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Abstract—In this study, a linear quadratic regulator (LQR) 

based position controller is designed and optimized for an 

inverted pendulum system. Two parameters, vertical pendulum 

angle and horizontal cart position, must be controlled together to 

move a pendulum to desired position. PID controllers are 

conventionally used for this purpose and two different PID 

controllers must be used to move the pendulum. LQR is an 

alternative method. Angle and position of inverted pendulum can 

be controlled using only one LQR. Determination of Q and R 

matrices is the main problem when designing an LQR and they 

must be minimized a defined performance index. Determination 

of the Q and R matrices is generally made by trial and error 

method but finding the optimum parameters using this method is 

difficult and not guaranty. An optimization algorithm can be 

used for this purpose and in this way; it is possible to obtain 

optimum controller parameters and high performance. That’s 

why an optimization method, grey wolf optimizer, is used to tune 

controller parameters in this study.    
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I. INTRODUCTION 

Linear Quadratic Regulator (LQR) is one of the optimum 
control methods and it is successfully applied to many systems. 
Selection of the controller parameters is the main problem 
when designing an LQR controller. The selected parameters 
must minimize a performance index. The selection process is 
conventionally made by trial and error method and it makes the 
process difficult, not guarantees finding the optimum 
parameters and may take long time. Optimization algorithms 
help designers to overcome these problems and guarantee 
finding one of the optimum solutions. 

One of the basic systems for control theory is DC motor 
and LQR controller is one of the methods to control its speed 
and position. Ruderman et al. designed an LQR based speed 
controller for a DC motor [1]. Abut compared the PID 
controlled DC motor and the LQR controlled DC motor under 
disturbance and the results showed the LQR based system has 
better performance than PID based one [2]. Haron deigned 
speed and position controllers for a DC motor in his study. In 
the study, PID and LQR controllers was used and made a 
performance comparison. The results show again the LQR 
controller has better performance than PID controller [3]. 

Another popular system for control theory applications is 
inverted pendulum. Kumar et al. designed an LQR based 
controller for balance and trajectory tracking problem of a Self-
Erecting Single Inverted Pendulum [4]. They reported that 
LQR based system had faster and smooth stabilizing process 
compared to Full State Feedback controller designed by pole 
placement. Prasad et al. made a study to analyze and compare 
the PID and LQR controlled system under disturbance [5]. The 
results was justified that the advantages of the LQR controller. 

Trial and error method is widely used method to determine 
the elements of the Q and R matrices of an LQR controller [6].  
However there are many study shows the optimization 
algorithms help to determine the optimum parameters for the 
controller. Ata et al. designed an LQR based controller for an 
inverted pendulum on a cart. In the study, elements of the Q 
and the R matrices of the controller were selected by Artificial 
Bee Colony Algorithm to achieve the optimum performance. 
Optimization process was made on a nonlinear model and the 
results showed the ABC optimized system had good 
performance [7]. 

In another study, an unmanned rotorcraft pendulum was 
controlled using LQR optimized by ABC and Particle Swarm 
Optimization algorithm [8]. The designed system was also 
tested under disturbance and the results showed that the ABC 
optimized system had better performance than the PSO 
optimized system. Çatalbaş et al. was designed an LQR 
controller for a Boeing 707 flight model and the unstable 
model was controlled successfully by the LQR controller [9]. 

In this study, an inverted pendulum system is modeled and 
controlled by LQR. Q and R matrices of the LQR are 
optimized by Grey Wolf Optimizer (GWO). All the study is 
made by simulation using Matlab program. Two different 
objective functions are used for the optimization process: 
firstly performance index of the LQR is used and then an 
improved objective function obtained adding settling time and 
total absolute error to the performance index is used. The 
controller is successfully optimized using both of the objective 
functions. 

II. LINEAR QUADRATIC REGULATOR 

LQR is one of the optimal control methods and widely used 
in the optimal control problems. The LQR method is used to 
control of complex systems that needs high performance. A 
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system described by linear differential equations can be shown 
in steady-state form given in (1) and (2).  A is system matrix, B 
is input matrix, C is output matrix and D is feed forward 
matrix. “x” is the state vector, “y” is the output vector and “v” 
is the input vector. A conventional LQR problem is to find the 
Q an R matrix which minimizes the cost function (performance 
index) based on the input “v” [10].  Performance index “J” is 
defined as given in (3). The control energy is represented by 
v(t)

T
Rv(t), while the transient energy is expressed as x(t)

T
Qx(t) 

[11]. Q is symmetric positive semi definite matrix and R is 
symmetric positive definite matrix. 
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Designing a LQR controller consists of the following steps: 

Step 1: Q and R matrix, minimizing J, must be chosen. 

Step 2:  Then the algebraic Riccati equation, given in (4), is 

solved to obtain P using Q and R. 

Step 3:  Optimum feedback gain matrix “K” is calculated 

using (5). 
Step 4:  System response is checked. If the system response is 

not met the required specifications, repeat all steps 
again. 

                     

           

A pre-compensation factor must be used when the system 
has a bigger steady-state error than expected. Pre-
compensation factor calculation can be made by the equation 
given in (6). 

    ( (    )   )   

As seen as, the system must be well modeled to design an 
LQR controller.  The system must be linearized if the system is 
not linear. All states of the system must also be measurable or 
observable. Therefore, LQR design has a complex procedure 
but it has an important advantage.  Controlling the all system 
states is possible with one LQR controller. In this study, 
pendulum position and vertical angle of the pendulum are 
controlled by one LQR controller. 

III. INVERTED PENDULUM ON A CART 

Inverted pendulum is a popular system, which is naturally 
nonlinear and unstable, in control theory. Inverted pendulum 
balance research is classically based on an inverted pendulum 
on a cart and the aim is balancing the pendulum by moving the 
cart [12]–[14]. The basic system is given in Fig. 1. Invers 
pendulum is fixed on the cart by a rotating joint. “θ” angle 
changes when an enough amount of force applied to the cart. 
The aim of the system is balancing the pendulum on vertical 

axis. The position control of the cart is also possible using an 
extra controller. 

 
Fig. 1. Structure of inverted pendulum on a cart. 

The differential equations of the system can be derived 
using Euler-Lagrange method. The equations of the system 
given in Fig. 1 are given in (7) and (8) [15], [16]. “I” is the 
moment of inertia of the pendulum, “m” is the mass of the 
pendulum, “M” is the mass of the cart, “l” is the length of the 
pendulum, “x” is the cart position, “θ” is the angle between the 
pendulum and the vertical axis, “F” is the input force. 

 (     ) ̈             ̈       

 (   ) ̈    ̇      ̈        ̇        

When the “θ” is enough small, the equations can be 
linearized and steady-space equations (given in (9)) of the 
system can be obtained. “a” used in (9) is given in (10). The 
system parameters are given in Table I. 
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TABLE I.  SYSTEM PARAMETERS 

Symbol Value 

M 0.5Kg 

m 0.2Kg 

l 0.3m 

g 9.81m/s2 

I 0.006kg.m2 

b 0.1N/m.s-1 

F - N 

θ - ° 

IV. GREY WOLF OPTIMIZER 

An optimization algorithm minimizes (or maximizes) a 
function called objective function. The objective function is a 
special function defined for a system (or for a problem). It is 
affected by the parameters of the system. The optimization 
algorithms minimize the objective function by changing the 
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function variables in a special way. This special way is inspired 
from the creatures in nature in some algorithms like Artificial 
Bee Colony Algorithm, Particle Swarm Algorithm or Grey 
Wolf Optimizer. 

Grey Wolf Optimizer algorithm is inspired from the Grey 
Wolfs in nature. They are social animals and live in groups 
which size is generally 5-12. There are four levels in a group 
called as alpha, beta, delta and omega. The group leaders called 
alpha make important decisions like about hunting, sleeping 
and etc. The alphas are the most dominant wolves in the group. 
The alphas may not be the most powerful member of the group 
but they are best in managing. Beta wolves help alpha wolves 
for everything. When the alphas get away, ill or very old, betas 
do coordination and decision making processes for the group. 
They are under control of the alpha wolves but they can 
command the other wolves in the group. They also give 
feedback to alphas about the other wolves and works. There are 
omega wolves at the end of the hierarchy. They always do 
what the dominant wolves want. They are the last wolves 
allowed to eat. It seems like omega wolves do not have an 
important role in the group but it is observed that the group has 
some problems like internal fighting in the absence of omegas 
[17], [18]. 

The delta wolves are another type and they are responsible 
of hunting, scouting, sentineling, and some of them may be 
caretakers or elders. Hunters help the alphas and betas. 
Sentinels protect the group, scouts watches around and warns 
the group if there is any danger. Caretakers care the weak or ill 
wolves. 

They have also a special hunting strategy. They track and 
approach the prey. Then they encircle, pursue and harass the 
prey until it stops moving. Finally they attack the prey. 
Detailed information of the mathematical model of the 
algorithm can be found in  [17]. 

V. EXPERIMENTAL STUDY 

In this study, an inverted pendulum model is designed, and 
controlled by an LQR controller. All study is made by 
simulations using Matlab program. Q and R matrices of the 
LQR controller are optimized by GWO algorithm. General 
block diagram of the LQR controlled system is given in Fig. 2. 
A, B and C are system matrices; K is feedback gain matrix and 
N is pre-compensation factor. 

Solution of the differential equation in the simulation is 
made by the four steps Runge-Kutta method and the used time 
step is 0.001s. Total simulation time is 10s. Number of Search 
agents (individuals in the group) is selected as 30 and the 
iteration number is selected as 50 for the GWO algorithm. Q 
and R matrices are defined as diagonal matrices and the range 
of the each element is 1.10

-4
-1.10

10
. 

An objective function is needed to tune the Q and R 
matrices when used an optimization algorithm. The main 
objective function is the performance index J, given in (3), for 
LQR design. Optimum controller design is possible when J is 
used as an objective function. 

 

Fig. 2. Structure of LQR controlled system. 

The system outputs are given in Fig. 3 when only J is used 
as objective function. The settling time of the position output is 
14.18s with 2% tolerance. The settling time of the θ output is 
19.36s. Maximum error of θ is 0.04° and performance index J 
is 0.141. 

 
Fig. 3. System outputs 1 (J is used as objective function). 

As seen as, the controller works good but the settling time 
is very long. That means, the results may not meet design 
requirements. In this case, an improved objective function is 
needed. The used objective function to meet the design 
requirements is given in (11). ST denotes the settling time and 
Z1,2 is a coefficient to increase the effect of ST and integral of 
absolute error on objective function. Z1,2 is selected as 1x10

8
. 

               ∫    ( )  

At the end of the optimization process, Q and R matrices 
optimized as given in equation 12 and equation 13. The value 
of the performance index J is 3.195x10

5
 for the given Q and R 

matrices. Pre-compensation factor, N is calculated as -19.884. 
The system outputs are given in Fig. 4. The settling time of the 
system for position control is 1.26s with 2% tolerance and it is 
2.06s for θ control. Maximum error of the θ angle is 1.77°. 

   [
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Fig. 4. Sytem outputs 2 (equation 11 is used as objective function). 

As seen as, the settling time is shorted using the improved 
objective function but error of θ angle is increased. As a result, 
both of (3) and (11) are successful with GWO and selection of 
the objective function is depended on the design requirements. 

 

Fig. 5. Objective function value vs. Iteration number. 

The speed of the algorithm is another important parameter. 
Objective function output vs. number of iteration graph is 
given in Fig. 5. GWO reaches the best solution at 35

th
 iteration. 

VI. CONCLUSION 

In this study, an LQR based position controller is designed 
using GWO algorithm. Determination of Q and R matrices, 
minimizing the performance index, is the main problem when 
designing an LQR controller. Minimizing the performance 
index using Q and R matrices is an optimization problem and 
GWO is successfully used to obtain optimum Q and R 
matrices. 

Using only performance index J helps to design optimum 
controller but it may not meet the design requirements like 
settling time or maximum overshoot. In this case, the objective 
function must be improved using the effect of the system 

outputs which must be meet design requirements. Settling time 
and integral absolute error may be added to the objective 
function to obtain shorter settling time. 

As a result, GWO algorithm successfully optimizes the 
LQR controller. The settling time of the position controller is 
1.26s and maximum error of θ angle is 1.77°. GWO reaches 
the optimum results at the 35

th
 iteration. 
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