage 2, updating the population (establishing a new
population). These two stages are continuously performed in
iteration until the termination criteria of the algorithm is
satisfied.

The termination condition in this study is the completion of
all tasks. The FA algorithm is a population-based algorithm
with the ability to perform a very suitable global search since it
has a very high convergence rate and each firefly tries to find
the best state individually; thus, it avoids local optimums and
searches for the global optimum [22]. On the other hand, the
SA algorithm has a very convenient local search procedure. It
is for this reason that both of these algorithms were combined
in this study to form the FA-SA algorithm in order to benefits
from the advantages of both of these algorithms for performing
a better scheduling of tasks in clouds.

In the presented method, the FA algorithm initiates first in
order to perform a global search in the search space. After the

FA algorithm, the SA algorithm is executed to perform a local
search near the previous solution provided by the FA
algorithm. In other words, the initial population for the SA
algorithm is not selected randomly, rather it gets the value
provided by the FA algorithm which is in fact the optimum
value provided by the FA algorithm. The general flowchart for
the suggested method is shown in Fig. 3. The stages of the
suggested algorithm will be explained in more detail in the
following section.

a) Producing a random initial population for the FA

algorithm): As previously mentioned, the first stage for all

evolutionary algorithms is producing initial solutions, which

are mostly done randomly. The initial solutions for the FA

algorithm in this study are produced considering the following

regulations:

1) Perform the following stages for m iterations (where m

is the total number of tasks): find the virtual machine(s) with

the least termination time (since the data are random multiple

machines may have the same value).

2) Perform the following stages for m iterations (where m

is the total number of tasks): find the virtual machine(s) with

the least termination time (since the data are random multiple

machines may have the same value).

3) If a virtual machine is found, select the virtual

machine, otherwise randomly select a virtual machine with the

least termination time (since data are random multiple

machines may produce the same value).

4) Search the initial data set (containing tasks and virtual

machines) and find the virtual machine selected in stage 2 and

choose the task with the least time from the unallocated tasks

for that machine.

5) If a task exits with the least amount of time, select that

task; otherwise, randomly select a task.

6) All tasks are assigned?

7) no, go to stage 1, otherwise terminate.

In other words, each task is allocated to a virtual machine
according to the regulations mentioned above. It is worth
noting that since the data sets of this study are random in nature
and according to the regulations, random selection is
performed two times, the initial population or rather the initial
solutions are different for each iteration, though due to the
nature of the regulations, these initial solutions are near
optimum.

b) Competency assessment for produced solutions: The

solutions produced by the FA algorithm are evaluated in each

iteration after the population has been updated. This evaluation

works on the basis of the objective function. In order to

evaluate each member of the population (each firefly),

allocated tasks for each machine are considered first. Next,

execution time on each machine is computed and finally

termination time for all tasks are computed.

c) Updating population in the FA Algorithm: The firefly

algorithm was presented by Yang [23] and is inspired by the

motion and behavior of fireflies in nature. Fireflies produce

short and rhythmic lights. These rhythmic lights, light radiation

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

198 | P a g e

www.ijacsa.thesai.org

rate, and distance are what make two fireflies attract each

other. Light intensity at a distance of r from the light source has

a relationship with the reverse squared amount of distance. In

the firefly algorithm, light can be considered as the objective

function to be optimized. In short, the firefly algorithm is based

on the following three principles:

1) All fireflies are unisexual and each firefly attracts the

other firefly despite their sexuality.

2) Attraction of fireflies is proportional to their radiance

such that the firefly with less light intensity is attracted to the

one with higher light intensity, and if there is no firefly with a

higher light intensity in the locality, fireflies move randomly.

3- The light intensity of fireflies is determined as the objective

function [24], [25]. In FA algorithm, the location of each

firefly in m-dimension space determines a solution for the

optimization problem, where m is the number of optimization

variables (total number of virtual machines). Considering that

fireflies’ location is defined in a continuous space, this study

considers the location of each firefly within the (0,n] range,

where n is the total number of machines. Therefore, each

dimension value for each firefly is a value from 0 to n. In each

iteration of the evaluation stage, each dimension for each

firefly is rounded up to the nearest natural number that is

bigger than the current number.

Therefore, evaluation of fireflies takes place in a discrete
space. However, fireflies’ motion and attraction are done
continuously. After determining the time for the solution of
each firefly using relative objective function, radiance of each
firefly i is computed using (2) (since radiance in this algorithm
denotes higher competency, every firefly with a lower
objective function has a higher), where
 and denote error rate (objective
function) and radiance for the ith firefly, respectively. Each
iteration selects fireflies with the highest radiance. Then, each
of the remaining fireflies moves towards the nearest radiant

firefly. The distance between firefly i and firefly j is computed
by (3):

 ‖ ‖ √∑

where xi and xj are the locations of the ith and jth fireflies,
respectively. d is the number of optimization variables, which
in this case is equal to the total number of tasks. Movement of
firefly i towards firefly j is formulated as (4). The second
expression in this statement shows the attraction if firefly i
towards firefly j and the third expression shows a random
movement in the attraction procedure. α and β are two static
variables that configure the effect of the two expressions when
firefly i moves. η determines the way fireflies move and is
usually selected between 0 and infinity.

 ()

d) Addition of local search to the FA algorithm: Three

types of local searches were added to the firefly algorithm in

this study, where each type is used with a probability of 1/3 for

each iteration (generation). These searches include exchange

mutation, inverted exchange mutation, and a suggested local

search called hybrid max-min to exchange (HHME). These

procedures are explained in more detail in the following

section.

 Exchange mutation: In this procedure, two machines are
randomly selected and their tasks are exchanged [26].
Fig. 4 shows the search procedure used in the proposed
algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

199 | P a g e

www.ijacsa.thesai.org

Fig. 3. General flowchart for the FA-SA algorithm.

Determining the optimum

solution for allocating tasks to

machines

Save the best solution from the

beginning to the present

Evaluation of cost function (E
current

)

Generation of (solution
new

) in the

neighborhood of (solution
current

)

Stopping

criterion

- If E
new

 < E
current

: Solution
current

 solution
new

- If E
new

 > E
current

 and rand < PW: Solution
current

 solution
new

- If E
new

 > E
current

 and rand > PW: Solution
current

 solution
new

Adaptive temperature updating

 S
to

p

Evaluation of cost function (E
new

)

Initiation

Database formation including: number of tasks and

virtual machines homogenous

Storing the

optimum solution

since initiation

Determining parameters

for the FA algorithm

Producing a random initial

population: based on regulations

mentioned

Allocating tasks to different

virtual machines for each

member of the population

Determining the

objective functions for

each member

Checking

termination

condition

Updating the population

and performing a local

search

Continue

 S
to

p

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

200 | P a g e

www.ijacsa.thesai.org

7 4 1 0 2 6 8 6 5 3 Before mutation:

7 8 1 0 2 6 4 6 5 3 After the mutation:

Fig. 4. Search procedure used in the suggested algorithm, before exchange

mutation (current solution) and after exchange mutation (new solution).

 Inverted exchange mutation: two machines are
randomly selected and their tasks are inverted [26].
Fig. 5. shows the search procedure used in the proposed
algorithm, before inverted exchange mutation (current
solution) and after the inverted exchange mutation (new
solution).

7 4 1 0 2 6 8 6 5 3 Before mutation:

7 4 6 2 0 1 8 6 5 3 : After the mutation

Fig. 5. search procedure used in the suggested algorithm, before inverted

exchange mutation (current solution) and after inverted exchange mutation
(new solution).

 Hybrid max-min to exchange (HMME): In this
procedure, virtual machines with the highest and lowest
value of termination time are selected and; 1) a
minimum task from the machine with the highest
termination time is transferred to the machine with the
lowest termination time or 2) a task is randomly
selected from the machine with the highest termination
time and transferred to the machine with the lowest
termination time or 3) a maximum task from the
machine with the highest termination time is transferred
to the machine with the lowest termination time.

e) Local search using SA algorithm: the simulated

annealing, presented in 1983 [27] algorithm, is an optimization

algorithm that uses local search. The gradual annealing

technique is used by metallurgists in order to reach a state

where the solid material is sorted properly with minimized

energy. In this technique, the substance is placed at high

temperature then cooled down gradually. During this

algorithm, each state s in the search space is similar to a state

of a physical system and the E(s) function which must be

minimized is similar to the internal energy of the system in that

specific state. The purpose of this procedure is to transfer the

system from its initial random state to a state where the system

has the lowest amount of energy.

For an optimization problem, the algorithm starts with a
random initial solution and gradually moves towards
neighboring solutions in an iterative manner. In each iteration,
if the neighbor solution (solution

new
) is better than the current

solution (solution
current

), the algorithm selects the former
solution as the new current solution. Otherwise, the algorithm
selects the new solution with a probability of of
 , where is the difference
between the objective function value of the current solution
and that of the neighboring solution and T is the temperature
variable. This algorithm iterates for each temperature, and

gradually decreases the temperature. The temperature is
initially high so that the possibility of choosing worse solutions
is high. However, with the gradual decrease in temperature, the
possibility of choosing worse solutions decreases and better
solutions are selected. Therefore, the algorithm converges to a
proper solution. As seen in Fig. 6, in this study, random
changes in one dimension of the solution have been selected
for local search. The possibility for performing this procedure
is defined as Pm, where the value of each dimension in the
current solution changes with the probability of Pm.

9 7 4 1 0 2 8 6 5 3 : Before mutation

9 8 4 1 0 2 7 6 5 3 : After the mutation

Fig. 6. Local search in the SA algorithm, before exchange mutation (current

solution) and after exchange mutation (new solution).

IV. RESULTS

The suggested FA-SA algorithm was simulated in
MATLAB and was compared with three data sets and the
following algorithms: min-min, max-min, firefly, and
simulated annealing. Comparison results are provided below.

A. Datasets

Three different datasets were randomly selected in this
study considering that the minimum and maximum numbers of
tasks were 10 and 100, respectively. The number of tasks and
machines were chosen randomly such that the first dataset,
name data1, contained 100 tasks and 8 homogeneous virtual
machines randomly selected according to the mentioned
criteria. Detailed specification of these three datasets are
provided in Table I.

TABLE I. SPECIFICATIONS OF RANDOMLY SELECTED DATASETS

Max_task Min_task
Number of

VM
Number of

task
Type data

100 10 8 100 Data1
100 10 20 200 Data2
100 10 20 500 Data3

B. Parameter Configuration for Optimization Algorithms

Configuration circumstances for the FA, SA, and FA-SA
optimization algorithms are shown in Table II. As can be seen,
considering that SA is a single-population algorithm, the
number of iterations in SA is more than that of FA and the
circumstances for the FA-SA algorithm are a combination of
those related to FA and SA, since the final solution of FA
algorithm is used as the initial solution for the SA algorithm.

C. Evaluation using Makespan

This section compares the FA-SA algorithm with SA, FA,
min-min, and max-min algorithms based on objective function
for computing and minimizing make span. Fig. 7 shows the
evaluation results of FA-SA and other algorithms on the data1
dataset. As it is observed, since workload and number of
virtual machines is lower compared to other datasets, all
algorithms, except max-min, showed a similar make span value
and the suggested algorithm outperformed other algorithms in
reducing make span. It is worth mentioning that all results were

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

201 | P a g e

www.ijacsa.thesai.org

based on 10 iterations of the algorithms and were expressed as
mean values.

TABLE II. CONFIGURABLE PARAMETERS FOR FA AND SA ALGORITHMS

Algorithm (Value)

FA-SA SA FA Parameter

200 200 FA

50 50 FA population

0.05 0.05 FA alpha

2 2 FA beta

0.001 0.001 FA gama

500 500 SA Max_iter

0.001 0.001 SA T_initial

0 0 SA T_final

Fig. 7. Comparison of scheduling algorithms on the data1 dataset.

Results of computing make span using the suggested
algorithm on the data2 dataset indicate that the FA-SA
algorithm was more successful in minimizing make span
compared to other algorithms; thus, it can be said that the FA-
SA algorithm also creates a good workload balance on virtual
machines. Complete results of this comparison are shown in
Fig. 8.

Fig. 8. Comparison of different scheduling algorithms on the data2 dataset.

Fig. 9. Comparison of different scheduling algorithms on the data3 dataset.

TABLE III. MAKE SPAN RESULTS FOR EACH OPTIMIZATION ALGORITHM

ON ALL THREE DATASETS

Data3 Data2 Data1 Type algorithm

391 200 299 Firefly

388 185 298 Simulated annealing

369 164 291
Firefly& Simulated

annealing

381 174 304 Min-min

768 294 550 Max-min

0

100

200

300

400

500

600

make span

data1

0

50

100

150

200

250

300

350

make span

data2

0

100

200

300

400

500

600

700

800

900

make span

data3

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

202 | P a g e

www.ijacsa.thesai.org

The FA-SA algorithm was further tested on the data3
dataset compared to the previous datasets, had a higher
workload. Results of this performance are shown in Fig. 9.
These results indicate once again that the FA-SA algorithm is
superior to FA, SA, min-min, and max-min algorithms in
reducing make span and balancing workload on machines.
Overall results of 10 iterations of the algorithms with mean
values are shown in Table III.

V. CONCLUSION

Cloud processing, parallel computing and development of
distributed computations are all new concepts in computer
sciences. One of the major issues in this regard known as a
major challenge and an NP-hard problem is the scheduling of
tasks in cloud computing. Task scheduling in cloud computing
have been discussed in regards to meta-heuristic algorithms
such as genetic, ant colony, and other algorithms. However,
this study aimed to combine two optimization algorithms,
namely the firefly and the simulated annealing algorithms in
order to create the new hybrid FA-SA algorithm. Also, a new
mechanism for producing initial population and a new method
for local search were presented. The suggested algorithm was
compared with firefly, simulated annealing, min-min, and max-
min algorithms. Results indicated that the FA-SA algorithm
can perform much better in reducing make span in different
scenarios with different numbers of tasks and virtual machines.

 For future works, we will try to focus our attention on
energy performance and resource allocation in these systems.

REFERENCES

[1] M. Miller, "Cloud computing: web based applications that change the
way you work and collaborate online", Que Publishing, 2008.

[2] Y. Gao, H. Guan and Z. Qi, et al., "A multi-objective ant colony system
algorithm for virtual machine placement in cloud computing", Journal of
Computer and System Sciences, Vol. 79, pp. 1230 –1242, 2013.

[3] K. Danielson," Distinguishing cloud computing from utility computing",
(http:/ / www. ebizq. net/ blogs/ saasweek/ 2008/ 03/
distinguishing_cloud_computing/), 2008.

[4] J. Beliga, R. W. A. Ayre and K. Hinton, et al. "Green cloud computing:
balancing energy in processing, storage and transport", Proceedings of
the IEEE, Vol. 99, pp.149-167, 2011.

[5] H. Qiyi and H. Tinglei, "An optimistic job scheduling strategy based on
QoS for cloud computing", Proceedings of the International Conference
on Intelligent Computing and Integrated Systems (ICISS), pp.673-675,
2010.

[6] F. Chang, J. Ren and R. Viswanathan, "Optimal resource allocation for
batch testing" ", Proceedings of the International Conference on
Software Testing Verification and Validation (ICST), pp.91-100, 2009.

[7] G. Lin, G. Dasmalchi and J. Zhu, "Cloud computing and IT as a service:
opportunities and challenges", Proceedings of the International
Conference on Web Services (ICWS), pp.1-5, 2008.

[8] D. Kusic, J. O. Kephart and J. E. Hanson, et al. "Power and performance
management of virtualized computing environments via lookahead
control", Cluster Computing, Vol. 12, pp. 1-15, 2009.

[9] D. Ongaro, A. L. Cox and S. Rixner, "Scheduling I/O in virtual machine
monitors", Proceedings of the Fourth ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, pp.1-10,
2008.

[10] H. Kim, H. Lim and J. Jeong, et al. "Task-aware virtual machine
scheduling for I/O performance", Proceedings of the ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, pp. 101-110, 2009.

[11] G. Liao, D. Guo and L. Bhuyan, et al. "Software techniques to
improve virtualized I/O performance on multi-core systems",
Proceedings of the 4th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS), pp. 161-170, 2008.

[12] I. Goiri, F. Julia and R. Nou, et al. "Energy-aware scheduling in
virtualized datacenters", IEEE International Conference on Cluster
Computing (cluster), pp. 58 – 67, 2010.

[13] T. Wood, P. Shenoy and A. Venkataramani, et al. "Black-box and gray-
box strategies for virtual machine migration", Proceedings of the 4th
USENIX conference on Networked systems design & implementation
(NSDl), pp.17-17, 2007.

[14] M. Dorigo and C. Blum, "Ant colony optimization theory: A survey",
Theoretical Computer Science Vol.344, pp.243–278, 2005.

[15] M. A. Tawfeek, A.El-Sisi and A. E. keshk, et al.," Cloud task scheduling
based on ant colony optimization", Proceedings of the 8th International
Conference on Computer Engineering & Systems (ICCES), pp. 64 – 69,
2013.

[16] C.Y. Liu, C. M. Zou and P. Wu, "A task scheduling algorithm based on
genetic algorithm and ant colony optimization in cloud computing",
Distributed Computing and Applications to Business, Engineering and
Science (DCABES), pp. 68-72, 2014.

[17] L. Guo, S. Zhao, and S. Shenet, et al. " Task Scheduling Optimization
in Cloud Computing Based on Heuristic Algorithm", Journal of
networks, Vol. 7, pp.547-553, 2012.

[18] A. V. Lakra and D. K. Yadav, "Multi-objective tasks scheduling
algorithm for cloud computing throughput optimization", Proceedings of
the International Intelligent Computing, Communication & Convergence
(ICCC), pp. 107 – 113, 2015.

[19] Z. H. Jia, C. Wang and J. Y. T. Leung," An ACO algorithm for
makespan minimization in parallel batch machines with non-identical
job sizes and incompatible job families", Applied Soft Computing,
vol.38, pp.395-404, 2016.

[20] R. L. Graham, "Bounds for certain multiprocessing anomalies", Bell
System Technical Journal, Vol.45, pp.1563–1581, 1966.

[21] X. S. Yang, "Firefly algorithms for multimodal optimization". Stochastic
Algorithms: Foundations and Applications, Vol. 5792, pp. 169–178,
2009.

[22] O. Jafarzadeh-Shirazi, "Task scheduling with firefly algorithm in cloud
computing", Science International, Vol.1, pp-167-171, 2014.

[23] S. Yang, "Nature-Inspired Metaheuristic Algorithms", Luniver
Press,2010.

[24] X.S. Yang, "Firefly algorithm, stochastic test functions and design
optimization," International Journal of Bio Inspired Computation, Vol.
2, pp. 78–84, 2010.

[25] X.S. Yang, “Firefly algorithm, levy flights and global optimization,”
Research and Development in Intelligent Systems, pp. 209–218, 2010.

[26] K. Deep, H. Mebrahtu, "Combined mutation operators of genetic
algorithm for the travelling salesman problem", International Journal of
Combinatorial Optimization Problems and Informatics, Vol. 2, pp. 1-23,
2011.

[27] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi,"Optimization by
Simulated Annealing", Science, Vol.220, pp. 671–680, 1983.

