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Abstract—In this paper, the impact of the discretization 

techniques and the sampling time, on the finite-time stabilization 

of sampled-data controlled Linear Time Invariant (LTI) systems, 

is investigated. To stabilize the process in finite time, a discrete-

time feedback dead-beat controller is designed for the sampled-

data system. Checkable conditions on the approximate discrete-

time plant model and the associated controller that guarantee the 

finite-time stabilization of the exact model are developed. The 

trade-off between the discretization technique, the sampling time 

and the desired performances is illustrated and discussed. 

Results are presented through a case study. 
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I. INTRODUCTION 

Most real systems evolve naturally in continuous time, but, 
nowadays, modern control strategies are typically implemented 
through digital devices to meet high-demanding control 
performance specifications. For these purposes, different 
discretization schemes and numerical approximation 
techniques are developed [1]-[4]. The most cited methods 
include the Zero Order Hold (ZOH) technique, which is an 
exact sampling-data representation of the original continuous 
system, and numerical  approximations techniques [4], [5]. The 
ZOH is placed at the input of the considered process to hold 
the input signal constant until the next sample becomes 
available. However, very often exact solutions of the 
differential equations process are not available. In 
consequence, numerical approximation approaches turn out to 
be essential to yield accurate approximations of the real 
solutions [5], Euler approximation methods (forward and 
backward) are basic approaches of numerical integration [4], 
[5]. The Euler rule for discrete approximation of integral 
functions between two sampling instant gives an approximate 
area of a rectangle whose base is the sampling interval and 
whose height is the value of the function at the lower limit 
(forward) or final limit (backward Euler). This simple and easy 
to implement technique became a popular digital 
implementation method. The stability conditions and 
convergence of the Euler techniques have been developed for 
linear systems [3] and for some classes of nonlinear systems 
[6]. The main disadvantage of the Euler’s techniques is that 
either they overestimate or underestimate the integral. Tustin 
(bilinear, trapezoidal) approximation [7], [8] overcomes these 
disadvantages by taking the average of the limiting values of 
the integrand. As such, it treats the area between the two 
integration limits as trapezium. 

The problems of control design and performances analysis 
for linear and nonlinear dynamical systems [9]-[18] are still 
important nowadays. Three techniques are known in the 
literature for the digital controllers construction of continuous-
time systems: 1) Design of a continuous-time controller and, 
then, its discretization; 2) Discretization of the plant and 
construction of a discrete-time controller on the basis of the 
associated sampled-data model [19]; and 3) Direct digital 
controller design based on a continuous-time plant model 
without approximations [19]. Cited techniques show acceptable 
performances when the sampling is fast. But, the discrete 
construction controller method (b) does not need a fast 
sampling to maintain stability as it utilizes an approximation of 
the process ignoring the inter-sample system behavior. 

In practical engineering processes, the increase need of 
time performance criteria and exact time specifications of the 
dynamics behaviors has led to the development concept of 
finite-time convergence stability and stabilization [20]. 
Considered in the literature of dead-beat control and 
optimality, the capacity to force a dynamic control system to 
reach a specified target in a finite time called settling time, 
represents the main merit of the finite-time control. Finite-time 
stabilization techniques have attracted a great deal of attention 
and have become a heated research issue in control systems 
theory [21]-[24]. Early works on the topic developed relevant 
finite-time stabilization approaches for different classes of 
linear and nonlinear discrete-time systems. Researchers have 
investigated the finite-time stabilization of discrete time linear 
time-varying systems in [25], subject to disturbances in [26], 
with time-varying delay in [27]and uncertain and subject to 
exogenous disturbances in [28]. Finite-time stabilization issues 
of nonlinear plants have been investigated. Systems which can 
be represented by affine fuzzy systems were considered in 
[24], the class Lur’e type systems in [5] and uncertain systems 
in [29], [30]. Although the encouraging works in the field, 
investigations about the effect of the sampling technique on the 
system performance in term of stability and finite-time 
stabilization were not included. 

In this note we discuss important issues when selecting the 
sampled-data description in the context of a dead-beat control 
applied to LTI systems. The discussion is based on an example 
of a third order system that, from our point of view, can be 
understood in a common framework to select discrete-time 
models and synthesize dead-beat controllers. The treatment is 
limited for simplicity to the linear case but the extension to the 
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nonlinear case is possible, at least for some class of Lure-type 
systems, by considering sector bounded nonlinearities [23]. 

The remainder of this work is organized as follows. In 
Section II, the problem setup to be considered is introduced 
and previous results concerning the stability and the finite-time 
stabilization are recalled. In Section III, a discussion of the 
influence of the discretization techniques and the sampling 
times on the system performances is developed through a third 
order case study. Concluding remarks are drawn in Section IV. 

II. PROBLEM STATEMENT AND PRELIMINARIES 

In this section, the sampled-data system under 
consideration is introduced and the problem formally stated. 

A. System Description and Discretization 

Let’s consider the controlled sampled-data system S  of 

Fig. 1, in which 
CS denotes a continuous Linear Time Invariant 

(LTI) plant. Blocs (A-D), (DTC), and (D-A) designate the 
zero-order hold, the discrete-time controller and the ideal 
sampler, respectively, synchronized by the same sampling time 

T . We suppose that CS can be described by the thn  following 

differential equation: 

     1 1

1 0
:  

n nn n i n jc c

C i ji j
S y a y b u

  

 
       (1) 

and in the state space description by 

     

   
:   C

x t Ax t Bu t
S

y t Cx t

 




                  (2) 

( )u t   denotes the control signal delivered to the plant, 

( )y t   the plant’s measured output, 
(1) ( 1)( ) ( , , , )n T nx t y y y    the state vector and t  the time. 

c

ia  and 
c

jb  are constant parameters for 1,2, ,i n  and 

0,1, , 1j n  . A , B  and C  are known matrices of 

appropriate dimensions. 

It is desired to develop a state feedback control to the 
introduced continuous-time system in a discrete-time approach 
by sampling the continuous plant and applying a discrete-time 
controller. Using the sampler and ZOH, the continuous plant 
(2) is discretized to the following exact sampled-data 
representation 

D-A

Discrete-Time 

Controller

DTC

Continous-

Time Plant

SC

y(t)u(t)ukr(t) +

-
A-D

 

Fig. 1. Sampled-data controlled system. 

   1
:

k k k

SD

k k

x Fx Gu
S

y Cx

  



                        (3) 

Applying, now, the discrete-time state feedback control 

k k ku x Lr                                   (4) 

the closed-loop controlled system becomes 

  1
:  

k k k

k k

x Mx GLr
S

y Cx

  



                          (5) 

With 

M F G              (6) 

kx
, ky

, ku
 and kr  define, respectively,  x kT ,  y kT , 

 u kT  and  r kT ; k   . We assume that the state 

measurements kx
 are available at sampling instants kT  and 

the pair 
( , )F G

 is controllable. n nF  and G  are the 

discrete system matrices defined, respectively, by [4] 

0
,

T
AT AtF e G e Bdt                     (7) 

n

j     , 0,1, , 1j n   and  L    are the 

static gains controller. 

Finally, we suppose that the controlled sampled-data 
system (5)-(6) can be described by the recursive input/output 
scalar equation, as 

 
1

1

1 0

:  
n n

k n i k n i j k n j

i j

S y a y b r


     

 

                 (8) 

ZOH discretization approach leads to an exact sampled-

data model
SDS ; the continuous-time output of (2) is exactly 

recovered at the sampling instants, i.e.,    ky y kT . But, in 

many cases, analytical integration may be impossible or 
infeasible, in particular for nonlinear systems. Numerical 
integration techniques become essential to yield accurate 
approximations of the actual solutions. In that respect, forward 
Euler and Tustin are basic and well used approximations 
approaches. An approximate discrete-time state space model of 
(2) can be given by 

  1
ˆˆ

ˆ : k k k
SD

k k

x Fx Gu
S

y Cx


  



     (9) 

where, for forward Euler approximation, matrices F̂  and 

Ĝ are defined, respectively, by [3], [4] 

ˆˆ ,F I TA G TB                             (10) 

and for Tustin approximation, respectively, by [19], [31] 

  
1 1

ˆˆ ,
2 2 2

I A I A I A
F G B

T T T

 

     
         
     

    (11) 

The evaluation of the exponential and integral matrices (7) 
for the exact discretization technique, and the matrix inversion 
(11) for the Tustin approximation, are generally time-
consuming and may necessitate a high speed processor for real-
time implementations, especially for large scale systems. 
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Besides, the forward Euler approximation technique is a 
simpler and less costly representation. 

B. Finite-Time Stabilization and Problem Statement 

Stability property of the discretized LTI closed loop system 
(5)-(6) depends on the state matrix M  and the sampling time 

choice. Let us denote by ( )M  the spectral radius, i.e., 

( ) :M Max    is an eigenvalue of ( )M n n  matrix . 

Lemma 1. [32]  If ( ) 1M  , the eigenvalues of the matrix 

M  are located within the unit circle, then the system (5)-(6) is 
asymptotically stable. 

Considered as an advanced control design technique, dead-
beat control [33], [34] is developed in the context of finite time 
stabilization and finite settling time, which aims to perfectly 
tracking a step reference in a finite number of sampling 
periods. 

Definition 1. [35] A stabilizing controller of systems are 

said to be a dead-beat controller if the tracking output ( )y kT
 

settles down to zero in a finite number of steps dk N
 
and 

( ) 0y kT  ,  dk N  ; dN  is the settling step. 

Definition 2. [36] Consider a continuously working 
system. Then, the finite number of control steps is such a finite 
number of values n  of the sequence 

0 0 0{ ( ), ( 1), ... , ( 1)}U u k u k u k n     by which the system is 

transferred from an arbitrary initial state 0( ) 0x k   to the final 

state 0( ) 0x k n  , 
0k   . 

Now, let consider the discretized system described by  (8) 

such that for 1,2,i n  , 
ia  are expressed in terms of 

j , 

0,1, , 1j n  , and .T  

Lemma 2. [37] The n
th
 linear discrete-time system (8) is 

said to be stabilizable in n sampling time, if the gains 
j ,

0, , 1j n  , and T , are synthesized, such that k ny   
settles 

down to zero in n steps, that’s equivalent to setting 

( ) 0nF G    ( ( )F G  is nilpotent with the index n ), or 

equivalently, the 0ia   for 1,2,i n .
  

This note investigates the influence of the discretization 
method in the controlled system properties. The work is a 
continuation of the previous paper [23] in which the effects of 
a ZOH discretization on the stability and stabilization 
properties of linear and nonlinear Lure-type systems are 
considered. The aim of this paper is to investigate more 
discretization techniques, mainly, the forward Euler and the 
Tustin approximations, and study the impact of a numerical 
approximation on the control system (5) on the system 
properties in term of stability and finite-time stability. 

III. CASE STUDY 

In this section, we develop sufficient finite-time stability 
conditions of a controlled sampled-data third-order system via 
1) the exact solution; and 2) the discrete-time model 

approximations. Based on the continuous-time plant model, our 
main results specify checkable conditions ensuring that a finite-
time control stabilizing the approximate model would also 
stabilizes the exact model in finite-time. These conditions can 
be used as guidelines for controller design based on 
approximate nonlinear models. 

The main results described in this case study focus on the at 
sample response. 

A. Studied Third Order System Description and 

Discretization 

Consider the third order continuous LTI system configured 
as in Fig. 1, with the following plant transfer function: 

1 2

: ( )
(1 )(1 )

s

c

k
S F s

s s s 


 
          (12) 

leading to the following state space controllable form: 

1 2

1 2 1 2

0 1 0

0 0 1

1
0

A

 

   

 
 
 
 
 

   
 

,

1 2

0

0

s

B

k

 

 
 
 
 
 
 
 
 

, 

1

0

0

T

C

 
 

  
 
 

        (13) 

sk  is the static gain and 1  and 2  the constant times of the 

continuous-time process. The developed sampled-data models 
of (13) based on the ZOH technique, forward Euler and the 

Tustin approximations, are  : , ,SDS F G C ,   ˆ ˆˆ: , ,e e e

SDS F G C  

and  ˆ ˆˆ , ,t t t

SDS F G C , respectively, such that 

 
1 2

2 2

1 2 1 2 1 1 2 2

1 2 1 2

1 1 2 2 1 2 1 2

1 2 1 2

2 2 1 2 2 1

1 2 1 2

(1 ) (1 ) (1 ) (1 )
1

( )
0

0

d d d d

d d d d
F

d d D d

     

   

   

   

 

   

      
 

  
  
 

  
 

 
 
   

 

1 2

2 2

1 2

1 2

1 2

1 1 2 2

1 2

1 2

1 2

( )

1s

d d
T

d d
G k

d d

 
 

 

 

 

 

 
   

 
 
  

 
 


 
  

                              (14) 

11

1

T

d e 
and 

21

2

T

d e 
,  

 1 2

1 2 1 2

1 0

ˆ 0 1

0 1

e

T

F T

TT  

   

 
 
 
 
 

 
  

 

,   

1 2

0

ˆ 0e

s

G

Tk

 

 
 
 
 
 
 
 
 

        (15) 
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and 

  
     

 

     

  

 

  

  

  

  

2
1 2 1 2 1 2

1 2 1 2

2

1 2 1 2 1 2

1 2 1 2

2

1 2 1 2

1 2 1 2

3

1 2

2

1 2

1 2

2 2 2
1

2 2 2 2

2 4 4ˆ 0
2 2 2 2

2 44
0

2 2 2 2

2 2

2ˆ
2 2

4

2 2

t

s

t s

s

T T T

T T T T

T T T
F

T T T T

T TT

T T T T

k T

T T

k T
G

T T

k T

T T

     

   

     

   

   

   

 

 

 

  
 

    
 

   
    
 
   

       



 


 

 


 
 
 
 
 
 
 
 
 

            (16)                   

Applying a state feedback controller (4), with 

 0 1 2    , the resulting free closed-loop system based 

on the zero order hold (exact) discretization can be expressed 

by the recursive input/output (8) where the coefficients ia  

 1,2,3i   (A.1)-(A.3) are developed in the Appendix. Now, 

based on the model approximation, the free controlled system 
based on the forward Euler technique is such that 

3

3 31

ˆ ˆ:  0e e

k i k ii
S y a y  

                   (17) 

with 

 

  

  

1 1 2 2

1 2

2 1 2 1 2

1 2

2

3 0 1 2 1 2

1 2

ˆ 3

1 2 2ˆ (

1ˆ

)

1

3

e

s

e

e

s s s

s s

T
a k

T
a

T
a k k T k

k T k

T

  
 

   
 

    
 

    

 

 



  





  

 

 






        (18) 

and on the Tustin technique 

3

3 31

ˆ ˆ:  0t t

k i k ii
S y a y  

            (19) 

with   

   

  

 

  

   

  

0 1 2 1 2 1 2

1

1 2

0 1 2 2 1 2

2

1 2

2

0 1 2 1 2 1 2

3

1 2

3 2

3 2

3

1 2 2 12
ˆ

2 2

2 4 12
ˆ

2 2

2 1 2 2 4
ˆ

2

2

2

2s s st

s st

s s st

k k k T
a

T T

k k T
a

T T

k k k

T T

T T

T T T
a

T T

      

 

     

 

      

 

     


 
    


 

 





   


 





      (20) 

Next, we study the finite-time stability based on the exact 
discretization technique and on the approximations methods. 

B. Finite-Time Stability 

To illustrate the finite-time stability behavior of the 
controlled sampled data developed models (8) with (A.1)-
(A.3), (17)-(18) and (19)-(20), we consider the process (12) 

parameters such that 
1 0,05 ,s   

2 0,1s   and 5,89sk  . The 

dead-beat controller's output is calculated according to 
Lemma 2. 

1) Control Synthesis based on the Exact Discretion 

Based on the ZOH discretization, synthesized controller 
ku  

gains are: 

0 1  ;  
1

1 1, 45 10   ;   
3

2 4,8 10             (21) 

for a sampling time 0,2dbT s  [23]. In order to illustrate 

the developed controller performances applied to (a) the 
sampled-data system using a sampler and zero order hold (8) 
with (A.1)-(A.3), (b) the forward Euler based approximation 
system (17)-(18) and (c) the Tustin based approximation 
system (19)-(20), conditions relating stability domains and 
sampling periods (formulation based on the Jury criteria) are 

presented in Table I. Maximum values of sampling times *T , 
*

eT  and *

tT (corresponding to ZOH, forward Euler and Tustin 

discretizations, respectively) that can be simulated maintaining 
the stability of the sampled data closed-loop system, are 

calculated. While *

tT  is close to *T , we note that * *

eT T ; the 

closed loop-system (17)-(18) is stabilizable for very small time 

steps with e t   and t  . Stability conditions 
introduced in Table I. are tested numerically. The ZOH and 
Tustin discretization-based techniques are applied with five 

(05) values of discretization steps ( 0,1 ; 0,12 ; 0,15 ; 0,17  and 

0, 2 ). Forward Euler discretization-based technique is applied 

with three (03) sampling periods ( 0,04 ; 0,06 ; 0,07 ). 

Simulations are carried on for the same initial conditions 

   10 10 1   0,11  0,73
T

x    . The discrete dynamics of the 

controlled system based, ZOH, forward Euler and Tustin 
schemes, are shown in Fig. 2, 3 and 4, respectively. From 
Fig. 2, it is easy to check that (a) the controlled system based 
ZOH discretization is asymptotically stable for selected 
numerical sampling times verifying T   and (b) the 
developed dead-beat control with (21) ensures a transient 
behaviour elimination in three (03) sampling periods for 

0,2dbT   with a settling time 0,6st s . When the sampling 

period decreases, the models exhibit a finite-time stability 

convergence to 0,6st s  with a number of steps 3m  .  

Based on simulation results shown in Fig. 3 and 4, forward 
Euler and Tustin approximations demonstrate, respectively,  a 
stability convergence to the origin 0x  , for the developed 

control (21) for 
eT    and 

tT  , respectively. Now, 
comparing the finite time stability performance of the exact 
discretization ZOH, and approximate based Euler and Tustin 
techniques, we notice that for the different sampling times (a) 
the control (21) stabilizes controlled systems based Euler and 

Tustin approximations, (b) no settling time 1t  ; 1 0,6st t s   is 
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obtained, (c) Tustin approximation fails to exhibit a three-

sampling time convergence to the origin with 
dbT  but, displays 

a finite time convergence with a settling time t

s st t  for 

0,12 dbT s T   and 0,15 dbT s T  . The performance 

deteriorates if we increase the sampling time, as shown in 
Fig. 4(d) Forward Euler approximation is finite-time stable in 

0,77e

s st s t   , as shown in Fig. 3. The system shows bad 

finite-time performances, for small sampling periods. The 
highest sampling periods that guarantee a minimum settling 
time are summarized in Table II. It is observed that, with a 
ZOH discretization, the states of the proposed dead-beat 
controlled system settle down to the steady-state in three 

sample periods  where 0,2dbT s . For a relatively shorter 

sampling period 0,15T s  and based on a Tustin 

approximation, the states of the sampled-data controlled 

system settles down in four sampling periods for 0,6t

s st t s 

, whereas the states of the conventional forward Euler digitally 
redesigned sampled-data controlled system has the largest 

settling time with 0,77e

st s  and exhibits a Finite-Time 

Stability (FTS) convergence in eleven sampling periods with 
0,07T s . The approximation introduced by the forward Euler 

model affects the desired dead-beat response and creates an 
unexpected behaviour for relatively small T  . 

TABLE I. STABILITY DOMAINS 

 
Fig. 2. Sampled-Data Controlled Model Dynamics - ZOH Technique 

 
Fig. 3. Sampled-Data Controlled Model Dynamics - Forward Euler 

Approximation 

 
Fig. 4. Sampled-Data Controlled Model Dynamics - Tustin Approximation 

TABLE II. FTS COMPARISON OF THE ZOH, FORWARD EULER AND 

TUSTIN DISCRETIZATIONS 

 
Sampling Time 

[s] 

Settling Time 

[s] 

Number of 

Steps 

ZOH Technique 0,2T   0,6st   3 

Forward Euler 

Approximation 
0,07T   0,77t

et   11 

Tustin 

Approximation 
0,15T   0,6t

st   4 
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2) Controller Synthesis based Tustin Approximate 

Discretization 
Now, the aim is to test if a dead-beat controller which 

stabilizes a Tustin based approximate discrete-time model also 
stabilizes in three sampling times the exact discrete model 
(based on the ZOH) of the plant. For convenience, we use 

 
2,

t

k Tu  to refer to the dead-beat controller based Tustin 

approximation for a sampling time 
2T  and  

1 2

,

,: , t db

t T k TS F u  to 

the sampled-data model F , based ZOH discretization with a 

sampling time 
1T  , for which a stabilizing control 

2

,

,

t db

k Tu  is 

applied. The dead-beat controllers 
2

,

,

t db

k Tu  parameters 
0 , 

1  and 

2 , relevant to the sampling periods 
2 0,1T  , 0,12 , 0,15 , 

0,17  and 0,2  are shown in Table III. These parameters 

values are computed referring to Lemma 2. We note, in regard 

to the obtained gain parameters, that the 
0 , 

1  and 
2  values 

become quite large as the sampling period becomes smaller. 

Developed state feedback dead-beat control 
2

,

,

t db

k Tu  is, then, 

applied to the associated exact sampled-data model with 

1 2T T . The essential characteristics of the system

 
1 2

,

,: , t db

t T k TS F u  response, obtained with the proposed control 

are illustrated in the in Fig. 5. As depicted, the controlled 

sampled-data systems  
1 2

,

,: , t db

t T k TS F u , for 1 2 0,1T T   , 0,12  ,

0,15  , 0,17  and 0, 2 , are finite-time convergent in 5 , 5 , 5 , 5 

and 4  steps, respectively. The synthesized dead-beat control 

2

,

,

t db

k Tu , cannot stabilize the associated exactly discretized system 

in 3 sampling periods. In order to optimize the system’s 

performance in accordance to the specified objective, we 

propose to (i) calculate the dead-beat control 
1,

db

k Tu  based on the 

ZOH discretization for the sampling period 1T , then, (ii) for 

obtained value parameters, solve ˆ 0t

ia  , 1,2,3i   (20),  for  

2T .  The correspondence between the sampling periods 1T   and  

2T  is developed in Table IV. The main point noted from this 

data is that, considering the set of sampling periods

 0,1; 0,12, 0,15, 0,17;0,2  , 2T  is smaller than 1T  . More 

tests, for 1T  in [0,01 .. 0,3] , have been carried on. The results 

are depicted in Fig. 6. Clearly, while, for small sampling 

periods 1 0,05T  , we obtain  2 1T T ; for larger sampling 

periods, 2 1T T . Fig. 7 shows the simulations results. The 

controlled system performance gets better for new developed 

2

,

,

t db

k Tu . The system states are brought to the origin in three steps. 

By consequence, for large sampling periods, the dead-beat 
controller based on the Tustin approximation can lead to an n-
finite-time stabilization of the exact sampled-data n-order 

system by choosing 2 1T T . 

TABLE III. DEAD-BEAT CONTROLLER SYNTHESIS BASED ON THE TUSTIN 

APPROXIMATION 

Sampling 

Period 2,

t

k Tu Dead-Beat Controller Parameters 

2 0,1T   1 2

0 1 22,54, 3,39 10 and 1,06 10         

2 0,12T   1 3

0 1 21,72, 2,45 10  and 7,9 10         

2 0,15T   1 3

0 1 21,10, 1,60 10  and 5,1 10         

2 0,17T   1 3

0 1 20,86, 1,23 10  and 3,8 10         

2 0,2T   1 3

0 1 20,63, 0,84 10  and 2,1 10         

 
Fig. 5. Controlled Exact sampled-Data Model dynamics – Case 1: Dead-Beat 

Control based on the Tustin approximation with 
1 2T T  

 

Fig. 6. 1 2T T
 Matching 
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Fig. 7. Controlled Exact sampled-Data Model dynamics – Case 2: Dead-Beat 

Control based on the Tustin approximation with 
2 1T T  

IV. CONCLUSION 

The finite-time stabilization issues of sampled-data linear 
time invariant systems are discussed. Based on a third-order 
case study, sufficient conditions ensuring the finite-time 
stabilization for the exact and the approximate Forward Euler 
and Tustin approximation models, are derived. Models 
performances have been compared for some stabilizing sample 
periods. It has been shown that, while Forward Euler technique 
outlines a constraining stability domain, Tustin approximation 
shows better performances. Moreover, it was observed that 
under some matching conditions, the dead-beat controller 
based on the Tustin approximation leads to an n-finite-time 
stabilization of the exact sampled-data n  order system. 

Developed results can be extended to finite-time stabilization 
of nonlinear systems as shown in [23]. 

TABLE IV. DEAD-BEAT CONTROLLER SYNTHESIS BASED ON THE TUSTIN 

APPROXIMATION WITH 
2 1T T  

1T  
2T  

2,

t

k Tu Dead-Beat Controller Parameters 

1 0,1T   
2 0,09T   2

0 1 23,10, 0,37 and 1,12 10        

1 0,12T   
2 0,108T   2

0 1 22,22, 0,29 and 0,89 10        

1 0,15T   
2 0,128T   2

0 1 21,53, 0,21 and 0,68 10        

1 0,17T   
2 0,14T   2

0 1 21,26, 0,18 and 0,58 10        

1 0,2T   
2 0,155T   2

0 1 21, 0,14 and 0,48 10        

APPENDIX 

The free controlled sampled-data model based on a zero 
order hold discretization of (12) can be given by 

3

3 31
:  0k i k ii

S y a y  
   

where the coefficients ia , (1,2,3)i  , are defined, 

respectively, by 
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