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Abstract—Human emotions play a key role in numerous 

decision-making processes. The ability to correctly identify likes 

and dislikes as well as excitement and boredom would facilitate 

novel applications in neuromarketing, affective entertainment, 

virtual rehabilitation and forensic neuroscience that leverage on 

sub-conscious human affective states. In this neuroinformatics 

investigation, we seek to recognize human preferences and 

excitement passively through the use of electroencephalography 

(EEG) when a subject is presented with some 3D visual stimuli. 

Our approach employs the use of machine learning in the form of 

deep neural networks to classify brain signals acquired using a 

brain-computer interface (BCI). In the first part of our study, we 

attempt to improve upon our previous work, which has shown 

that EEG preference classification is possible although accuracy 

rates remain relatively low at 61%-67% using conventional deep 

learning neural architectures, where the challenge mainly lies in 

the accurate classification of unseen data from a cohort-wide 

sample that introduces inter-subject variability on top of the 

existing intra-subject variability. Such an approach is 

significantly more challenging and is known as subject-

independent EEG classification as opposed to the more 

commonly adopted but more time-consuming and less general 

approach of subject-dependent EEG classification. In this new 

study, we employ deep networks that allow dropouts to occur in 

the architecture of the neural network. The results obtained 

through this simple feature modification achieved a classification 

accuracy of up to 79%. Therefore, this study has shown that the 

use of a deep learning classifier was able to achieve an increase in 

emotion classification accuracy of between 13% and 18% 

through the simple adoption of the use of dropouts compared to a 

conventional deep learner for EEG preference classification. In 

the second part of our study, users are exposed to a roller-coaster 

experience as the emotional stimuli which are expected to evoke 

the emotion of excitement, while simultaneously wearing virtual 

reality goggles, which delivers the virtual reality experience of 

excitement, and an EEG headset, acquires the raw brain signals 

detected when exposed to this excitement stimuli. Here, a deep 

learning approach is used to improve the excitement detection 

rate to well above the 90% accuracy level. In a prior similar 

study, the use of conventional machine learning approaches 

involving k-Nearest Neighbour (kNN) classifiers and Support 

Vector Machines (SVM) only achieved prediction accuracy rates 

of between 65% and 89%. Using a deep learning approach here, 

rates of 78%-96% were achieved. This demonstrates the 

superiority of adopting a deep learning approach over other 

machine learning approaches for detecting human excitement 

when immersed in an immersive virtual reality environment. 
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I. INTRODUCTION 

We have conducted a number of prior investigations into 
the use of electroencephalography (EEG) as a method for 
passively monitoring the brainwaves of users as they are 
exposed to 3D visual stimuli as well as immersive stimuli and 
then using different machine learning algorithms to predict 
their preferences among the various visual stimuli [1], [2]. In 
the first part our study, we focus on human preference 
classification. The ability to passively identify the preferences 
of users as they are being presented with different stimuli will 
have novel and significant applications in various choice-based 
domains such as neuromarketing, affective entertainment, 
virtual rehabilitation and forensic neuroscience. 

In our early work with a small set of five test subjects, good 
classification rates of up to 80% were attained using simple k-
nearest neighbor (kNN) classifiers [1]. However, when the 
number of test subjects was increased to 16, the noise arising 
from inter-subject variability became a substantial factor which 
made the classification process significantly more challenging 
[2]. While most studies generally deal only with intra-subject 
variability where for each user, retraining is required before 
classification testing. We attempt a cohort-wide classification 
to enable direct applications to new users without the need for 
per-person pre-training before classification usage. In the our 
expanded study, classification rates for the large majority of 
conventional classifiers such as kNN, support vector machines, 
Naïve Bayes, Random Forest, C4.5 and other rule-based 
classifiers were only between 56-60%. The best classification 
result obtained from this comparative study was using deep 
neural networks at 64% [2]. 

The second part of our study focuses on excitement 
detection in immersive environments since much less is known 
about human emotion recognition in fully immersive 
environments such as virtual reality (VR). VR environments 
provide an arguably more effective emotion stimulating 
environment since users are fully immersed in the stimulus 
environment without any distracting views and/or other stimuli 
such as those present when using conventional displays such as 
computer and TV screens. Furthermore, users are free to move 
their heads to fully view their VR environments, which is more 
akin to their real-world viewing experience, hence suggesting 
the possibility of greater emotional response correlation with 
real life experiences. Additionally, as VR continues to garner 
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widespread adoption among everyday consumers, the ability to 
incorporate an effective emotion recognition system for VR 
applications will open up a wealth of novel interactions 
between the user and the VR experience particularly in the 
video gaming, live events, video entertainment, retail, real 
estate, healthcare, education, military and engineering 
domains [3]. 

As such, the main objective of the study is to investigate 
the various architectural tuning of the deep neural networks for 
improving the classification rates of our EEG-based preference 
classification as well as excitement classification task. 
Section II presents the background on emotion classification. 
Section III presents our approach to EEG-based preference and 
excitement classification using visual stimuli. Section IV 
presents the results of our investigations and Section V 
concludes the paper with some future avenues for expanding 
upon the current work. 

II. BACKGROUND 

A. Emotion  Modeling and Classification 

Emotion classification entails the use of various 
physiological signals and markers in an attempt to identify 
different emotions such as the user being in a state of anger, 
disgust, happiness, sadness, fear, anxiety, excitement and 
surprise among other [4], [5]. Some commonly measured bio-
signals include the heart rate, skin conductance, pupil dilation, 
respiration rate and also brainwaves, which is also known as 
EEG [6], [7]. 

EEG-based emotion classification typically involves the 
measurement of the millivolt-range electrical signals through 
the placement of a number of electrodes on the scalp of the 
user, the waveforms of which are then spectrally transformed 
into features used by machine learning algorithms trained on 
labelled data to predict the emotion currently being sensed. 
Numerous studies have shown that classifications for various 
emotions can be reliable obtained using EEG. 

B. Emotion Classification of Preferences 

Preference classification can be considered a sub-task of 
emotion classification. This more specific task entails the 
identification of a user‟s like or dislike when presented with a 
stimulus. Preference classification is generally considered to be 
more challenging to classify compared to other emotions that 
are more strongly evoked such as anger or sadness. 

The very large majority of EEG-based preference 
classification has been conducted using music as the stimulus 
[8], [9]. There have been very limited studies done using 2D 
images [10], [11] whereas our earlier studies were the first to 
implement rotating virtual 3D images as the stimulus [1], [2]. 
Furthermore, preference classification, which is already more 
challenging compared to other forms of emotion classification 
due to its comparatively weaker evocation, is rarely studied as 
a cohort-wide classification task. EEG-based emotion 
classification with large-sized cohorts will typically yield 
significantly lower accuracy rates due to inter-subject [12] and 
as well as intra-subject variability [13]. Doing so requires the 
classifier to be able to overcome inter-subject variability in 
addition to intra-subject variability of the users‟ EEG signal. 

Consequently, the weak signal evocation and inter-subject 
variability make EEG preference classification a very 
challenging classification task. 

C. Extraction of Features from EEG Signals 

Emotion modeling using machine learning approaches can 
be categorized into three broad domain classes: (i) time, (ii) 
frequency, and (iii) time and frequency combination. Time-
based emotion modeling employs the detection of event-related 
potentials (ERPs). Of these, they can be further divided into 
groups that are detected based on whether they are having 
short, medium or long post-latency exposures after stimuli 
presentation. Emotion classification for valence and arousal 
produced accuracy rates of 55.7% for arousal and 58.8% for 
valence [14] when using these ERP-based methods. 

The classification of emotions based on the frequency 
domain is achieved through the learning of features obtained 
power spectrum analysis, producing the canonical delta, theta, 
alpha, beta and gamma frequency bands. Emotion 
classification for the preference of music produced an accuracy 
of 74.8% with linear support vector machines (SVMs) using 
the preprocessed features obtained through the Common 
Spatial Patterns (CSPs) method [15]. Emotion classification for 
the preference of music via preprocessed features obtained 
from a using a conventional Fast Fourier Transform (FFT) 
produced a classification accuracy rate of 85.7% using SVMs 
[16]. Radial SVMs were used in the only published emotion 
classification of preferences not using music stimuli, in this 
case for 2D image preferences using power spectrum analysis 
where the classification outcome produced an accuracy of 
88.5% [17]. 

From the perspective of using a combination of time and 
frequency (TF) leverages on the power spectrum analysis at 
predefined time periods that encompass the whole duration of 
the post stimuli period for measuring brain activity. Several 
conventional machine learning algorithms were used to 
conduct emotion classification tasks employing three distinctly 
different TF analysis methods were studied to identify the 
preference for music. Here, it was observed that the k-Nearest 
Neighbors (kNN) machine learning approach produced the 
overall best outcome with an accuracy of 86.5% [18]. The 
same group of researchers then conducted a follow-on 
investigation utilizing a much finer-grained approach which 
attempted to categorize the emotion stimuli into two groups: 
(i) familiar versus, (ii) unfamiliar music. In this later study, 
using a kNN machine learning approach, they managed to 
produce a much higher emotion classification accuracy of 
91.0% [19]. Emotion modeling for the preference of music 
using TF approaches used a Short-Time Fourier Transform 
(STFT) and using a kNN machine learning approach produced 
emotion classification accuracy rates of 98.0% [20]. 

D. Preference Classification using Deep Learning 

Approaches 

The preferences of 32 participants for the viewing of music 
video clips was attempted using deep learning via the Deep 
Belief Networks (DBNs) approach [21]. DBNs accomplish 
deep learning through the stacking of various Restricted 
Boltzmann Machines (RBMs) on top of each other. In this 
method of deep learning, the output obtained from a lower-
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level RBM is subsequently utilized to serve as the input to a 
higher-level RBM. This process is continued progressively 
through deeper and deeper layers thus forming a multi-layer 
stacking of these so-called RBMs. An average emotion 
classification accuracy of 77.8% was obtained where this 
method performed significantly better than various types of 
different SVMs as well as standard non-stacked RBMs. 

A limited study involving only 6 subjects was reported for 
the emotion classification of participants when presented with 
the stimuli of viewing a number of short video clips for the 
elicitation of emotions with positive or negative valences [22]. 
In a novel approach for the emotion classification task which 
utilizes only the top five EEG recording electrodes, the 
investigation produced emotion classification accuracies of 
87.6% using DBN's with this novel critical feature channel 
selection method. These results were observed to perform 
better than Extreme Learning Machines (ELMs) as well as 
SVMs and at the same time was observed to perform 
significantly better than the kNN machine learning approach. 
However in both of these two reported studies, it is important 
to point out that the training and classification prediction tasks 
were accomplished on a per-subject basis and not over the 
entire cohort of participants, which means that this only caters 
for intra-subject variability and not inter-subject variability. In 
other words, these two studies utilized an approach that 
requires the retraining of machine learning classifiers during 
the training phase whenever there is a new participant before 
the emotion classification prediction task can be performed. 
Essentially what this intra-subject or subject-dependent method 
employs is an approach that bypasses the difficulty of handling 
inter-subject variability and only caters for intra-subject 
variability, which means that it will not work for subject-
independent classification tasks. 

From the literature survey, there was only one paper found 
in which the deep learning approach was used in emotion 
modeling to classify preferences in a subject-independent 
methodology. Here it was reported that using a combination of 
unsupervised learning employing stacked autoencoders (AEs) 
in conjunction with the supervised learning of softmax 
machine learning classifiers was able to perform prediction of 
the emotional states for 32 participants for valence and arousal. 
Nonetheless, this paper reported the requirement of utilizing an 
extremely large number of hidden neurons in the deep learning 
classifier. It is interesting to note that the authors themselves 
alluded to the fact that an extended amount of computational 
time was utilized during the training phase with such an 
approach. Subsequently the authors hybridized this approach 
with feature preprocessing routines employing Principal 
Component Analysis (PCA) as well as Covariate Shift 
Adaptation (CSA) during the pre-learning process. However, 
even with the extended processing time and numerous 
augmentations with supplementary preprocessing, the emotion 
modeling was only able to produce very low prediction 
accuracy rates of 53.4% and 52.0% for valence and arousal 
classification, respectively from this subject-independent 
approach using leave-one-out cross-validation (LOOCV) [23]. 
What this study clearly demonstrates is the fact that inter-
subject variability very significantly and critically adds 
tremendous difficulty to the classification of emotions based on 

preferences when compared against the much more common 
and significantly easier prediction task of subject-dependent 
studies that only caters for intra-subject variability in the 
learning of the EEG-based emotion modeling. 

E. Classification of Affective States in Virtual Reality and 

Mixed Reality Environments 

There have been very few studies that have conducted 
human emotion recognition that have used virtual reality 
environments as the stimulus. To the best of our knowledge, 
there has yet to be any study that uses solely EEG to detect 
human emotions using purely VR stimulus. 

Wu et al. [24] used a Virtual Reality Stroop Task (VRST) 
from the Virtual Reality Cognitive Performance Assessment 
Test (VRCPAT) to detect arousal levels in their attempt to 
identify various affective/cognitive states. A number of VR 
stimuli were presentations with various levels of arousal were 
selected from the VRST. It was shown that a relatively high 
classification accuracy rate of 96.5% using support vector 
machines (SVM) could be achieved through VR stimuli. 
However, the study used an elaborate and involved sensor 
setup with a wide range of psychophysiological responses 
which included skin conductance level, respiration, ECG, as 
well as EEG were used to conduct the emotion recognition 
task. As such, it remains unknown if a much simpler setup 
involving EEG alone would be feasible in achieving successful 
emotion recognition. 

Massari et al. [25] and Kovacevic et al. [26], respectively 
used mixed reality stimuli to conduct brain state recognition 
based solely on EEG signals as input to the classification 
system. Massari et al. utilized their proprietary eXperience 
Induction Machine (XIM) as the mixed reality stimuli system 
to classify different brain states for spatial navigation, reading 
and calculation, achieving the best results of 86% using linear 
discriminant analysis [25]. Kovacevic et al. implemented an 
EEG-based mental state recognition system as part of an 
immersive and interactive multi-media science-art installation 
using the recognition of relaxation and concentration mental 
states of its participants to determine the audio-visual output of 
a dome-based artistic installation comprising video animations 
that were projected on to the 360° surface of the 
semitransparent dome as well as the generation of soundscapes 
based on pre-recorded sound libraries and live improvisations 
[26]. Although both these studies utilized EEG solely as the 
feature input, these studies were not specifically classifying 
emotional states and both were utilizing mixed reality stimuli 
rather than pure virtual reality stimuli. As such, it remains 
unknown whether a purely VR-based stimulus system could be 
successfully used for emotion recognition. 

III. METHODOLOGY 

A. Experimental Setup for Preference Classification 

Emotion classification entails the use of various 
physiological signals and markers in an attempt to identify 
different emotions such as the user being in a state of anger. In 
this, first of this investigation for preference classification, 16 
subjects (8 female and 8 male, mean age = 22.44) were 
involved where all the participants and had corrected-to-normal 
or normal vision. Furthermore, they were asked and confirmed 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 5, 2018 

135 | P a g e  

www.ijacsa.thesai.org 

to be free of any known history of psychiatric illnesses prior to 
the participation in the study. The participants were briefed on 
what to expect in terms of the BCI equipment that was to be 
used during the data acquisition phase before the actual 
experimentation was to proceed. The EEG acquisition device 
was a brain-computer interface (BCI) headset called the ABM 
B-Alert X10, which has nine active electrodes, namely the 
POz, Fz, Cz, C3, C4, F3, F4, P3 and P4 channels according to 
the standard 10-20 naming convention where a subject 
participant wearing the said BCI headset is depicted in Fig. 1. 
MATLAB, Java and R were the three programming languages 
used. The visual stimuli were developed and displayed using 
the Java programming language. Integration between the visual 
stimuli and the BCI headset was accomplished by 
implementing the MATLAB programming language with the 
B-Alert X10's SDK. Finally, the statistical programming 
language R was used for the signal preprocessing phases, 
feature extraction, and finally for the training and prediction 
classification tasks. 

The data acquisition processes experienced by the 
participants are as shown in Fig. 2 where during the 
commencement of the data acquisition process, a blank screen 
of three seconds is shown to the participant to obtain the base 
resting brain signal in order to avoid any brain activities related 
to the previous stimuli during the actual emotion modeling trial 
phase. After this blank screen, there will be between five to 
fifteen of actual viewing time for the 3D stimuli where the 
minimum viewing time and maximum viewing time is set 
between five and fifteen seconds respectively. The participant 
is allowed to commence to the following rating state based on 
their own choosing after the minimum viewing duration time 
of five seconds while once the maximum viewing duration 
time is up, the system will proceed by default to the next rating 
state. The purpose of implementing this particular method of 
the data acquisition process flow is to allow the participant to 
decide on their own accord during the stimuli viewing time so 
as to mitigate the possibility of boredom from setting in and 
making the participant fatigued while viewing the stimuli 
during the data acquisition process since requiring the 
participant to continuously view only at fixed intervals in a 
repetitive manner for the purposes of rating the stimuli could 
possibly cause the participant to experience boredom which 
will subsequently lead to further fatigue towards the end of the 
data acquisition process. As such, since the participant is no 
longer required to just wait until the maximum set and fixed 
time in order to conduct the rating, this essentially provides the 
participant with the freedom and ability to shift to the 
following visual stimuli, which will potentially save some 
overall viewing time and at the same time prevent the 
participant from fatiguing. A rating system containing a 
discrete scale of 1-5, where 1 represents like very much; 2 
represents like; 3 represents undecided; 4 represents do not 
like; and finally 5 represents do not like at all, is shown to the 
participant at the conclusion of the visual shape stimuli 
viewing period. 

 
Fig. 1. The medical-grade 9-channel EEG acquisition device is shown being 

worn by a participant in the study. 

 
Fig. 2. The flow of the data acquisition process as experienced by the 

participants during the experimentation. 
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The Gielis Superformula is used to generate three-
dimensional shapes which were used as the visual stimuli in 
this study and had the visual appearances of a bracelet-like 
virtual generated [27], the mathematical formula of which is as 
shown in (1). Our main reason for choosing this shape as the 
three dimensional visual stimuli for evoking emotions is to 
determine the aesthetic quality of jewelry-type objects since 
visual aesthetic quality is primarily the key motivating factor 
when one decides whether or not make a purchase of such an 
item. By modifying the various superformula parameters, the 
generation of different and myriad natural three dimensional 
virtual shapes can be generated. 

Sixty different bracelet-like shapes generated and used in 
this study is as shown in Fig. 3, which were generated by 
utilizing different parameters with randomly generated values 
in the superformula. Through preliminary testing, different 
ranges of suitable parameter values were chosen to synthesize 
virtual three dimensional shapes that possess visual 
characteristics of a bracelet-like shape. These three 
dimensional bracelet-like shapes were then shown to the 
participants virtually on a computer. The visual system allowed 
the presentation of the three dimensional virtual shapes with 
rotations on different axes of the presented stimuli so that it 
could be viewed at different angles in order for the participant 
to be able to fully visualize the generated three dimensional 
bracelet-like shapes. 
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Fig. 3. The Gielis Superformula used to produce 60 bracelet-like shapes. 

 
Fig. 4. Summary of the signal processing process flow. 

The major processes for preference classification are as 
shown in Fig. 4. Firstly, environmental and physiological 
artifacts are always present in EEG signal recordings and 
require decontamination. The SDK in the MATLAB 
programming language provided by ABM for the B-Alert X10 
BCI headset automatically provides this decontamination 
function. A 50Hz notch filter removes environmental artifacts 
while five physiological artifacts comprising electromyography 
(EMG), eye blinks, excursions, saturations, and spikes are 
similarly removed automatically in real-time. The eye 
excursions, saturations, and spikes are replaced by zero values 
where they are later filled in using spline interpolation. 

Subsequently, a Short-Time Fourier Transform (STFT) is 
then used to transform the decontaminated EEG signals into 
the TF domain where it decomposes each of the nine BCI 
channels into five spectral bands, which are the delta 1-3Hz, 
theta 4-6Hz, alpha 7-12 Hz, beta 13-30 Hz, and gamma 31-64H 
bands. These fives bands across the nine channels thereby 
provides a total of forty-five input features. The brainwave 
recordings from the 16 participants where each viewed the 
sixty 3D visual stimuli of the bracelet-like shapes generated 
960 observations altogether. However, only 208 observations 
were used during the training and prediction classification 
process. These were the strongest ratings on the ratings scale of 
1, which represented like very much, and 5, which represented 
do not like at all, respectively. A final dataset matrix 
comprising forty-seven feature columns consisting of the 
observation ID reference, participant rating, and each of the 
forty-five TF features, over two hundred and eight rows of 
selected observations served as the training and testing data for 
the respective machine learning classifiers. Moreover, the 
subjects' baseline readings acquired while in the resting state 
were subtracted from the stimuli viewing state values before 
the values were utilized in the prediction classification process. 

The deep neural networks utilized were set to two hundred 
hidden neurons within each of the two hidden layers using the 
uniform adaptive method [28] for weight matrix initialization. 
Preliminary experimentation showed that this setup with the 
number of hidden layers as well as the number of hidden 
neurons per layer provided the optimal settings for this 
preference prediction task. Cross-entropy [29] was used as the 
error function during the 10-fold cross-validation, which was 
conducted for 10 epochs in each of the cross-validation steps. 

B. Experimental Setup for Excitement Classification 

Fig. 5 describes the overall approach adopted in conducting 
this second study of excitement classification in virtual reality 
consisting of a number of distinct phases, each of which will be 
explained in the following subsections below. 

1) Experiment Stimuli 
In this project, the immersive stimuli were created using 

Google‟s Cardboard VR technology and a 360° video available 
on YouTube.com. The selected video was the experience video 
of the 360-degree ride on a roller coaster that is promising in 
eliciting excitement emotion with providing sensations of a 
roller coaster ride which drops from high peaks and high speed 
360-degrees turns. Screenshots of these stimuli is as shown in 
Fig. 6 and 7. 

 

Fig. 5. Overall process of human mental states classification. 
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Fig. 6. Scenes in the stimuli video. 

 
Fig. 7. Scenes in the stimuli video. 

2) Experimental Test Subjects 
A total of 24 human subjects (12 females, 12 males) 

participated in this study and had normal or corrected-to-
normal vision with no history of psychiatric illness. The age of 
the subjects was in the range of 20 to 28 years old. During the 
experimental session, subjects were advised to sit comfortably 
on the chair without any restriction to head movements which 
being immersed in the virtual reality stimuli. An image of a test 
session in progress with the test subject wearing the VR 
headset and EEG headband is as shown in Fig. 8. 

 
Fig. 8. Experiment setup using human test subject. 

3) Data Acquisition Device 
To increase the applicability of EEG-based predictive 

analytics in human mental state classification, the Muse brain 
sensing headband from Interaxon was used as the data 
acquisition device since it is trivial to set up and comes at a 
much lower cost compared to medical-grade conventional EEG 
devices. Conventional EEG devices such as the B-Alert X10 
by ABM that uses adhesive sponge discs with the requirement 
of applying electrode gels require a significantly longer set up 
time for individual electrodes and such a setup often limits the 
behavioural freedom on the participants since there are 
numerous connecting wires to connect to the electrodes which 
severely restricts head movements as necessary in immersive 
VR environments. The Muse headband is extremely accessible 
as it is wireless, lightweight, flexible, adjustable and easy 
application. The wearer that puts on the Muse headband will 
not experience any limitations on their mobility as the Muse 
headband is connected through wireless Bluetooth technology 
for data transmission. The Muse headband has four dry 
electrode channels at international standard 10-20 coordinates 
of TP9, AF7, AF8 and TP10 as illustrated in Fig. 9. The 
earpieces of Muse are adjustable but the headband area with 
channel electrodes AF7, AF8 and reference channel Fpz are 
not flexible. Although the Muse headband is still new in the 
market as a commercialised EEG device, there have been other 
studies that have reported on its potential to be used as a 
research tool despite its limited numbers of electrodes and low 
signal resolution [30], [31]. 

 
Fig. 9. Muse electrode locations by 10-20 International Standards. 

 

Fig. 10. Signal acquisition and recording screen of the Muse Monitor app. 
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4) EEG Recording 
 The EEG recordings were acquired using the Muse 

Monitor app available from Google‟s Android Play Store. The 
EEG recordings were exported in CSV file format from Muse 
Monitor. The real-time EEG signal is recorded with an interval 
of 0.5 seconds, providing 256 data points per second for raw 
values to capture the minor changes of the brain rhythms. Fig. 
10 shows the recording screen of the Muse Monitor app with 
the view of raw EEG values captured from each of the sensors 
(TP9, AF7, AF8, TP10) in microvolts (μV). In this study, two 
recordings were recorded from each experimental test subjects. 
One recording is for the “Rest” state where there is no video 
stimulus and subjects were asked to keep calm and breathe 
normally. The second recording is for the “Excited” state 
where subjects were wearing VR headset being immersed and 
stimulated by the 360° roller coaster video experience. 

C. Signal Pre-processing and Feature Extraction  

 
Fig. 11. Different emotional states of a single individual in Alpha brain 

rhythm representation. 

Recorded EEG signals are always subject to artefacts and 
noise during acquisition. The common artefacts found are 
electromyography (EMG), eye-blinks, excursions, saturations, 
and muscle spikes. It is important to perform signal pre-
processing to enhance the signal-noise power ratio [32]. The 
band of interest in this study are the frequency bands: delta (δ), 
theta (θ), alpha (α), beta (β) and gamma (γ), each reflecting 
different brain states of human experimental subject. Fast 
Fourier Transform (FFT) was used to converts the obtained 
EEG signal to a representation in the frequency domain based 
on Butterworth‟s 4

th
 Order Filter with different cut-off 

frequency thresholds to extract the five frequency bands [32] as 
in (2): 

 

    ∑         
 
 

   

   

 (2) 

where k = 0,1,2,……N-1,  𝑘 is the FFT coefficients, N is 
the total number of input EEG samples, n is the total number of 
points in FFT. There are two EEG recordings per subject, one 
is the “Rest” state, and the other one is the “Excited” state. 
Fig. 11 shows the two Alpha brain rhythms of different states 
from a single individual. In the “Rest” state recordings, a 
length of 16 data points was extracted for classification. While 
in the “Excited” state recordings, two sets of 16 data points 
were extracted in accordance with the two excitement eliciting 

events in the video stimulus: (1) the drop of the roller coaster 
from the highest peak and (2) the high speed 360

o
 degree turns 

of the roller coaster. In conclusion, 3 sets of data points were 
extracted from each experimental subject, giving a total of 72 
objects for classification. The extracted data was then tabulated 
according to each band as features of interest for classification. 

The classification work in this project was performed in the 
R environment as R is the leading statistical analysis tool that 
includes a large collection of packages that provides a wide 
variety of linear and non-linear modelling, classification 
function and etc. The main package used to build classification 
models was the „caret‟ package as it has a consistent syntax for 
various machine learning methods. Additionally, the „caret‟ 
package also provides an easy implementation to perform the 
10-fold cross validation on the classification model. Since the 
„caret‟ package made it easy to expand the range of tuning 
parameters of the machine learning methods, this experiment 
had systematically investigated various parameter settings for 
each classifier used. 

1) K-Nearest Neighbour (KNN): KNN is a simple and 

intuitive method of classifier used in many research works 

typically for classifying signals and images. KNN classifies 

objects based on the similarity between two instances to locate 

the nearest neighbour. The classifier will compare a newly 

labelled sample with the baseline data. The decision rule 

applied will vote where the new labelled sample will be 

assigned based on the class of the majority of the k-nearest 

neighbours.  

2) Support Vector Machine (SVM): SVM function 

attempts to find a hyperplane in between the groups of objects 

to classify them. The SVM operates by minimising the loss 

function as in (3):  

              
 

 

 
       ∑   (         

    (  ))
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where w is the vector of weights, C is cost parameter,  ( ) 
is a kernel function applied on the input data.  

The Radial Basis Function (RBF) kernel will be applied 
with SVM to enable operations performed in the input space 
rather than the potentially higher dimensional feature space 
[33] as in (4): 

                        (    )     (    ‖    ‖ )                  ( ) 

where ‖     ‖ is the square of the Euclidean distance 
between the two vectors,   is the kernel parameter, equivalent 

to 
 

    where    is a free parameter: the inverse kernel width for 

RBF kernel. There are two tuneable parameters in this function 
used: C and  .  

3) Random Forest (RF):  RF is an ensemble classifier that 

operates by constructing a multitude of decision trees [34]. 

The final predicted class for a test example is obtained by 

combining the predictions of all individual trees. The decision 

tree with controlled variance was constructed through a 

combination of bootstrap aggregation (bagging) and random 

feature selection. Each node in RF is split using the best 
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among a subset of predictors that are randomly chosen at the 

node. This strategy makes the classifier perform better 

compared to other classifiers such as SVM, neural networks 

and Linear Discriminant Analysis (LDA) and is robust against 

over-fitting [35]. There is only one tuning parameter for RF: 

mtry (number of variables randomly sampled as candidates at 

each split).  

4) Feed-forward Neural Network (NN):  NN is the first 

and simplest form of artificial neural network developed. The 

network‟s information only moves in one direction, from the 

input nodes through the hidden notes (if any) and to the output 

nodes in forward directions. There exist no cycles or loops in 

the network. The simplest design of NN is a single-layer 

perceptron network that consists only one layer of output 

nodes. The inputs are fed directly to the outputs via a series of 

weights and the output units are of the same form but with an 

output function [36]:  

                  (    ∑       (    ∑      

 

)

 

)      ( ) 

The activation functions    and    are taken to be the 
logistic function:  

                                          ( )   
   ( )

     ( )
                                ( ) 

There are two tuning parameters in NN: size (number of 
hidden units) and decay (weight decay).  

5) C5.0 Decision Tree & Rule-based Model (C5.0): This 

algorithm was developed based on the C4.5 algorithm. C5.0 

can be applied for classification as a decision tree or rule-

based model. It supports boosting with any number of trials 

and can automatically winnow the attributes to remove those 

attributes that may be obstructive. For high-dimensional 

applications, this winnow features can lead to smaller 

classifiers and higher predictive accuracy while minimising 

the time required to generate rule sets. C5.0 has three tuning 

parameters: model (choose between decision tree and rule-

based model), winnow (decision on whether predictor 

winnowing should be used) and trials (number of boosting 

iterations).  

IV. RESULTS AND DISCUSSION 

A. Preference Classification Result 

Four distinct deep net architectures were tested, which were 
the standard deep nets, deep nets with dropouts only, deep nets 
with L1 regularizations only and finally deep nets with both 
dropouts and L1 regularizations. In L1 regularizations, λ is set 
at 10

-5
. For dropouts, we set the hidden layer dropout 

probability at 0.5. For each of these architectures, we also 

paired them with different activation functions for the hidden 
layers, which were the tanh, maxout and rectified linear unit 
(ReLU) activation functions. The rectified linear activation 
function [37] was used with an adaptive learning rate method 
[38]. The results of this specific part of the study have been 
previously published [39]. 

Table I presents the 10-fold cross-validation results 
obtained from using the various deep net architectures as well 
as with dropouts and L1 regularization terms. The best 
classification was obtained using the deep net with dropout 
architecture using rectified linear units for activation at 
79.76%. The second best classification result was also obtained 
using the deep net with dropout architecture but using the tanh 
activation at 74.38%. This was followed next with the deep net 
architecture using both dropouts and L1 regularization with the 
rectified linear unit and tanh activations, respectively at 
72.44% and 72.43%. The lowest classification obtained was 
54.92% using the deep net with L1 regularization and maxout 
activation. As can be seen from Fig. 12, a very significant 
improvement in classification accuracy was attained using the 
deep net with dropouts compared to the earlier work which did 
not make use of any dropouts and/or regularization, which was 
only between 61.15-67.68%. This is an improvement of over 
10% and clearly shows the benefits of using dropouts to 
improve the generalization ability of deep nets. 

TABLE I.  EEG PREFERENCE CLASSIFICATION RESULTS 

Deep Net Architecture 

Hidden Layer 

Activation 

Function 

Classification 

Accuracy (%) 

Standard Deep Net Tanh 67.68 

Standard Deep Net Maxout 61.15 

Standard Deep Net ReLU 63.99 

Deep Net with Dropout Tanh 74.38 

Deep Net with Dropout Maxout 67.71 

Deep Net with Dropout ReLU 79.76 

Deep Net with L1 Regularization Tanh 71.86 

Deep Net with L1 Regularization Maxout 54.92 

Deep Net with L1 Regularization ReLU 63.02 

Deep Net with Dropout and L1 

Regularization 
Tanh 72.43 

Deep Net with Dropout and L1 
Regularization 

Maxout 67.16 

Deep Net with Dropout and L1 

Regularization 
ReLU 72.44 
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Fig. 12. Summary comparison of various deep learning architectures used.

B. Excitement Classification Results 

Based on results shown in Table II, the SVM classifier 
achieved the overall best accuracy result of 89.36% using the 
Alpha band, while the second highest was 84.82%, achieved by 
the KNN classifier using the Theta band. Taking into account 
all datasets, the KNN classifier had the best performance as it 
held the most number of highest accuracy from 4 datasets 
(Delta, Theta, Beta, Gamma). However, the SVM classifier had 
a better average performance (SVM: 80.58%, KNN: 79.41%, 
RF: 78.92%, NN: 77.77%, C5.0: 75.54%). 

Alpha band had shown the highest classification accuracy 
from two different classifiers (SVM and RF). This suggests 
that the Alpha band that represents the relaxed awareness of 
human contains some features that are useful to be used to 
classify the human emotion of “Excitement”. Moreover, the 
Theta band also showed a similar behaviour as the Alpha band. 
The Theta band tops the accuracy results on KNN and C5.0 
classifiers and it represents the emotional stress, drowsiness 
and sleeps in adults.  

In contrast as shown in Table III, the Gamma band had the 
worst overall results across all of the classifiers except NN 
classifier. This suggests that Gamma band that represents 
consciousness is not suitable to be used to classify human 
emotion of “Excitement” when the subject id immersed into 
the virtual stimuli. 

For deep learning, preliminary testing yielded deep neural 
networks that performed best for this excitement classification 

task using three hidden layers with 200 nodes each with 
weights initialized using the uniform adaptive method [29]. 
The deep neural networks were run using 10-fold cross-
validation for 10 epochs each time using cross-entropy [29] as 
the error function and having a softmax output layer. Six 
different deep neural network architectures with different 
activation functions were tested, namely, tanh, maxout, and 
rectified linear (ReLU) [33], with and without dropout 
respectively, with dropout set at 0.5 and an adaptive learning 
rate method [34] applied when ReLU was used. The results 
obtained are tabulated below in Table IV. 

TABLE II.  SUMMARY OF TOP RESULTS OF 5 CLASSIFIERS 

Classifier Best Accuracy (%) Band of Interest 

SVM 89.36 Alpha 

KNN 84.82 Theta 

RF 81.96 Alpha 

RF 81.96 All 

NN 81.07 Beta 

C5.0 80.89 Theta 

TABLE III.  SUMMARY OF BEST RESULTS OF ALL BANDS 

Class-

ifier 

Accuracy of Band of Interest (%) 

Delta Theta Alpha Beta Gamma 
Com-

bined 

KNN 81.25 84.82 79.11 82.32 76.79 72.14 

SVM 78.04 82.14 89.36 82.32 73.93 77.68 

RF 79.62 79.29 81.96 78.21 72.50 81.96 

NN 71.25 80.71 79.11 81.07 74.11 80.36 

C5.0 72.50 80.89 80.36 75.36 65.36 78.75 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 5, 2018 

141 | P a g e  

www.ijacsa.thesai.org 

TABLE IV.  EXCITEMENT CLASSIFICATION RESULTS (%) 

Activation Delta Theta Alpha Beta Gamma Combined 

Tanh 89.77 93.71 82.57 88.21 86.21 92.07 

Maxout 88.27 79.95 88.60 93.41 93.67 80.70 

ReLU 85.44 88.18 88.67 87.82 86.44 91.01 

Tanh with dropout 77.94 80.42 90.11 92.57 91.39 92.41 

Maxout with dropout 83.68 83.12 82.82 88.96 88.71 91.42 

ReLU with dropout 80.95 91.87 88.17 87.88 84.58 95.55 

 

 
Fig. 13. Classification results grouped according to spectral band(s). 

The best classification result of 95.55% was obtained using 
the ReLU with dropout deep neural network architecture using 
the combination of all of the available spectral bands. The next 
best result of 93.71% was obtained using the tanh with the 
theta band as the only input feature. The worst result of 77.94% 
was given by the tanh with dropout using the delta band. From 
the results, it appeared that there were no clear trends in terms 
of the architecture used but in terms of the spectral bands used, 
the combined approach appeared to provide an advantage 
whereby five out of six results yielded more than 90% 
accuracy as shown in Fig. 13. This suggests that, at least in 
terms of the excitement emotion, detecting this emotion 
benefits from looking at all spectral bands and not just at one or 
two specific bands such as alpha and beta which are commonly 
adopted for classifying EEG signals during active cognition. 

V. CONCLUSION AND FUTURE WORK 

Firstly, this study has comprehensively tested dropout and 
L1 regularization approaches to deep net architectures in an 
effort to improve the classification performance of deep 
learning neural networks in EEG-based preference 
classification. We have shown that using a deep net with 
dropouts using rectified linear units for activation was able to 
achieve a gain of more than 13%-18% at 79.76% accuracy 
compared to standard deep nets without such approaches at 
only between 61.15%-67.68% using various activations.  

Secondly, this study has also investigated the use of deep 
learning for the detection of excitement while being immersed 
in virtual reality stimuli. To the best of our knowledge, this 
represents the first reported work that uses EEG solely as the 
input feature for the classification with the stimuli being virtual 
reality. It has been shown that a relatively high classification 
accuracy can be achieved with the best result yielding close to 

96% accuracy. The results also suggest that using a 
combination of all EEG spectral bands as the input features 
provided more reliable classification results in general 
compared to using any other single EEG spectral alone. 

For future work, due to the significant noise typically 
encountered in inter-subject EEG variations, we intend to 
investigate the use of autoencoders to pre-train the features 
extracted in order to further improve classification accuracy. 
Also, with the significant improvement in classification 
accuracy obtained through this study, we also plan to embark 
on application-based investigations into the use of EEG-based 
preference classification to guide automated generation of 
affective entertainment content in games, music and story-
telling. It would be worthwhile to expand this line of work to 
include other emotions such as fear, boredom, frustration 
among others in view of expanding the potential applications 
of this EEG-based emotion classification in virtual reality 
approach particularly in the field of affective entertainment. 
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