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Abstract—In this paper the detection of the climate crashes or 

failure that are associated with the use of climate models based 

on parameters induced from the climate simulation is considered. 

Detection and analysis of the crashes allows one to understand 

and improve the climate models. Fuzzy neural networks (FNN) 

based on Takagi-Sugeno-Kang (TSK) type fuzzy rule is presented 

to determine chances of failure of the climate models. For this 

purpose, the parameters characterising the climate crashes in the 

simulation are used. For comparative analysis, Support Vector 

Machine (SVM) is applied for simulation of the same problem. 

As a result of the comparison, the accuracy rates of 94.4% and 

97.96% were obtained for SVM and FNN model 

correspondingly. The FNN model was discovered to be having 

better performance in modelling climate crashes. 

Keywords—Climate crashes; fuzzy neural networks; parallel 

ocean program; SVM 

I. INTRODUCTION 

Climate models play important role in the prediction of 
future climate changes. Tough climate models are offering 
huge benefits to the pupils. They are suffering from failure 
which is known as crashes or bifurcations. The failure in 
climate models is a result of their complex nature [1]-[4]. The 
scientific representation of this problem is too complex and 
huge, and the corresponding models involved are considered to 
be so complex [5]. Another important problem that has been 
characterised by the use of climate models is related to the 
software challenges. The software that is used for modelling 
climate takes time in changing climate conditions [6]. 

In the paper, the effects of ocean parameter uncertainties on 
climate simulation are considered. Modern tool such as 
uncertainty quantification (UQ) is used to solve simulation 
problems and improve existing climate models. Primary UQ is 
made up of parameters or coefficients whose values are always 
changing. However, Sternsrud [7] show that the changing of 
the parameters leads to difficulties and it became difficult to 
simulate the climate changes within required conditions. This 
can be solved by conducting the parameterization process 
separately [6]. The best way for climate simulation is the use of 
non-linear climate models. This can lead to huge changes in 
simulation output. But the models’ properties are restricted and 
model sometimes fails when the adjustable parameters are 
amplified using small perturbations [8]. Taking into account 
above-mentioned it is necessary to specify the reasons and 
causes for climate model simulation failure. It is also needed to 

define the conditions that can affect the effectiveness of 
climate models in simulating the climate changes.  

There are set of parameters that have impact on climate. 
The weather conditions are chaotic and affect climate 
simulation [9]. When the wind blows, the weather is always 
being in a state of disequilibrium and the climate conditions are 
being affected. Greenhouse gas forcing is major chaotic effect 
while volcanoes, sun and weather changes, etc. are smaller 
chaotic effects. These factors can strongly influence a 
simulated model. Watanabe et al. in [10] shows that climate 
modelling is not an easy problem as weather changes cause 
chaotic behaviour and are characterized by Lorenz non-
linearity. This non-linearity is due to unpredictable air 
oscillation behaviour. Randall et al. in his paper [11] evaluates 
the use of climate models and their ability to predict future 
climate changes. The study showed that climate variables such 
as precipitation have lower predictability than temperature 
changes. The paper [12] analyzed the use of climate data to 
forecast future climate changes using a General Circulation 
Model. The study uses stochastic and generalized downscaling 
methods to generate the weekly data. Using various simulation 
models, it is possible to predict potential climate changes and 
their implications. The paper [13] showed that the integrated 
climate models could simulate climate changes. The study 
evaluates environmental policies targeted at reducing 
emissions and combines uncertainty quantification methods to 
simulate carbon components. The study recommends that 
improvements in climate models be extended to cover carbon 
cycle feedbacks, inertia and climate sensitivity. The paper [2] 
used distribution models and showed that careful selection of 
climate models is an important process which must not be done 
arbitrarily. 

The climate models differ in complexity and success 
perspectives. These climate models consist of various 
subroutines, functions, algorithms (geologic, climate and 
biological), huge number lines of codes [11]. All these are used 
to describe conservative laws and equations related to 
momentum, energy and flow of matter within the earth’s 
reservoirs, between the land, oceans and atmosphere. All these 
ideas are based on views that climate models are not always 
reliable and effective, and are bound to fail [3], [14]. There are 
no concrete reasons and concurrences about failure in climate 
models. For instance, [15] mentioned that the use of numerous 
algorithms of anthropogenic, geologic, chemical and biological 
nature that are used in the simulation of climate-related issues 
and greenhouse gases, ozone, aerosols, Sulphur, nitrogen, and 
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cycles of carbon is the main reason of climate model failure. 
Such algorithms are used in a set of circumstances and time 
and have solid, liquid and gaseous elements [16], [17] showed 
that crashes occur at a high rate. Lucas et al. have considered 
predictions of climate models [18]. A research is required to 
add and refurbish existing information about crashes in climate 
models. Bifurcations or crashes are common in any situation 
irrespective of its complexity and went to establish that 
intermediate climate models are also prone to crashes. This 
study aims to examine and predict the failure of parameter-
induced simulation crashes in climate models. The accurate 
prediction of climate crashes is very important. For this 
purpose, in this paper, FNN is used to predict the failure 
probability and improve prediction results. The paper is 
organised as follows. Section 2 presents fuzzy neural networks 
used for detection of climate crashes. Section 3 presents 
simulation study. Section 4 gives conclusions. 

II. FUZZY NEURAL NETWORKS FOR DETECTION CLIMATE 

CRASHES  

The Fuzzy neural networks (FNN) model conducts a fuzzy 
reasoning process using the neural network structure [19]-[22]. 
Here, problem is to determine the accurate values of the 
parameters of the FNN model. This is obtained through 
evaluation of the error response of the designed classification 
system. TSK-type fuzzy rules are basically used for designing 
the fuzzy systems. TSK fuzzy rules include fuzzy antecedent 
and crisp consequent parts. These fuzzy systems approximate 
nonlinear systems with linear ones and have the following 
form: 

If x1 is A11 and x2 is A21 and … and xm is Am1   Then 

         ∑      
 
     

if x1 is A12 and x2 is A22 and … and xm is Am2 Then 

         ∑      
 
                                 (1) 

If x1 is A1n and x2 is A2n and … and xm is Amn   Then 

      ∑     

 

   

 

where xi and yj are input and output signals of the system 
respectively, i=1,...,m is the number of input signals, j=1…r is 
a number of rules. Aij are input fuzzy sets, bj and aij are 

coefficients. Fuzzy sets are applied for the description of Aij 
parameters of the antecedent parts of the fuzzy rules. 

The structure of FNN used for prediction of the climate 
crushes is given in Fig. 1. The input layer (block) is used for 
distributing of the coming xi signals. In next block the 
membership degrees of input signal for ach linguistic value are 
calculated. Linguistic values are represented by Gaussian 
membership functions that are characterized by the width and 
center parameters. 
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functions, correspondingly. These signals are inputs for the 
next rule layer. 

The output signals of the rule layer are computed through 
the use of t-norm min (AND) operation:

 

      ∏          ,      i=1,..,m, j=1,...,r            (3) 

where,  is the min operation. These j(x) signals are input 
signals for the output layer. The consequent layer includes n 
linear systems. In this layer, at first the values of the rules’ 
output are determined as  

        ∑      
 
                                         (4) 

The output signals of the rule layer are multiplied by the 
output signals of the consequent layer. The output of j-th node 
is calculated as                

After calculating yj, the output signals of FNN are 
determined as 

   
∑      

 
   

∑      
 
   

                                     (5) 

where, uk are the output signals of FNN, (k=1,..,n). After 
calculating the output signal, the training of the parameters of 
the network starts. The algorithm described in [23]-[25] is used 
for learning the parameters of FNN. 

 

 
Fig. 1. The structure of FNN based prediction system. 
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III.  SIMULATION 

In the paper, POP2 model is used to select ocean model 
parameters. These model parameters were subjected to 
different parameterizations on a sub-grid scale. The main 
emphasis behind such parameterization was to determine the 
resultant outcome of vertical and horizontal oceanic turbulent 
after simulation [18], [26], [27]. Table I provides details of the 
uncertainty ranges of the model parameters used in this study. 

The parameters are taken according to the [18]. These are: 
spatial anisotropic viscosity that was used to determine the 
horizontal momentum and was represented by the parameters 
13 to 18, isopycnal eddy-induced transport of the horizontal 
mixers that were for parameters 10 to 12, the parameters 7 to 9 
that can be used to simulate mixed layer eddies and 
submesoscale, and were used for the abyssal tidal mixing. 
Further prescriptions were K-profile parameterization 
associated with vertical mixing and convection and these 
corresponded to parameters 1 to 6. The examination of the 
ensembles was done in three different stages with simulations 
amounting to 180. The first and second studies were used to 
program machine learning algorithms so that they can track and 
analyze simulation crashes. The third study was conducted so 
as to determine their potential to forecast simulation crashes. 46 
failures were observed out of the 540 simulations that were 
done. The recorded failures were observed at different intervals 
of the integration phase. 18 POP2 parameter values were 
examined using a Latin hypercube method. This was also 
important as it resulted in the establishment of an ensemble. In 
addition, normalized log-uniform probability functions were 
also employed to represent the model parameters’ high and low 
values. 

Statistical data were collected as a result of 540 simulations. 
During simulation, 494 successes and 46 failures occurring at 
the various times were observed. During simulation, Latin 
hypercube method is used to sample the values of the 18 POP2 
parameters (Table I). The parameters of the model are 
represented with standard uniform and log-uniform probability 
distribution functions normalised in the interval [0,1],  

Using statistical data, the training of FNN was performed. 
The problem is the accurate prediction of failures. The 
fragment of data set is given in Table II. In the table, the data 
from 1 to 18 are the values of input parameters. The data of 
number 19 are the values of output, that are 1 is the success, 0 
is the failure.  

The data sets include 18 inputs and one output. FNN is used 
for prediction purpose. At first, the parameters of FNN system 
is initialised randomly, then gradient descent algorithm is 
applied for training. The training is carried out using 10 fold 
cross-validation approach. During the design of FNN 
prediction system training, evaluation and test results are 
obtained. During training, evaluation and test stages root mean 
square error and recognition rate are used to measure FNN 
performance. RMSE is computed as  



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N
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i
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                    (6) 

where i

d

i yy  and 
are the target and current output signals, 

the number of samples is represented by N. RMSE is applied 
for the training of the network. Accuracy rate is used to 
measure the performance of FNN using test data set.  

During training, the input data sets are fed to the FNN 
input. Using formulas (1)-(5) the output of the network is 
computed. On the output, the deviation of current output from 
target signal is determined. This value is used to determine 
RMSE. Using RMSE, the training of FNN system is 
performed. The training is performed for 500 epochs. The 
simulation is performed using 8, 16, 24 fuzzy rules (hidden 
neurons). Root mean square errors (RMSE) indicate the 
difference between the actual values and the predicted values. 
Fig. 2 depicts the plot of RMSE values of FNN based system 
for 500 epochs. The simulation results for three cases are given 
in Table III. In all of the cases of the fuzzy neural algorithm 
that were conducted, success rates were observed to be 
averaging high above 93.15% for 8 rules. The accuracy rate for 
16 rules 96.11%, for 24 rules 97.96% were obtained. The 
RMSE values for test data were 0.3607, 0.3146 and 0.2609 for 
8, 16 and 24 fuzzy rules correspondingly. The highest accuracy 
rate can be observed to be associated with the activity of 24 
rules with a success rate of 97.96% and is composed of 16 
neurons. The obtained results are obtained by averaging of the 
simulations.  

FNN with the 24 neurons was established to be the best 
model in terms of accuracy and this follows a recorded 
accuracy rate of 97.96% while model FNN with 8 neurons had 
the lowest accuracy rate of 93.15%. 

The performance of FNN classifier is evaluated using 
Sensitivity, Specificity and Precision. These factors can be 
computed using true positive, true negative, false positive and 
false negative parameters. The FNN classifier that correctly 
predicts successes and failures are denoted true positives (TP) 
and true negatives (TN), respectively. The classifier that 
incorrectly predicts current output failures and successes are 
denoted as false negatives (FN) and false positives (FP), 
respectively. Using these parameters we can determine true 
positive rate (TPR), true negative rate (TNR) and positive 
predictive value (PPV).  These variables are used to evaluate 
sensitivity, specificity and precision, correspondingly. Here,  

    
  

       
 ;       

  

       
 ;       

  

       
      (6) 

When classifiers are predicting all output values perfectly 
then the values TPR and TNR (or sensitivity and specificity) 
become equal to 1. The values of TPR, TNR and PPV for FNN 
classifier for climate crashes prediction are given in Table IV.    

For comparative analysis, the same problem is solved using 
support vector machine (SVM). Table V includes a fragment 
from the set of simulations. Six cases were used for the SVM 
algorithm with a 10-fold cross-validation and all the cases have 
attained accuracy rates that are above 91%. The highest 
accuracy rate of 94.1% can be noted to be in line with a 
quadratic SVM while the lowest rate of 91.5% is recorded for 
Fine Gaussian SVM and Coarse Gaussian SVM. The best one 
is Quadratic SVM, Accuracy with 10-Fold Cross-Validation is 
94.4%. 
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As shown in Tables III and V, the recognition rates of the 
FNN system with 16 and 24 rules are better than SVM.    

After training, the models’ performances are estimated to 
show which model has the best overall score. Such a score is 
termed the root mean square error (RMSE) on the validation set 
alternatively, it can be said to be useful in estimating the 

performance of the trained model on new data. Response plots 
were used to determine which model offers the best 
performance in terms of the predictability power. The decision 
criteria is to accept that the model is a good model and can 
forecast or predict the actual when the resultant distance or 
margin between the actual and predicted values is small.  

TABLE I.  CCSM4 OCEAN MODEL PARAMETERS  

 Description Module Scale1 (low, default, high) Parameter2 

1 
Ration of background diffusivity and vertical 

viscosity 
Vmix_kpp Log (4.0, 10.0, 20.0) Prandt1 

2 Max PSI induced diffusion  Vmix_kpp Log (0.1, 0.13, 0.5) Bckgrnd_vdc_psim 

3 Equatorial diffusivity  Vmix_kpp Log (0.01, 0.01, 0.5) Bckgrnd_vdc_cq 

4 Banda sea diffusivity  Vmix_kpp Lin (0.5, 1.0, 0.5) Bckgrnd_vdc_ban 

5 Base background vertical diffusivity  Vmix_kpp Log (0.032, 0.16, 0.8) Bckgrnd_vdc1 

6 Mixed diffusion coefficients Vertical_mix Log (1.0, 10.0, 50.0) x 103 Convect_corr 

7 
Convect_visc (momentum) and convect_diff 

(tracer) 
Tidal Log (2.5, 5.0, 20.0) x 104 Vertical_decay_scale 

8 Tide induced turbulence’s vertical decay scale Tidal Log (25.0, 100.0, 200.0) Tidal_mix_max 

9 Tidal mixing threshold  Mix_submeso Lin (0.05, 0.07, 0.01) Efficiency_factor 

10 Submesoscale eddies’ efficiency factor Hmix_gm Log (0.05, 0.03, 0.03) Slm_corr 

11 
Slm_r (redi terms) and slm_b bolus’ maximum 
slope 

Hmix_gm Lin (2.0, 3.0, 4.0) x 107 Ah_bolus 

12 Bolus mixing’s diffusion coefficient Hmix_gm Lin (2.0, 3.0, 4.0) x 107 Ah_corr 

13 

Ah_bkg_srbl (horizontal diffusivity within the 

surface boundary) and Ah (redi mixing’s 
diffusion coefficient and background) 

Hmix_aniso Lin (30.0, 45.0, 60.0) Vconst_7 

14 Variable viscosity parameter Hmix_aniso Lin (2, 3, 5) Vconst_5 

15 Variable viscosity parameter  Hmix_aniso Log (0.5, 2.0, 10.0) x 10-8 Vconst_4 

16 Variable viscosity parameter  Hmix_aniso Lin (0.16, 0.16, 0.02) Vconst_3 

17 Variable viscosity parameter  Hmix_aniso Log (0.25, 0.5, 2.0) Vconst_2 

18 Variable viscosity parameter  Hmix_aniso Lin (0.3, 0.6, 1.2) x 107 Vconst_corr 
1 Logarithmic and linear scales were applied for parameters whose ratios were between the range high/low ≥ 5 and high/low <5,  

2 Individual correlated pair of parameters were denoted by numbers 1, 7, 9 and 13 

TABLE II.  FRAGMENT FROM DATA SET 

No Input parameters’ values 

1 
2 

3 

4 
5 

6 

7 
8 

9 

10 
11 

12 

13 

14 

15 

16 
17 

18 

19 

0.8590    0.6060    0.9976    0.7834    0.4062    0.0414    0.1611    0.4153    0.1668    0.6556    0.5900    0.8819    0.9610    0.1725 
0.9278    0.4577    0.3732    0.1041    0.5132    0.6290    0.5488    0.8987    0.3530    0.4139    0.2937    0.4249    0.9769    0.0136 

0.2529    0.3594    0.5174    0.1975    0.0618    0.3034    0.1536    0.9318    0.9881    0.8053    0.4235    0.9032    0.8579    0.6234 

0.2988    0.3070    0.5050    0.4218    0.6358    0.8134    0.6544    0.9166    0.2871    0.1635    0.3298    0.1733    0.6150    0.5191 
0.1705    0.8433    0.6189    0.7421    0.8448    0.2228    0.1403    0.3991    0.5636    0.8619    0.4578    0.7910    0.6155    0.2545 

0.7359    0.9349    0.6056    0.4908    0.4415    0.9712    0.7966    0.0094    0.4027    0.9476    0.8298    0.4762    0.3528    0.3669 

0.4283    0.4446    0.7462    0.0055    0.1919    0.6098    0.4058    0.8463    0.3809    0.5466    0.4978    0.6812    0.8340    0.0557 
0.5679    0.8280    0.1959    0.3921    0.4875    0.6478    0.6626    0.6838    0.4792    0.4261    0.1594    0.9058    0.0951    0.5185 

0.4744    0.2966    0.8157    0.0100    0.3585    0.7379    0.0494    0.3973    0.0602    0.4171    0.9711    0.8284    0.2309    0.3713 

0.2457    0.6169    0.6794    0.4715    0.5515    0.4409    0.5785    0.8868    0.2365    0.9456    0.4923    0.0837    0.9548    0.8538 
0.1042    0.9758    0.8034    0.5979    0.7439    0.0360    0.2649    0.5224    0.2905    0.3254    0.0843    0.5206    0.5772    0.3470 

0.8691    0.9143    0.6440    0.7617    0.3123    0.6159    0.9592    0.6948    0.3918    0.6665    0.9743    0.0729    0.7835    0.9473 

0.9975    0.8452    0.7184    0.3628    0.6502    0.0175    0.6981    0.8865    0.2549    0.3743    0.9264    0.9481    0.5304    0.5973 

0.4486    0.8642    0.9248    0.9128    0.5223    0.9323    0.4674    0.4117    0.4884    0.1003    0.2954    0.9996    0.1752    0.4288 

0.3075    0.3467    0.3154    0.9780    0.0435    0.3293    0.6371    0.4811    0.0537    0.2133    0.8042    0.7285    0.5445    0.4014 

0.8583    0.3566    0.2506    0.8459    0.3767    0.9541    0.0113    0.9265    0.8622    0.2229    0.8708    0.2859    0.0814    0.8204 
0.7970    0.4384    0.2856    0.6994    0.2801    0.1354    0.1473    0.0264    0.4151    0.0073    0.5463    0.2109    0.7330    0.5996 

0.8699    0.5123    0.3659    0.4760    0.1323    0.2948    0.2138    0.0927    0.4871    0.4200    0.8849    0.8336    0.5314    0.1357 

0         1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000         0         1.0000 

TABLE III.   FNN MODEL RESULTS 

No. Neurons epoch SSETrain RMSETrain RMSEEvaluation SSETest RMSETest Accuracy 

1 8 500 635.8686 0.3617 0.3614 70.2851 0.3607 93.15% 

2 16 500 477.7429 0.31353 0.321350 53.4488 0.3146 96.11% 

3 24 500 333.2924 0.261875 0.261879 36.7607 0.2609 97.96% 
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Fig. 2. Plot of RMSE. 

TABLE IV.  FNN MODEL RESULTS 

No. Neurons Sensivity Specifity Precision 

1 8 0.93032 1 1 

2 16 0.96673 1 1 

3 24 0.97821 1 1 

TABLE V.  SVM RESULTS 

No. Types SVM 
Cross-

Validation 
Accuracy 

1 Linear SVM 10-Fold 93.1% 

2 Quadratic SVM 10-Fold 94.4% 

3 Cubic SVM 10-Fold 94.1% 

4 Fine Gaussian SVM 10-Fold 91.5% 

5 Medium Gaussian SVM 10-Fold 91.7% 

6 Coarse Gaussian SVM 10-Fold 91.5% 

IV. CONCLUSIONS 

The main emphasis of the study was to determine if there 
are any crashes or failure that are associated with the use of 
simulation models as well as conditions that can cause climate 
models to fail by determining the chances that POP2 
simulation will fail. For this purpose, the fuzzy neural network 
was applied to determine chances of failure of the models. The 
simulation crashes were based on the idea that they may either 
succeed or fail (binary problem) and failure probabilities were 
quantified using FNN based machine learning classification. 
The quantification process was based on the 18 model 
parameters and the simulations based on cross-validation 
techniques. Conclusions can be made that the occurrence of the 
crashes is as a result of several numerical reasons which are 
caused by changes in the combination of parameter values used 
in the simulation process. Based on the obtained accuracy rate, 
conclusions can be made that climate models have a high 
predictive capacity to simulate climate changes.  It can also be 
finally concluded that the fuzzy-neural network performs better 
in modelling climate crashes as compared to SVM. 
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