(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 4, 2018

Formal Specification and Analysis of Termination
Detection by Weight-throwing Protocol

Imran Riaz Hasrat, Muhammad Atif
Department of Computer Science
and Information Technology
The University of Lahore
Lahore, Pakistan

Abstract—Termination detection is a critical problem in dis-
tributed systems. A distributed computation is called terminated
if all of its processes become idle and there are no in-transit
messages in communication channels. A distributed termination
detection protocol is used to detect the state of a process at
any time, i.e., terminated, idle or active. A termination detection
protocol on the basis of weight-throwing scheme is described in
Yu-Chee Tseng, ‘“Detecting Termination by Weight-throwing in a
Faulty Distributed System’, JPDC, 15 February 1995. We apply
model checking techniques to verify the protocol and for formal
specification and verification the tool-set UPPAAL is used. Our
results show that the protocol fails to fulfil some of its functional
requirements.

Keywords—Termination detection; weight-throwing protocol;
Jformal specification and verification; model checking

I. INTRODUCTION

Termination detection is an important problem for dis-
tributed systems. For a distributed system, termination de-
tection is based on the concept of a process state. During
a distributed computation, a process can either be in alive
or dead state. An alive state means that a process is still
performing its task whereas dead state represents that the
process becomes idle simultaneously. Dead and alive states
are referred as passive and active states as shown in Fig. 1. At
the start of the computation, all the processes are supposed to
be in active state. Processes can take several actions discussed
below:

e Only the processes in active state can send basic
messages to other processes.

e Any active process can reach a passive state at any
time.

e A passive process becomes active again by receiving
a basic message.

A distributed computation is called terminated if all of its
processes become passive and there are no in-transit messages
in the communication channels.

Many applications of distributed systems depend on ter-
mination detection of a computation to guarantee a proper
operation. In multiphase algorithms [2], one phase depends on
proper completion of other phase. So, initiation of new phase
needs termination detection of previous phase. In distributed
databases, deadlock detection is a critical problem and this

Muhammad Naeem
Department of Electronics
and Electrical Systems
The University of Lahore
Lahore, Pakistan

send

receive U

Termination detection [1].

internal

receive

Fig. 1.

problem is purely related to termination detection [3]. Garbage
collection [4] and token loss detection in a token ring are
other examples of termination detection problems. Termination
detection solution allows a system to guarantee that all tasks
in the system are obviously complete and this permits the
dependent systems to start their computations. About more
than three decades ago, termination detection problem was
separately suggested by Dijkstra and Scholten [5] and Francez
[6]. Many researchers started to tackle this problem by devel-
oping different termination detection algorithms described in
[71-[15].

Formal methods are based on mathematical tools and
techniques used for design, specification and verification of
different hardware and software systems. Formal methods
provide correctness for all requirements and inputs of a given
system. In the past, formal methods were used for only safety
critical and defense related systems [16]-[18]. Now a days,
high demand of error free and secure systems is giving much
importance to formal methods.

We present a formal modeling and analysis of the termi-
nation detection by weight-throwing in a faulty distributed
system presented in [7]. It is a comprehensive analysis of
all possible versions of protocol along with verification of
detailed functional requirements. Basic concept in weight-
throwing protocol is that each process sends some weight with
every basic message. On reception of this message, recipient
process adds this weight to its current weight. We present
formal verification of the weight-throwing protocol using a
model checker known as UPPAAL.

UPPAAL has a simulator that is used to develop the model
[19]. The verifier in UPPAAL has capability to create the traces
that can lead the action sequences where system’s required

www.ijacsa.thesai.org

269 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

property fails. To investigate this situation, action sequences
are replayed in simulator.

We formally model and analyze both parts of the protocol.
We present a formal specification of the protocol in the timed-
automata language of UPPAAL. Then, we specify functional
requirements for safety and liveness of the protocol. We also
present specification and verification of its invariants. We also
analyze the protocol in the situations when some processes
may tend to fail. We discover some situations in which protocol
fails to satisfy its functional requirements, termination is not
detected in these situations. The protocol also fails to satisfy
some of its invariants. We present counterexamples for the
requirement violations in the form of message sequence charts.

II. WEIGHT-THROWING PROTOCOL

Weight-throwing protocol works in a distributed system. In
this protocol a process sends half of its weight with its message
when it communicates to some other process. Let S is the set
of processes i.e. S ={Py, Py, --,P,}. The S is supposed
to be fault-free. In fault-free system, a process never fails. A
process from S with minimum id is said to be the leader. Total
weight in the system is 1. Every process is active at the start of
the computation and weight of each process P; is w; = 1/n,
where n is the cardinality of the set S. The leader collects
all the weights in the system and announce termination. Upon
every message from a process P; to P; following actions are
performed:

1) P; divides its weight w; into two equal positive real
parts x,y so that w; = = + y.

2) P, sends a basic message B(x) along with a weight
x.

3) P, updates its current weight as w; = y.

4) On reception of the basic message, P;’s weight
increases as w; = w; + .

Any process in the system can become passive at any time.
When a process other than the leader becomes passive, it sends
a control message to the leader for submitting its weight. After
sending the control message this process sets its weight to 0.
Any passive process can become active again by receiving a
basic message from some other process. The following are the
invariants in the protocol:

e FEach process and in-transit messages in the system
have a non-zero weight at any time.

e If we take the sum of the weights of all processes and
in-transit messages at any time, it is always 1.

When the leader becomes passive, it accumulates all the
weights in the system. If accumulated weight becomes equal
to 1, the leader calls termination. Weights should be handled
precisely. Fractional values of all weights make it nearly
impossible to make the sum to 1 again due to rounding errors
of float values. This problem can be solved by representing
the weight using two integer values as [1,n| instead of 1/n.

A. Flow-detecting Scheme for Flushing/Freezing of Channels

In case of faulty distributed system, some processes may
fail during a computation. Overall weight of all processes can
be less than 1 due to holding weights of failed processes and

Vol. 9, No. 4, 2018

weights carried by undelivered messages in the channels. This
problem is solved by introducing a flow detecting scheme. Let
H be a subsystem which contains all healthy processes and
all their communication channels. During a computation, the
weight change in H at time interval [is equal to the difference
of weight flowing into H and the weight flowing out of H.
With the help of this scheme, the weight information of failed
processes can be obtained from the outgoing weight records
of healthy processes in the system because each process keeps
the record of incoming and outgoing weights.

Assume that the intended system provides the facility of
flushing or freezing of channels connected to faulty processes.
Flushing or freezing mean preventing and ceasing further
communication between a healthy and a faulty process. There
is no global clock in the system that makes it very difficult
to get global views of the system weight. A snapshot is
taken to get the global views. The leader sends the snapshot
request to all the healthy processes. On reception of this
request, each healthy process flushes or freezes all of its
communication channels connected to faulty processes and
submits its incoming and outgoing weights to the leader. The
leader uses these incoming and outgoing weight values to
calculate the overall weight of the system.

B. Data Structure of Weight-throwing Protocol

Before the formal modeling of the protocol we need to
know the specific keywords and data structure used in the pro-
tocol. Let P; be any process in the system where ¢ = 1...n,
n is any arbitrary positive number. The data structure for P;
is given in Table L.

III. MODELING IN UPPAAL

Our formal specification in UPPAAL has three participants,
i.e. the Termination, the MessageBuffer and the SnapBuffer.
The main process is the Termination process. This process re-
ceives and sends messages to other processes to communicate.
Each message holds some non-zero weight. A process adds the
incoming weight to its current weight when it receives a mes-
sage. The communication is asynchronous. The MessageBuffer
process holds the basic and control messages when receiver is
not ready to receive them. These messages are moved to their
receivers when they become ready. The SnapBuffer process
temporarily stores the snapshot request messages sent by the
current leader. It then sends the snapshot request messages
to all the healthy processes to inform them the faulty set of
processes known to the leader. This process also temporarily
keeps the snapshot reply messages sent by the processes to
the leader. These messages are delivered to the leader when
it becomes ready.

The protocol has two parts. In first part, the termination
detection is done using a fault-free distributed system. In the
second part, a faulty distributed system is used to detect proper
termination of processes. In faulty distributed system any
number of processes may tend to fail. We present the formal
specification of both parts separately to check the correctness
of the protocol in both cases.

www.ijacsa.thesai.org

2710 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE 1. INFORMAL SPECIFICATION OF WEIGHT-THROWING

PrOTOCOL

This variable stores id of current leader. At the

teader; beginning, leader; = 1.

This field keeps the value of weight for each process
w; P;. Initially, the value of w; is 1/n, where n is the
number of processes.

This variable records total weight in the system as-
sum; sumed by the leader. It is a real number. At the
beginning, sum,; = 1.

This is an array of real numbers. The IN;[j] keeps
the record of all weights thrown out from process
P; to P;. At the beginning, IN;[j] = 0 for all
j=1...n.

IN;[1...n]

This is an array of real numbers. The OU T; 5] stores
all the weights thrown to process P; from P;. At the
beginning, OUT;[j] =0 forall j =1...n.

OUT;[1...n]

This array represents a set of faulty processes. If a
process P; knows P; to be faulty and P; has flushed
or frozen all the channels to P; then it belongs to F};
. At the start F; = ¢.

This array contains set of all processes to which
snapshot request is to be sent. Let’s suppose P;
initiates the snapshot request. If a process P; replies
SN, to the request or it is found faulty by P; then it
is removed from the SN;. Second snapshot can be
initiated only when S N; becomes empty. At the start
SN; = ¢.

This field stores a real number. During the snapshot,

temp_sum; it temporarily calculates the total remaining weight.

This field indicates a boolean value which keeps the

consistent; record of a snapshot’s consistency.
B(x) This represents the basic message with a weight x.
This indicates a control message. The control message
C(z) is used for reporting the weight x to the leader of the
system.
This represents the message for snapshot request that
is sent by the current leader of the system P;. With
Request(F;) the help of F;, message receiving process is informed

about the set of faulty processes already known to the
leader.

This indicates the reply to the leader’s request mes-
sage. This reports the state of the replying process.

Reply(F;, IN;,OUT;)

IV. MODELI: TERMINATION DETECTION IN A
FAULT-FREE DISTRIBUTED SYSTEM

We specify all the processes of fault-free part of the
protocol. The Termination and the MessageBuffer are the
participants in Modell. We present the functionality and formal
specification of these participants in this section.

A. Channels

This protocol uses four channels which are described
below. To model the functionality of termination detection in
a fault-free distributed system, we use hand shaking channels.
The working of these channels is described below:

1) basicMessageS: This channel is very important be-
cause the system uses this channel for the basic
message communications. It sends basic messages to
the MessageBuffer to hold them until their receivers
become ready.

2) basicMessageR: For moving stored basic messages
from the MessageBuffer to the receiver process, sys-
tem uses basicMessageR channel.

3) controlMessageS: This is a channel for control mes-
sage communications. System uses this channel to
send control messages to the MessageBuffer to hold
them until the leader becomes ready.

Vol. 9, No. 4, 2018

4) controlMessageR: This channel moves stored control
messages from MessageBuffer to the leader.

B. Global Declarations

Some variables and arrays are declared globally so that
each participant can access them and use them according to
their needs. Table II represents the global declarations and data
types for Modell.

TABLE II. GLOBAL DECLARATIONS FOR MODEL 1

This is a constant that represents the total parts of
weight.

This describes the maximum value of weight that can
be sent through communication channels.

It is a variable that tells the number of concurrent
instances of Termination process.

This variable stores the highest id of concurrent in-
stances of the Termination process.

This variable keeps id of the current leader of the
system.

These variables record the weights when a basic or a
control message is received.

Two customized data structures Weight_out and
Weight_in are introduced to define the Out_arr[] and
In_arr[] arrays respectively. The Out_arr[] keeps the
records of out going weights and In_arr[] stores the
records of incoming weights of each process of the
Termination process.

numberofweights

max_weight_limit

maxproc

max_proc_id

leader

WI and W2

Out_arr[] and In_arr[]

C. The Automaton for Termination Process in Modell

The automaton for the Termination process is depicted in
Fig. 2. The protocol model has a number of parallel processes,
each of which is triggered by a certain communication among
each other. The specification of the Termination process com-
prises four communicative choices i.e. sending basic message,
receiving basic message, sending control message and receiv-
ing control message.

For overall working of the Termination process, we discuss
the functionalities which take place between active and Al
states. The basicMessageS! sends two weight values of basic
message to the MessageBuffer for any other process. Two
weights actually represent the single weight because we are
using two values (numerator and denominator) just to avoid
floating point errors. The guards for weight values, limit the
number of basic messages that a process can send to other
processes to reduce transition state space. Going from A/ to
active state, the updateOut() function updates the Out_arr[]
to record the outgoing weights. Also the weight[1] value
is doubled because doubling the denominator value, overall
weight of a process becomes half. For a process taking a
transition from the active to A2 state, the channel basicMes-
sageR? receives two weight values and sender id from its
MessageBuffer to record incoming weight against a specific
sender. In next transition, the updateln() function updates the
In_arr[] to record incoming weight from that specific process.
The updateWeight() function records the overall current weight
of receiver process. Same procedure is followed when going
from passive to active state because both the transitions are
identical and perform exactly same functionality. While taking
transitions from active to A3 and A3 to passive state, the
channel controlMessageS! sends weight values of this pro-
cess alongwith its id to the leader. The function updateln()

www.ijacsa.thesai.org

271 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

receiver:int[0,max_proc_id],
second_id:int[0,max_proc_id]

Vol. 9, No. 4, 2018

basicMessageS[pid][weight[0]][weight[1]*2][receiver][second_id]! basicMessageR[sender][weil][wei2][pid]?

weight[0]<7 && weight[1]<7 &&

sender:int[0,max proc id], A2

Al receiver!=pid && second_id==pid (weil:int[0,max_weight],
sendTo=receiver wei2:int[0,max_weight]
recvdF=sender,
valRl=weil,valR2=wei2,
Wl=weil,W2=wei2
weight[1]=weight[1]*2, ctive updateWeight(),
updateOut(pid) @ updateln(pid)
controlMessageS|[pid]l[weight[0]][weight[1]][leader][pid]!
updateWeight(), ‘AB
updateln(pid) pid!=leader
pid==Ileader sendTo=leader
passive weight[0]=0,weight[1]=0,

A2_1

updateOut(pid))

basicMessageR[sender][weil][wei2][pid]?
recvdF=sender,valRl=weil,valR2=wei2,
Wl=weil W2=wei2

sender:int[0,max_proc_id],
weil:int[0,max_weight],
wei2:int[0,max_weight]

pid==leader &&
Sum[0]/Sum[1]==weight[0]/weight[1]

updateWeight(),
updateln(pid)

pid==leader
recvdF=sender,
valRl=weil,valR2=wei2,

Wi=weil,W2=wei? O ra

controlMessageR[sender][weill[wei2][pid]?
sender:int[0,max_proc_id],
weil:int[0,max_weight],
wei2:int[0,max_weight]

announce ‘

Fig. 2. Formal model for Termination process in Modell.

sendld:int[0,max_proc_id],wel:int[0,max_weight],we2:int[0,max_weight]
senderld=sendld,we_vall=wel,we val2=we2,updateBBuffer()
basicMessageS[sendld][wel][we2][bid][cid]?
BasicBuffer[0][0]==0 || BasicBuffer[1][0]==

sendld:int[0,max_proc_id],wel:int[0,max_weight],we2:int[0,max_weigh j:int[0,4]

controlMessageR[senderldc][ControlBuffer[j][0]][ControlBuffer[jI[1]][bid]!

ControlBuffer[j][0]'=0 && ControlBuffer[jl[1]!=0
ControlBuffer[jl[0]=0,ControlBuffer[jl[1]=0,
we_valcl=0,we_valc2=0

senderldc=sendld,we_valcl=wel,we_valc2=we2,updateCBuffer()
controlMessageS[sendld][wel][we2][bid][cid]

i:int[0,1]

basicMessageR[senderld][BasicBuffer[i][0]][BasicBuffer[i][1]][bid]!
BasicBuffer[i][0]!=0 && BasicBuffer[i][1]!=0
BasicBuffer[i][0]=0,BasicBuffer[i][1]=0,
we_vall=0,we_val2=0

Fig. 3. Formal model for MessageBuffer process.

www.ijacsa.thesai.org 272 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

updates Out_arr[] of this process. The value of weight[0]
and weight[1] is set to zero to make sure that all the weight
is transferred to the leader. The working of transitions from
passive to A4 is similar to moving from active to A2 state. The
only difference is, in controlMessageR? channel, the leader
receives the control message from MessageBuffer. All other
variable definitions are exactly same. Taking transition from
A4 to passive state uses exactly same functions as described
previously for A2 to active state. Only the leader can take the
transition from passive to announce state. The leader takes
this transition only when it has collected all the weight from
all the processes through control messages. If this weight
becomes equal to the weight defined at the beginning of the
computation, the leader announces termination.

The local declaration and data types of Termination process
are given in Table III.

TABLE III. LOCAL DECLARATIONS FOR Termination PROCESS IN

MODEL1

These variables temporarily store first and second value of
weight respectively at different transitions.

System uses recvdF variable to store process id of the
message sender and sendTo records process id of the
message receiver.

weight array permanently stores the two weight values

valR1 and valR2

recvdF and sendTo

weightl] for every process at any time.
Sum{] The Sum/] a value container that represents the total
um weight of the system that is actually 1.
This array temporarily stores the sum of all incoming
tempin{] weights to a process.
tempOut(] tempOut(] keeps the sum of all the outgoing weights

from a process.

In UPPAAL system models, we can declare functions with
in the process or alongwith global declarations. The functions
can have return types and passing parameters. The Termination
process also uses some functions to perform its functionality.

1. updateWeight(): This function is very important because
it is called at different transitions when a basic or a control
message is received. If the receiver has zero weight, the
received weight is directly moved to weight/[] of the process.
If the process already has some non-zero weight then function
adds the incoming and current weight to calculate the new
weight.

2. updateln(): A process uses this function when it receives
a control or a basic message. This function updates the
In_arr[] to record the incoming weight from a particular
process. The incoming weight is directly moved to the In_arr[]
if receiver is receiving the first message from the sender. The
current weight and incoming weight is added to update the
incoming weight in In_arr[] if the process already has received
some messages from the same sender.

3. updateOut(): A process calls this function when it
sends a control or basic message. This function updates the
Out_arr[] to record the outgoing weight to a particular process.
The outgoing weight is directly moved to the Out_arrarray if
receiver is receiving the first message from the sender. The
current weight and outgoing weight is added to update the
Out_arr[] if the process already has sent some messages to
the same receiver.

Vol. 9, No. 4, 2018

D. The Automaton for MessageBuffer Process

The automaton for the MessageBuffer process is depicted
in Fig. 3. The process has three instances. The specification
of the MessageBuffer process in the protocol provides four
communication choices i.e. receiving a basic message from
the Termination process, sending a stored basic message to
the Termination process, receiving a control message from the
Termination process and sending a stored control message to
the Termination process.

Now we discuss the functionalities for the MessageBuffer
process when a basic message is received through basicMes-
sageS? channel. The function updateBBuffer() updates the
basic message buffer to keep the record of this incoming basic
message until it is not delivered to the respective recipient.
The basicMessageR! channel sends the stored basic message
when the receiver Termination process becomes ready. The
two guards prevent the communication between MessageBuffer
and Termination process when their is no stored message.
The function updateCBuffer() is called to update the control
message buffer to keep the record of this incoming control
message until its recipient is not ready. This happens when a
control message is received through controlMessageS? chan-
nel. The controlMessageR! sends the stored control message
when the leader becomes ready. The two guards prevent the
communication between the MessageBuffer and the leader
when their is no stored control message for the leader.

The local declaration and data types of the MessageBuffer
process are given in Table I'V.

TABLE IV. LoCAL DECLARATIONS FOR MessageBuffer PROCESS

The variables store first and second value of
weight[] for receiving and sending basic mes-
sages at different transitions of MessageBuffer
process.

senderld variable stores the process id of the
basic message sender process and senderldc
keeps the process id of the control message
sender process.

These variables contain the first and second
value of weight[] for receiving and sending
control messages at different transitions of
MessageBuffer.

The BasicBuffer array list is to store the two
basic messages for each process at any time.
The limit to store only two basic messages is
for achieving reduced transition state space.
The ControlBuffer[] can store five control
messages for the leader process at any time.

we_vall and we_val2

senderld and senderldc

we_valcl and we_valc2

BasicBuffer[] and ControlBuffer[]

The MessageBuffer process uses some functions to per-
form different tasks on different transitions. We discuss these
functions below.

1. updateBBuffer(): It is called on a transition when a
basic message is received. It locates the available free space
in BasicBuffer[] and then stores the incoming basic message
at that space.

2. updateCBuffer(): A transition calls this function when
it receives a control message at MessageBuffer process. The
function checks the free space in ControlBuffer[] and then
stores the incoming control message at that position.

www.ijacsa.thesai.org

273 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

V. MODEL2: TERMINATION DETECTION IN A FAULTY
DISTRIBUTED SYSTEM

We specify all the concurrent processes of faulty part
of the protocol. The three participants are the Termination,
the MessageBuffer and the SnapBuffer. The functionality and
formal specification of these participants is presented in this
section. The functionality of the MessageBuffer process is
already described in Modell. Here we discuss the functionality
of remaining participants.

A. Channels

This protocol uses nine channels for communication among
processes. Four of them are same as described in Modell. The
other five channels are described here in detail.

1) failReport: The Termination process uses this channel
when a process fails. It tells the failed status of
a process to other processes. On the other side, a
process receives the status of a failed process using
this channel.

2) failRequest: This channel sends snapshot request
message to the SnapBuffer process.

3) failRequestR: The channel sends the stored snapshot
request message from SnapBuffer process to the
recipient Termination process.

4) failReply: This channel is used to send the snapshot
reply message to the SnapBuffer process.

5) failReplyR: The channel delivers the stored snapshot
reply message from SnapBuffer process to the recip-
ient Termination process.

B. Global Declarations

This system is modeled for termination detection in faulty
distributed environment. This is the enhancement of the
Modell (fault-free model). Therefore some global variables are
common in both the systems. We present here the description
of variables that are not present in Modell but are present in
Model2. The global declarations for Model2 are described in
Table V.

TABLE V. GLOBAL DECLARATIONS FOR MODEL2

The Fin array stores all the incoming weights and FOut[]
saves the outgoing weights of failed processes which are
known to the leader during the snapshot.

The FI_FO_Diff array stores the difference of all the incoming
and outgoing weights of failed processes known to the leader
during the snapshot.

System uses S array to store ids of all instances of Termination
process participating in the system.

The F is a global array. It records the failed processes known
to each process. The value may be different for each process.
Ftemp[] keeps the actual record of failed processes in the
system.

FIn[] and FOut[]

FI_FO_Diff[]

S[]

F[]

Ftemp[]

C. The Automaton for Termination Process in Model2

We have discussed the Termination process for Modell in
previous section. The automaton for Termination process in
Model2 is depicted in Fig. 4. The specification of Termination
process has ten communicative choices four of which are same
as in Modell. The other six choices are sending snapshot
request message, receiving snapshot request message, sending

Vol. 9, No. 4, 2018

snapshot reply message, receiving snapshot reply message,
sending fail report message and receiving fail report message.

Now Termination has nine actions from Al to A5 and
from FI to F4. The actions Al to A5 are already discussed
in Modell. So we discuss here only the actions FI to F4. Fig.
5 represents the formal model for F1. The failReport? channel
detects the failed process when no snapshot is in progress. In
next transition, the process adds the failed process in its F[]
and Flush[]. The function Leader() is called to determine the
leader. If current process is not the leader then it reaches to
active state. If this process is the leader then it reaches to Snap
state and starts calculating the healthy processes to send them
snapshot request message. The SnapBuffer stores this message
until the receiver of this message is not ready. After sending
these messages the process is allowed to reach at active state.

Fig. 8 represents the formal model for F2. A process
receives the stored snapshot request message from SnapBuffer
process through failRequestR ? channel. Then it sends the snap-
shot reply message to the SnapBuffer for the leader through
failReply! channel. It records the new leader. It matches and
updates its F[] to record the failed processes known to the
leader.

Fig. 6 shows the formal model for 3. The leader receives
the stored snapshot reply message from SnapBuffer process
through failReplyR ? channel. It checks the difference of F[] of
sender and its own F[]. The snapshot is marked as inconsistent
if this difference is greater than zero or the snapshot is not
consistent. The process which has sent this snapshot reply
message is removed from SN[]. The process reaches to active
state if a snapshot is in progress otherwise reaches to Snap
state.

Fig. 7 represents the formal model for F4. The failReport?
channel detects a failed process. The action makes sure that
a snapshot is already in progress. In next transition this
process adds the failed process in F[] and Flush[]. It also sets
the snapshot as inconsistent. Then after removing the failed
process from SN/[], if still SN/] is non empty then process
calls the snapshot.

Fig. 9 represents the formal model for the process when
it fails. At failure, the process updates the F7emp[] to record
its entry in that array and moves from active to fail state.
The channel failReport! at fail state continuously tells other
processes that its status is failed.

We have discussed some local declarations of Termination
process in Modell. Now we discuss the local declarations of
remaining variables in Table VI.

calSN(), calcDiff(), isAvailable(): The three functions per-
form the combined functionality of identifying the healthy
processes for sending snapshot request messages. The function
calSN() calls the calcDiff() function. The calcDiff{) function
calls isAvailable() function for every process id. If a true value
is returned it means that the process is present in the F/[] of
calling process and there is no need to send snapshot request
message to that process.

AddIn(): The function AddIn() calculates the total incoming
weights of all the failed processes known to the current leader
during the snapshot. It adds the incoming weights of every
failed process to make a sum of incoming weights in Fin[].

www.ijacsa.thesai.org

274 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 4, 2018

receiver:int[0,max_proc_id],
second _id:int[0,max_proc_id]
weight[0]<9 && weight[1]<9 &&
receiver!=pid && second id==pid && !isFail(pid receiver)
basicMessageS[pid][weight[0]][weight[1]*2][receiver][second id]!

p sendTo=receiver

SNActivell==false b itailed idl=falled i,

Flushfailed_id]=failed id,

consistent=0,calcSN(failed_id)

\ [

j:int[0,max _proc_id]
failReport(j]? failed ids]
SN_Active()==true

updateQut(pid),
weight[1]=weight[1]*2

Flpid][failed id]=failed id,
Flush(failed_id]=failed id,
Leader()

.<fai|Report[j]? failed id=j

int[0,max_proc id] lisFail(pid,j) && SN_Active()==falsy

N\

consistent==
Sum[0]=TempSum{0],
Sum[1]=TempSum[1]

Temp Sum(pid),calcSN(SB id)
FDIFFCount()<1
&& consistent==

) FDiFFCount()>0 SB id=SBid acti

leaderF=pid
Snag‘
consistent==0

calSN(pid)

|| consistent==0
FlushF(),consistent=0,calcSN(SB id)

failReplyR[pid][SBi
SBid:int[0,max_py

-

basicMessageR[sender][weil][wei2][pid]?

recvdF=sender,valR1=weil, valR2=wei2, W1=weil W2=weil

sender:int[0,max_proc_id],
weil:int[0,max_weight],wei2:int[0,max _weight]

updateln(pid),

updateWeight())

SBid:int[0,max_proc id]
failRequestR[pid][SBid]?
SB id=SBid

leader=5B id,FlushF()

Td

'l AlSent()==true

failReplylpid]]SB id]!)

leadgr!=

failRequest{pid][x]!
Temp SN[x]=-1

consistent=1

N0 emp Sum(pid),
FTemplpid]=pid

updateln(pid),
updateWeight()

fail
sender:int[0,max_proc id], ..~
weil:int[0,max_weight], -
wei2:int[0,max_weight]

"

i i)
faIIREport[pld]'recvdF=sender,vaIR1=wei1,va|R2=wei2,

valR2=wei2, W1=weil W2=weil
basicMessageR[sender][weil][wei2][pid]?

pid==leader &&
weight[0]/weight[1]==Sum[0]/Sum[1]

controlMessageS[pid][weight[0]][weight[1]][leader][pid]!

pid!=leader .

sendTo=leader

pader
passive updateOut(pid),
weight[0]=0,weight[1]=0)
updateln(pid),)
updateWeight()
| pid==leader

sender:int[O,max_proc_id},weil:Terax_weight],
wei2:int[0,max_weight]
recvdF=sender,valR1=weil valR2=wei2,
valR2=wei2, W1=weil,W2=weil

' i21pid]?
announce. controlMessageR[sender][weil][wei2][pid]?

Fig. 4. Formal model for Termination process in Model2.

www.ijacsa.thesai.org 275|Page

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 4, 2018

F1 failreport[jl? j:int[0,max_proc_id]
Flpidl[filed_id]=filed_id, failed_id=j lisFail(pid,j) && SN_Active()==false
Flush[filed_id]=filed_id,
Leader()

leader!=pid
leader==pid

Temp(pid),
AllSent()==true consistent=1

Snap

calSN(pid),
TempSN()

@
active

SN[x]!=-1
x:int[0,max_proc_id]
failRequest[pid][x]}
Temp_SN[x]=-1

-

Fig. 5. Formal model for Action F1.

(consistent——o consistent==1
o Sum[0]=TempSum([0],
N

SN_Active==false Sum[1]=TempSum(1]

FDiFFCount()<1 &&
consistent==1

Snap Temp_Sum(pid),calcSN(SB_id) SBid:int[0,max_proc_id]
failReply[pid][SBid]?
FDIFFCount(>0] SB_id=5Bid O
. istent== active
calSN(pid), consis . _ . F3
TempSN() FlushF(),consistent=0,calcSN(SB _id)

AllSent()==true Temp_Sum(pid),
consistent=1

x:int[0,max_proc_id]
SN[x]!'=-1
failRequest[pid][x]!
Temp_SN[x]=-1

Fig. 6. Formal model for Action F3.
) O
(N\ N\)
F4

SN_Active()==false Flpid]ifailed_id]=failed._id, 0, max_pro.id]
. -) - ctive==true
Flush[failed_id]=failed_id, IR i
nsistent=0,calcSN(failed._id) ailReport]I
co ' - failed_id=j
() Snap
0
calSN(pid), active
TempSN() AllSent()==true Temp_Sum_(pld),
N consistent=1)

x:int[0,max_proc_id]
SN[x]!=-1
failRequest[pid][x]!
Temp_SN[x]=-1

Fig. 7. Formal model for Action F4.

www.ijacsa.thesai.org 276 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

failRequestR[pidl[SBIid]?

OFZ

SB_id=5Bid

active

failReply[pidl[SB_id]!

leader=5B_id, FlushF()

Fig. 8. Formal model for Action F2.

a(tivj@

fail

failReportipid]!

Fig. 9. Formal model for failed process.

TABLE VL LoCAL DECLARATIONS FOR TERMINATION PROCESS IN
MODEL2
This variable stores the id of the current leader of the system
leader

known to a process. It may be different for each process.
These variables record the ids of the message sender process
at different transitions.

The boolean variable that shows the consistency of the
snapshot request sent by the leader.

The TempSum array stores the sum of all the weights during
the snapshot.

The SN[] keeps the set of processes to which the snapshot
request is to be sent by the leader.

The Temp_SN array temporarily records the set of processes
to which the snapshot request message is to be sent by the
leader. After sending the snapshot request to a process, the
sender removes this process from Temp_SN[]. This array
becomes empty after sending snapshot request message to
all the healthy processes.

A local variable that stores the id of the failed process at

SB_id and SB_id2

consistent

TempSum|[]

SN[]

Temp_SN[maxproc]

failed_id different transitions.

This array keeps the record of failed processes for which all
Flush[] L

further communications are flushed.

The Stemp array contains the list of all the instances of
Stemp([]

Termination process taking part in the system.

AddOut(): Tt calculates the total outgoing weights of all
the failed processes known to the current leader during the
snapshot. It then adds the outgoing weights of every failed
process to make a sum of outgoing weights in FOut/[].

Flin_FOut_Diff(): This function checks the difference of
incoming weights and outgoing weights. It uses the Fin[]
for incoming weights and FOut[] for outgoing weights. It
subtracts the outgoing weights from incoming weights. Then
it moves the difference to FI_FO_Diff[].

Vol. 9, No. 4, 2018

Temp_Sum(): This function adds the FI_FO_Diff values
with [I/n]. The sum is stored in TempSum/]. The Temp_Sum()
function calls FIn_FOut_Diff{) function, the FiIn_FOut_Diff{)
function calls AddOut() function, the AddOut() function calls
AddIn() function. In this way all the calculations are done
properly. The benefit of calling functions inside other functions
is that we just call the Temp_Sum() function on a transition and
all the calculations for TempSum/[] are done properly.

AllSent(): It checks if the snapshot requests have been sent
to all the healthy processes.

isFail(): A process uses this function to check the entry of
a failed process in F[]. If record found then current process
can not detect the failure of this process again.

Leader(): The Leader() function makes the new leader
when a process detects failure of some other process. This
function is very important because if the leader fails then the
system needs a new leader to collect the weights and send
snapshot request messages. This function makes the leader to
a healthy process with minimum id. If the failing process is not
the leader then this function again selects the previous leader.

SN_Active(): System uses this function at different transi-
tions to check if a snapshot is already in progress. The function
returns a true value if snapshot is already in progress otherwise
returns a false value.

FDiFFCount(): It calculates the difference of F[] of snap-
shot reply sending process and the F[] of the leader when the
leader receives the snapshot reply message.

D. The Automaton for SnapBuffer Process

The automaton for the SnapBuffer process is depicted in
Fig. 10. The process is initiated four times to make four in-
stances, each of which is triggered by a certain communication
with the Termination process. The specification of the Snap-
Buffer process in the protocol has following communicative
choices:

1) Receiving a snapshot request message from leader to
store it.

2) Sending a stored snapshot request message to a
Termination process.

3) Receiving a snapshot reply message from a Termina-
tion process to store it.

4) Sending a stored snapshot reply message to leader.

The process receives a snapshot request message through
failRequest? channel. The guard makes sure that buffer is
empty and can receive this message. After receiving this
message the IsEmpty variable is assigned a false value to
show that now buffer is non-empty. The SnapBuffer process
delivers the stored snapshot request message to the recipient
through failRequestR! channel. The guard makes sure that
buffer contains a message for sending. After sending this
message the variable IsEmpty is set true to show that now
buffer is empty again. The SnapBuffer process receives a
snapshot reply message through failReply? channel. The guard
ensures that buffer is empty and can receive this message. After
receiving this message the IsEmpty2 variable is assigned a false
value to show that now buffer is non-empty. The SnapBuffer
process sends the stored snapshot reply message to the leader

www.ijacsa.thesai.org

277 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

ISEmpty2==true
failReply[sender][sid]?

F_sender2=sender,
ISEmpty2=false

ISEmpty==true ISEmpty==false

failRequest[sender][sid]? @ failRequestR[sid][F_sender]!
ISEmpty=true

F_sender=sender,
IsEmpty=false

failReplyR[sid][F_sender2]!
ISEmpty2==false
IsEmpty2=true

Fig. 10. Formal model for SnapBuffer process.

through failReplyR! channel. After sending the message the
variable IsEmpty?2 is set true to show that now buffer is empty
again.

The local declarations of SnapBuffer process are described
in Table VII.

TABLE VIIL LoCcAL DECLARATIONS FOR SnapBuffer PROCESS

These variables store the process id of the snapshot
request sender and process id of the snapshot reply
sender, respectively.

Boolean variables which indicate free space for incom-
ing snapshot request message and incoming snapshot
reply message, respectively.

F_sender and F_sender2

IsEmpty and IsEmpty2

VI. FUNCTIONAL REQUIREMENTS

The functional requirements illustrate the behaviour of the
system and explain what an intended system should do. In
other words, they describe the functionality of the system.
Every protocol has some functional requirements. We discuss
and verify these requirements for both models separately.

A. Functional Requirements for Modell

We extract three functional requirements from the protocol
for Modell. These are given as:

R1: No deadlock is supposed to be there except when
the leader process is at announce state and all
other processes are at passive state. This indicates
that all the processes are idle and the leader has
collected all the weights successfully resulting in
proper termination of the system.

R2: This requirement states that after doing certain
communications and collecting the weights of
other processes, the leader process eventually
reaches at announce state.

R3: According to this requirement, after doing certain
message communications all the processes must
be idle at passive state. All the processes eventu-
ally reach at passive state.

Vol. 9, No. 4, 2018

There are three invariants given in the protocol at page 12
of [7]. These invariants are expected to be preserved by the
system.

INV1: In Modell, no process fails. It means all the
processes are healthy. The process with minimum
id is the leader of the system. This invariant is
for all the healthy processes other than the leader.
This invariant states that at any time, if a process
is at passive state then it must have a zero weight.
Similarly, if a process has zero weight then it must
be at passive state.

This invariant is related to message sending. All
processes can pass basic messages to each other.
Every process can also send control messages to
the leader. A process sends some weight with ba-
sic and control messages. This invariant describes
that the weight sent with any message must be
greater than zero.

At the start of the computation, every process is
given an equal initial weight. A process sends
some of its weight when it sends a basic or con-
trol message. Each process receives some weight
when it receives that message. It updates its
weight after sending or receiving a message. All
processes also record their incoming and outgoing
weights. This invariant states that for all healthy
processes at any time, the sum of current weight
and all outgoing weights of a process must be
equal to the sum of its initial weight and all
incoming weights.

INV2:

INV3:

B. Functional Requirements for Model2

For Model2, we extract three functional requirements.

R1: This requirement describes that some process
reaches at the announce state to make sure that
all the weights are collected and the system is
terminated properly.

R2: A faulty process cannot be the leader of the
system. This requirement is not satisfied. We
discuss a scenario in which this requirement is
violated. We have 4 instances of the Termination
process. These are p0, pl, p2 and p3. The pO is
the leader of the system. The leader sends the
snapshot request message to all the processes.
These messages are yet stored in buffers and not
delivered to the recipients. Meanwhile, the leader
fails. The pl detects the leader to be faulty and
calculates the new leader with minimum id from
healthy processes. It becomes the leader itself.
But in future, when it receives the stored snapshot
request message sent by p0, it makes the p0 as
the leader of the system. The pO is faulty and is
supposed to be the leader of the system again.
That is why this is the clear violation to this
functional requirement.

R3: This requirement states that every time the leader
fails, the snapshot is called. The healthy process
with minimum id calls the snapshot. But this
requirement is trivially violated when the p0 fails
and the p/ becomes passive without detecting the

www.ijacsa.thesai.org

278 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

fault. The p2 and p3 also become passive. Now
the snapshot is never called by any process.

The three invariants discussed for Modell must be pre-
served for Model2 also.

VII. FORMAL SPECIFICATION OF REQUIREMENTS

In this section, we describe formal specification of the
requirements and invariants. We also present the formalism
for these requirements.

A. Requirement Formal Specification for Modell

According to requirement R1, there should not be a dead-
lock if the leader is not at announce state or any of the other
process is not at passive state. The formula for this requirement
is given as.

A[] deadlock imply (Termination (0) .announce and
Termination(l) .passive and
Termination (2) .passive)

The requirement R2 says that the system is terminated properly
if the leader reaches at announce state for every path of execution.
The formula for the requirement is given as:

A<> Termination (0) .announce

All the processes must reach at passive state for proper termina-
tion of the system according to the requirement R3. Given below is
the formula for R3:

E<> forall(i:id_t) Termination(i) .passive

The formula for INV1 is presented below. A process moves from
passive to A2_] state after receiving a basic message. Then this
process updates its weight in next transition. It means, like passive
state this process has a zero weight at A2_J state. So, we are including
this state in the formula for INV1.

A[] ((Termination(l) .passive imply
Termination(l) .weight [0]==0) and
(Termination(1l) .weight [0]==0 imply
Termination(l) .passive or Termination(l).
A2_1)) and ((Termination(2) .passive imply
Termination(2) .weight [0]==0) and
(Termination (2) .weight [0]==0 imply
Termination(2) .passive or Termination(2).
A2_1))

Now we discuss the formula for INV2. Each process updates
two global variables W1 and W2 after receiving a basic or a control
message. The W1 records the first value and W2 records the second
value of received weight. If these variables always keep some non-
zero value of weight then it means every message sent by any process
has a non zero weight. The formula for this invariant is given as:

A[] W1!=0 and W2!=0

The invariant INV3 is for all healthy processes. The formula for
this invariant is:

Vol. 9, No. 4, 2018

A[] forall(i:id_t)
Termination.In_Out_Equal (i)==true

This invariant INV3 uses five functions for its calculations. These
functions are AddInWeights(), InSum(), AddOutWeights(), OutSum(),
and In_Out_Equal(). All these functions perform combined function-
ality for verification of INV3. The function AddInWeights() adds all
the incoming weights recorded in In_arr[] of calling process. The
function InSum() adds the current weight and the some of incoming
weights and stores the result in femplIn/[]. The AddOutWeights() func-
tion adds all the outgoing weights recorded in Out_arr[] of a process.
The function OutSum() calculates the sum of initial weight and all
outgoing weights of a process and stores the result in tempOut/].
At the end In_Out_Equal() checks the equality of fempln[] and
tempQut(]. If both arrays are equal then this function returns a true
value otherwise a false value.

B. Requirement Formal Specification for Model2

According to requirement R1, some process reaches at the an-
nounce at some time. The formula for this requirement is given as:

A<> exists(i:id_t) Termination (i) .announce

The requirements R2 and R3 are clearly discussed with examples
in Model2 requirements part. Now we discuss the formula for
invariant INV1. Formalism for this invariant is given as:

A[] forall(i:id_t ((Termination (i) .notMin(1i)==
true and Termination(i) .passive imply

Termination (i) .weight [0]==0) and
(Termination (i) .notMin (i) ==true and
Termination (i) .weight [0]==0 imply

Termination (i) .passive or Termination(i).A2_1))

The function notMin() checks if the calling process belongs to
faulty set of processes or it is a healthy process with minimum id.
It returns false if the process is faulty or it is healthy with minimum
id. It returns true otherwise allowing other processes to check their
weight at the passive state.

The formalism for INV3 for Model2 is similar to formalism of
INV3 for Modell. All the functions and their definitions are same.
But Model2 uses an extra function Equal() that checks if the calling
process is faulty. It means we are just concerned with the calculations
for healthy processes. If calling process is healthy then it returns
true if the invariant is preserved and returns false if the invariant is
violated. The formula for this invariant is given as:

A[] forall(i:id_t) Termination(i) .Equal (i)==
true

VIII. VERIFICATION RESULTS FOR MODELI1

This section shows the simulation results of formalism for func-
tional requirements and invariants for Modell. These results are
collected by executing the formulas in verifier of the UPPAAL tool-
set. For simplicity we use the Buffer instead of the MessageBuffer
in all counterexamples. Results for Modell are given below in Table
VIII. We verify our system model for,

Total Number of Termination Process Instances = 3

Total Weight of the System = 1

www.ijacsa.thesai.org

279 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE VIII. REQUIREMENT RESULTS FOR MODELI1

Requirement [Status [Computational Time |

RI1* Satisfied, 225504590 states 57600m23.345s
R2* Satisfied, 32045480 states 7200m53.167s
R3 Satisfied, 18986 states 3.564s

INV1* Satisfied, 28006031 states 7210m34.453s
INV2* Satisfied, 25933265 states 7206m12.560s
INV3* Satisfied, 20568945 states 7002m19.350s

Weight of Each Instance = 1/3

Requirement R3 is satisfied. For R1, R2, INV1, INV2 and INV3,
state space is not fully explored. We are not sure about their final
results. We explored these requirements for breadth first searching
technique. Our claims are limited to the number of states and time
given in Table VIII.

IX. VERIFICATION RESULTS FOR MODEL2

Results for Model2 are given below in Table IX. We verify our
system model for,

Total Number of Termination Process Instances = 4
Total Weight of the System = 1
Weight of Each Instance = 1/4

TABLE IX. REQUIREMENT RESULTS FOR MODEL2
[Requirement [Status [Computational Time |
R1 Not satisfied 06.307s
INVI1* Satisfied, 25166435 states 7215m33.873s
INV2* Satisfied, 42542339 states 11520m21.212s
INV3 Not satisfied 20.353s

In Model2, for INV1 and INV2, state space is not fully explored.
We are not sure about the final results of these invariants. We explored
these requirements using breadth first searching technique and we
claim these results to the number of states given in Table IX. The
requirement R1 is not satisfied. The counterexample for this violation
is shown in Fig. 11. The p3 sends a basic message to p0. The pI and
p2 send control messages to p0. Then p0 sends a basic message to
p3. After this, p3 receives the basic message sent by p0 and sends
the control message to p0. After doing all these communications, p0
fails and other three processes become passive. In this case, there is
no process that is active and detect p0 as faulty. So, it is not possible
to collect the weights carried by p0. Therefore, the announce state is
not reachable in this scenario.

The invariant INV3 violates in the given scenario. The p0 sends
a basic message to pl and becomes passive. The pl sends a basic
message to p0 and reaches at A/ state. The p2 sends a control message
to pO and visits A3 state. After this, pO receives the control message
of p0 and becomes passive. At passive state, it receives the basic
message from pl and reaches at active state. In the whole activity
p3 stays at active state. The invariant is not satisfied in this situation.
The counter example for this violation is shown in Fig. 12.

X. LIMITATIONS AND CHALLENGES

There are some limitations for verification of intended termination
detection protocol. We limit the concurrent fermination processes
to three in case of fault-free distributed system and four for faulty
distributed system. The basic message sending limit for any process
is two. The models generate a huge state space with millions of
states. The purpose of these limitations is to reduce the state space of
our computations. The machines and servers used in our verification
have limited resources for memory and speed. We performed some
computations on the machine with 16GB RAM, core i7(4th Gen) CPU

Vol. 9, No. 4, 2018

and 3.4 GHz clock speed. We also performed some computations on
mammoth server (tue.nl) which has 56 machines with 2 GHz speed
and a total of 935GB RAM.

We faced some challenges during the modeling and verification
of the protocol. The total weight of the system is 1 and initial weight
of each process is I/n where n is the total number of processes. The
expression //n returns fractional values. At the end of the computation
it becomes hard to make the sum of all weights to 1 due to possible
rounding errors. The first challenge was to manage a single weight
in the form of a pair of integers. We presented the weight //n in the
form of two values as [1,n]. This method created many difficulties
for accurately calculating the incoming, outgoing and current weights
of the processes. This was also a big challenge to correctly model the
protocol and its invariants in UPPAAL. We used model abstraction
for reducing the state space that was also a challenge.

XI. CONCLUSION

We formalised both parts of termination detection protocol as
specified in [7] in the timed-automata-theoretic formalism of UP-
PAAL. We formally specified and performed verification analysis of
the protocol with respect to its functional requirements and invariants.
During our formal analysis, we found some scenarios in which the
protocol does not meet its functional requirements. Counter example
are there to witness the claimed results.

REFERENCES

[11 W. Fokkink, Distributed algorithms: an intuitive approach. MIT Press,
2013.

[2] K. M. Chandy and J. Misra, “Asynchronous distributed simulation
via a sequence of parallel computations,” Commun. ACM,
vol. 24, no. 4, pp. 198-206, Apr. 1981. [Online]. Available:
http://doi.acm.org/10.1145/358598.358613

[3] K. M. Chandy, J. Misra, and L. M. Haas, “Distributed deadlock
detection,” ACM Trans. Comput. Syst., vol. 1, no. 2, pp. 144-156, May
1983. [Online]. Available: http://doi.acm.org/10.1145/357360.357365

[4] G. Tel and F. Mattern, “The derivation of distributed termination
detection algorithms from garbage collection schemes,” ACM Trans.
Program. Lang. Syst., vol. 15, no. 1, pp. 1-35, Jan. 1993. [Online].
Available: http://doi.acm.org/10.1145/151646.151647

[5] E. W. Dijkstra and C. Scholten, “Termination detection
for diffusing computations,” Information Processing Letters,
vol. 11, mno. 1, pp. 1-4, 1980. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/0020019080900216

[6] N. Francez, “Distributed termination,” ACM Trans. Program. Lang.
Syst., vol. 2, no. 1, pp. 42-55, Jan. 1980. [Online]. Available:
http://doi.acm.org/10.1145/357084.357087

[71 Y. Tseng, “Detecting termination by weight-throwing in a faulty
distributed system,” J. Parallel Distrib. Comput., vol. 25, no. 1, pp.
7-15, 1995. [Online]. Available: https://doi.org/10.1006/jpdc.1995.1025

[8] X. Wang and J. Mayo, “A general model for detecting distributed
termination in dynamic systems,” in /8th International Parallel and
Distributed Processing Symposium, 2004. Proceedings., April 2004,
p. 84.

[91 G. Tel and F. Mattern, “The derivation of distributed termination
detection algorithms from garbage collection schemes,” ACM Trans.
Program. Lang. Syst., vol. 15, no. 1, pp. 1-35, Jan. 1993. [Online].
Available: http://doi.acm.org/10.1145/151646.151647

[10] F. Mattern, H. Mehl, A. A. Schoone, and G. Tel, “Global virtual time
approximation with distributed termination detection algorithms,” Tech.
Rep., 1991.

[11] S. Chandrasekaran and S. Venkatesan, “A message-optimal algorithm
for distributed termination detection,” J. Parallel Distrib. Comput.,
vol. 8, mno. 3, pp. 245-252, mar 1990. [Online]. Available:
http://dx.doi.org/10.1016/0743-7315(90)90099-B

[12] J. Pang, Analysis of a Security Protocol in puCRL, C. George and
H. Miao, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002.
[Online]. Available: http://dx.doi.org/10.1007/3-540-36103-040

www.ijacsa.thesai.org

280 |Page

[13]

[14]

[15]

[16]

[17]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 4, 2018

Termination(0) Termination(1) Termination(2) Termination(3) Buffer(0,1) Buffer(0,2) Buffer(0,3) Buffer(3,0)
i 1 1« ‘ 1 ‘ 1 ‘ 10 ‘ 1T ‘ 1 ‘
active active active ‘ active ‘ _— ‘ ‘ — ‘ ‘ JE— ‘ ‘ JE— ‘
‘ ‘ basicMessage ‘ J

[
‘A3

‘ active ‘

‘ controlMessage

.l

L

]

active
controlMessage
A3

active

basicMessage

‘ basicMessage
Al
‘ A3 ‘ ‘passivc
A3 passive
Al passive
active
active
passive ‘passive ‘passive ‘ _ ‘

Fig. 11. Trace for R1 in Model2.

W. H. J. Feijen and A. J. M. van Gasteren, Shmuel Safra’s Termination
Detection Algorithm. New York, NY: Springer New York, 1999. [Online].
Available: http://dx.doi.org/10.1007/978-1-4757-3126-229 [18]

N. Mittal, S. Venkatesan, and S. Peri, Message-Optimal and Latency-Optimal
Termination Detection Algorithms for Arbitrary Topologies, R. Guerraoui, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. [Online]. Availablef]19]
http://dx.doi.org/10.1007/978-3-540-30186-82 1

N. R. Mahapatra and S. Dutt, “An efficient delay-optimal distributed
termination detection algorithm,” Journal of Parallel and Distributed
Computing, vol. 67, no. 10, pp. 1047-1066, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731507000998

J. S. Ostroff, “Formal methods for the specification and design of real-time
safety critical systems,” J. Syst. Softw., vol. 18, no. 1, pp. 33-60, Apr. 1992.
[Online]. Available: http://dx.doi.org/10.1016/0164-1212(92)90045-L

A. O. Gomes and M. V. M. Oliveira, Formal Specification of a Cardiac Pacing
System, A. Cavalcanti and D. R. Dams, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2009. [Online]. Available: http://dx.doi.org/10.1007/978-
3-642-05089-344
Y. K. H. Lau, “The design of distributed safety critical software using csp,”
in IEE Colloquium on Safety Critical Software in Vehicle and Traffic Control,
Feb 1990, pp. 8/1-8/5.

K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” 1997.

www.ijacsa.thesai.org

281 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 4, 2018

Termination(0) Termination(1) Termination(2) Buffer(0,1) Buffer(0,2) Buffer(1,0)

active active

active

Hy
1

basicMessage

},

active

passive

active —
basicMessage
1 active -
controlMessage

passive A3

e

i
i

basicMessage

active

active

-

0 B 2 5 o

Fig. 12. Trace for INV3 in Model2.

www.ijacsa.thesai.org 282 |Page

