
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 5, 2018

151 | P a g e

www.ijacsa.thesai.org

An Intelligent Bio-Inspired Algorithm for the Faculty

Scheduling Problem

Sarah Al-Negheimish
1
, Fai Alnuhait

2
, Hawazen Albrahim

3
, Sarah Al-Mogherah

4
, Maha Alrajhi

5
, Manar Hosny

6

College of Computer and Information and Sciences

King Saud University

Riyadh, Saudi Arabia

Abstract—All universities have faculty members who need to

be assigned to teach courses. Those members have various

specialties, preferences and different levels of experience. The

manual assignment of courses is a very tedious and time-

consuming task that the scheduling committee frequently faces in

every department. To solve this timetabling problem, we

proposed a novel approach using the Bees Algorithm (BA), which

is inspired from bees’ foraging behavior, hybridized with Demon

algorithm and Hill Climbing for more extensive search. The

scheduling process took into consideration all constraints and

variables associated with scheduling courses, according to the

requirements of the Computer Science department in our college.

The results showed that the schedules produced from the

algorithm outperformed the manual schedules in terms of

achieving the objective function and satisfying the constraints. In

addition, the hybridized version produced better results than the

standard BA version without hybridization. The hybridized

algorithm is designed for faculty scheduling, but can be further

generalized to solve various timetabling problems.

Keywords—Faculty scheduling; faculty assignment problem;

Bees Algorithm; Demon algorithm; timetabling; scheduling

I. INTRODUCTION

Assigning faculty members to teach courses is a tedious
process that must be done by almost every university in the
world each semester. Similar to other scheduling problems,
faculty scheduling is an NP-hard problem [1] that is very
difficult to solve optimally using conventional search methods.
The reason behind this is the presence of many constraints that
should be taken into consideration, such as the clash of times
between courses, the maximum and minimum number of
workload hours for each faculty, the preferences and specialties
of the faculty, and many more hard requirements that can affect
the quality of the solution. For such a difficult problem, the
available variables and constraints play a significant role in
choosing the method that will solve the problem.

Over the past few years, many different methods have been
proposed to solve this problem, some of them are more
efficient than others. Meta-heuristic optimization algorithms
are among the most effective methods for this type of problem,
because they keep improving the proposed solution until it
reaches a certain satisfactory quality, although not necessarily
the optimum [2].

Bio-inspired algorithms are meta-heuristic algorithms that
are widely used in many different fields, because of their
effectiveness in solving real life difficult problems that cannot

be solved to optimality given the current computing resources.
However, they are not widely used in the faculty scheduling
problem, probably due to its complexity and difficulty of
formulating its constraints that are involved in the solution
method, which makes designing a bio-inspired solution method
fairly complex. This paper presents a new intelligent bio-
inspired meta-heuristic algorithm, namely the Bees Algorithm
(BA), for solving the faculty scheduling problem.

The remainder of this paper is organized as follows:
Section 2 provides a brief overview of some related work.
Section 3 describes the problem in terms of variables,
constraints, and the objective function. Section 4 presents the
approach used to design and implement the algorithm.
Section 5 demonstrates the results obtained from applying the
algorithm using various evaluation techniques. The discussion
is presented in Section 6. Finally, Section 7 provides the
conclusion and some future work.

II. RELATED WORK

The faculty scheduling problem has been studied for many
years as an independent problem or combined with the more
general university course scheduling problems [3]–[6]. In the
literature, various methods were used by researchers to handle
this problem. We will go through some of the different
algorithms proposed to solve the problem below.

A. Gunawan and K. Ng [7] solved the teacher assignment
problem using Simulated Annealing (SA) [8]–[10] and Tabu
search (TS) [11]. The problem was divided into two phases.
Phase one is concerned with finding a feasible schedule that
satisfies all the hard constraints. Phase two aims to balance the
credit hours between the faculty. Their algorithm starts by
generating a random schedule, then applying SA as well as TS
to improve the initial solution during both phases. The
algorithm was tested using two real datasets, and yielded better
results compared to the genetic algorithm [12]–[14], and
manual allocation. E. Aycan and T. Ayav [15] also used SA to
solve the course scheduling problem, which consisted of
assigning courses to classrooms and timeslots, in addition to
assigning their instructors. Their methodology focused purely
on using SA as a strategy to find the best schedule. Based on
the performance, that was measured by execution time and
quality; they concluded that using SA gave better results
compared to manual scheduling.

Parera et al. [16] used a Genetic Algorithm [13], [14] (GA)
to solve a bigger problem which includes assigning faculty

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 5, 2018

152 | P a g e

www.ijacsa.thesai.org

members to sections and assigning sections to classrooms.
Their goal was to produce a valid schedule free from time
clashes, which the algorithm was able to provide. As specified
earlier, A. Gunawan and K. Ng [12] used SA and Tabu search
to solve the teacher assignment problem. In addition, they also
developed a GA to tackle the mentioned problem. After
assigning teachers to sections randomly, they used the GA in
the reassignment process, where the crossover operator selects
randomly two chromosomes (course with its list of teachers)
and chooses crossover points to exchange the combination of
the two chromosomes. In addition, the mutation operator only
changes one gene (teacher) in a randomly chosen chromosome
(course). The algorithm provided better schedules than the
manual ones. Similarly, Y. OuYang and Y. Chen [17] used GA
to solve the course scheduling problem, but with the addition
of graph coloring algorithm to generate the initial population,
and they used Tabu search in the mutation operation. They
concluded that their algorithm performed better, in terms of
timetabling speed, than the manually allocated one.

Gunawan et al. [18] proposed a solution for the course
scheduling [19], and teacher scheduling problems using greedy
heuristic and SA. It starts with assigning teachers to sections
using a mathematical approach, then moves on to timetabling
the sections into time periods using a greedy algorithm.
Finally, SA is used to make improvements. The algorithm was
able to solve the two problems simultaneously while providing
feasible solutions.

Lastly, M. Hosny [20] proposed a heuristic approach to
solve the faculty assignment problem. The designed algorithm
can be divided into two phases, the first one starts by iterating
over the list of teachers, assigning them sections, and
reordering the list according to their assigned hours. The
second phase is only needed if there are some sections that
remained unassigned. After choosing the best schedule
generated, a Hill Climbing Optimization algorithm is used to
improve the chosen schedule. Although the algorithm was able
to provide satisfying results, it was restricted to assigning labs
to Teaching Assistants in the assignment process.

In the coming section, we will describe in detail the
problem under consideration in this research, as it paves the
first steps into solving the faculty scheduling problem.

III. PROBLEM DESCRIPTION

The faculty assignment problem is defined as assigning
teachers to courses, while adhering to a number of pre-
specified constraints. In this paper, we define the problem of
faculty scheduling in terms of the requirements provided by the
Computer Science Department in King Saud University, as
variables, constraints, and objective function.

A. Variables

There are only two variables under consideration in our
problem: courses, and teachers. Starting with the courses, each
course has a number of sections, each of which has a unique
number, its specified hours, its type which can be: lecture,
tutorial, or lab, and its time slots. Whereas for teachers, they
are divided into PhD holders who teach only lectures, BSc
holders who teach only tutorial and lab sections, and finally,
MSc holders who can teach any type of sections. The final two

categories are further divided into: students (i.e., those who are
currently studying postgraduate degrees while working) and
full-time.

B. Constraints

The constraints are divided into hard and soft constraints.
Violating any of the hard constraints makes the schedule
infeasible, whereas violating soft constraints affect the quality
of the solution. In our problem, we only have one hard
constraint which is the clash of courses‟ time for the same
instructor. Having time conflicts in any teacher‟s schedule will
make the whole solution infeasible. As for the soft constraints,
we have five constraints. First, ensuring that each teacher‟s
assigned hours are within the boundaries of a certain
predefined minimum and maximum workload, which is stated
for each instructor based on their rank. Second, fulfilling
teachers‟ preferences for courses represented as a wish list.
Third, balancing the workload amongst teachers within the
same rank, so that there would be no significant differences.
Forth, ensuring that each instructor gets at least a day off in
their schedule for course preparation and research. Lastly,
minimizing the number of instructors per course, as it can ease
the teaching and coordination process.

C. Objective Function

It is crucial to define how to measure the quality of the
generated schedules in order to evaluate the outcomes of the
algorithm. First, we assume that any violation of our hard
constraint (i.e., time clashes in a teacher‟s schedule) is not
acceptable. Thus, we only measure the quality of feasible
solutions. To measure the quality of the solution we count each
soft constraint violation, multiplied by its weight, where the
weight is determined based on the importance of the soft
constraint. We also add to this, the number of unassigned
sections in the current solution, since our main target is to
assign all sections to instructors. The objective function is
represented in (1) below. Intuitively, the closer the objective
function is to zero, the better the solution would be.

Minimize ∑

. (1)

Where, is the number of unassigned sections in the
solution, is the penalty weight of the th

 (soft) constraint,
 is the number of violations of the th

 (soft) constraint, is the
number of constraints.

To ensure the integrity of the objective function, the
measurement of the violations for each constraint was
normalized within the range [0, 1].

The following section demonstrates our proposed approach
to develop a bio-inspired meta-heuristic for solving the faculty
scheduling problem.

IV. METHODOLOGY

In this section, we propose a bio-inspired approach, based
on the bees‟ foraging behavior, to solve the stated problem.
The described algorithm hybridizes the Bees Algorithm [21]
with the Demon Algorithm [2], and Hill Climbing [2]. The
algorithm is inspired from N. Alhuwaishel and M. Hosny [22],
where a hybrid Bees-Demon Algorithm was used to solve the
University Course Timetabling problem. However, to the best

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 5, 2018

153 | P a g e

www.ijacsa.thesai.org

of our knowledge this kind of hybridization has not been
attempted before for the faculty scheduling problem.

The Bees algorithm provides a variety of solutions as it
starts with a population of solutions called the initial
population. This approach is needed to explore the search
space more; thus, gives a higher probability of finding near
optimal solutions [23]. The basic idea of the Bees algorithm
involves the generation of multiple initial solutions then
focusing on exploiting the best and elite (best of the best)
solutions, whilst performing modification to increase the
chance of finding near optimal solutions. the steps used to
apply the Bees algorithm, shown in Fig. 1, can be described as
follows [21]:

a) Construct the initial population of schedules.

b) Evaluate fitness of the population using the

objective function.

c) Selecting the best and elite solutions.

d) Perform neighborhood search on the selected sites

(Hill Climbing), with more search to be done around elite

solutions (Demon Algorithm).

e) Repopulate the region after removing discarded

solutions.

The algorithm consists of two major parts: initial
population construction, and neighborhood search. These
subparts will be combined to design the overall algorithm.

Fig. 1. Abstract representation of the hybrid algorithm.

A. Initial Population Algorithm

The first step in our proposed algorithm is to construct a
population of feasible schedules that do not violate the hard
constraint. To accomplish this, we designed a greedy
randomized heuristic algorithm to populate the search space.
After categorizing the sections into separate time slots to avoid
time clashes during the assignment, the algorithm proceeds in
three phases. The first phase tries to assign only the minimum

workload for each faculty from their wish list, while the second
phase tries to assign the remaining workload for the faculty,
but this time not necessarily from their wish list. The third
phase, on the other hand, is considered only if there are still
sections not assigned to faculty after the first and second
phases. In Phase three, assigning faculty hours above their
maximum workload (within a certain predefined percentage) is
attempted. In each of these phases, we order the list of faculty
based on their rank, which is calculated by their job position,
administrative posts, and seniority. Within the second and third
phases, the number of assigned hours is taken into
consideration. This is intended to give higher priority in
assignment to those faculty on top of the list. For those whose
ranking criteria are equivalent, the list is ordered randomly.
Using these procedures, we obtain different schedules to create
the population. The steps of the algorithm are described in
Algorithm 1:

Algorithm 1: Initial population generation

Input: list of faculty f, list of sections s, the percentage c to

increase workload, population size n 

Output: population of feasible solutions P

1: P  { }

2: repeat while | P | < n 

3: categorize(s)

/* Phase 1: assigning minimum workload */ 

4: order(f)

5: for i = 1: | f |

6: assign(fi, s, min)

/* Phase 2: assigning maximum workload */

7: order(f)

8: for i = 1: | f |

9: assign(fi, s, max)

/* Phase 3: assigning above maximum workload */

10: if s  { }

11: for i = 1: | f |

12: fi (workload)  fi (workload)  c

13: assign(fi, s, max)

14: P  P + f

The algorithm starts with an empty set of population P,
then repeats the following steps until it reaches the desired
number of schedules n. At the first step, the list of sections s is
divided into buckets according to their timeslot using
categorize. This is done to ensure that any time clashing
incident does not occur, thus preventing infeasible solutions.
The order method takes the list of faculty f and sorts it
according to the member‟s position, seniority, held admin
post, and assigned hours. In cases where more than a member
share the same criteria, their order will be chosen randomly.
When it comes to the assign task, the method tries to assign fi
with a matching section according to either the maximum or
minimum workload for fi. It is important to note that in phase
one‟s call of assign, s is sorted according to fi‟s preference.
However, that is not taken into consideration within the the
subsequent calls to assign in phases two and three. At the end,
the algorithm checks whether s still has sections that need to be
assigned. If so, every faculty‟s workload will be increased by
percentage c. Fig. 2 represents these procedures.

Initialize

Final Schedule

SelectRepopulate

Neighboring

Moves

Evaluate

converge

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 5, 2018

154 | P a g e

www.ijacsa.thesai.org

Fig. 2. Initial population generation flowchart.

B. Neighborhood Search

Neighboring moves are functions applied on already
existing solutions to generate new slightly different ones,
hoping to find better solutions in their vicinity. The most
important characteristic of a neighboring move is locality,
which is its effect on the original solution. Locality means that
small changes applied to the original solution representation
(e.g. changing the location of some variables) should
correspond to small changes in the actual solution (i.e., real
schedule). Otherwise, the new solution will have drastic
changes different from the original solution, which, in extreme
cases, could cause the search to converge towards a random
solution [2]. Listed below are the proposed neighboring moves
used to generate new solutions, which are intended to reduce
the violations of the soft constraints in our problem.

1) Balancing the Workload
This procedure is applied when two different instructors,

who belong to the same rank and position, are not equivalent in
the number of hours assigned. This is accomplished by
calculating the average hours of each group then segregating
them into above-average and below-average. The algorithm

then tries to transfer sections from the above-average group to
the below-average group, if no violations in constraints occur.

2) One-day off
This function aims to increase the number of faculty

members who have a day off, by swapping sections between
faculty members if it ensures that both individuals enjoy a day
off, have no conflicts in assigned courses, and can be assigned
the type of section.

3) Max number of Faculty Members per Course
Each course has a limit on the number of different

instructors that should not be exceeded. Therefore, this
neighboring move tries to lessen the number of faculty
members for these courses. This is achieved by setting a limit
to each course, then it investigates the possibility of
consolidating a course. The approach used in the algorithm
explores potential faculty members that share more than one
course together, then checks if the course sections could be
swapped to reduce the number of instructors for either course.

C. Proposed Hybrid Algorithm

As previously mentioned, the main algorithm we use is
inspired from the Bees Algorithm [21]. The algorithm starts by
generating a collection of schedules named the population;
then it selects the highest scoring schedules according to their
fitness (objective function value). Then it divides the group
into best schedules and elite schedules, which are the best of
the best, creating two mutually exclusive sets. In our proposed
method, we have also incorporated a Hill Climbing [2]
approach for accepting the new schedule after applying the
neighboring moves on the best schedules. In other words, if the
new solution produced after applying a neighboring move on
each of the best solutions is better in terms of the objective
function, it replaces the previous solution. However, we took a
different approach for searching around the elite schedules,
where we apply the Demon Algorithm (DA). The DA is a
variant of the famous Simulated Annealing (SA) approach but
with a deterministic acceptance function [2]. The DA
potentially accepts worse solutions, based on a certain credit
value called the demon, in hopes of finding better solutions in
the next iterations. Thus, the idea is to do a more intelligent
search around elite solutions, in an attempt to discover even
better solutions as the search progresses. The intensifying
phase of the algorithm continues for each schedule until the
schedule‟s fitness ceases to change for five consecutive
iterations.

The first step in the proposed algorithm is to create a
population of schedules using the heuristic algorithm described
in Section 4.1. After the initialization of all the variables,
including the demon credit d, we repeat the following process
until convergence.

Firstly, the program evaluates every schedule in the
population then selects the best and elite schedules from the
population. Secondly, we intensify the search on the best and
elite schedules using the neighboring moves for best and elite
respectively. When applying neighboring search on the „best‟
schedules, the new schedule is accepted if the overall fitness is
better. However, when applying the search on „elite‟ schedules,
and based on the principle of the DA, the program calculates

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 5, 2018

155 | P a g e

www.ijacsa.thesai.org

the difference in fitness value of the two schedules, the old
schedule and the new schedule. If the difference is positive (+),
the new schedule is accepted and the difference value is
credited to the demon value. On the other hand, if the
difference is negative (-), the new schedule is accepted only if
the demon credit can withstand the difference and then we
update the demon value after subtracting the difference value.
This process is considered as the intensification part of the
algorithm as it intensifies the search on each individual
schedule to improve it.

Finally, we repopulate the search space keeping the best
and elite schedules from the previous iteration, and keep the
current best schedule in hand. Diversification is incorporated in
the algorithm as it helps to generate a population with various
fitness values. It is worth mentioning that the selection of best
set is done in a stochastic manner [24] using a tournament
selection approach, as the algorithm chooses five schedules
randomly from the population, and then selects the best
schedule among them. This process is repeated until reaching
the required number of best set. This approach gives better
results in terms of diversification and producing different
schedules, as deterministic methods tend to stick with the same
best set regardless of the iterations [2].

Once the best schedule ceases to change for five
consecutive iterations, the algorithm stops repetition and
outputs the result. The details are described in Algorithm 2.

The algorithm starts by receiving a population of schedules
from Algorithm 1 then evaluates every schedule in the
population. Method eval does precisely that by taking a
schedule and producing the objective function value for each
corresponding schedule. After that, a set of best and elite
schedules is selected respectively based on the fitness value in
our case. Once the sets are established, the algorithm first
iterates over the best set and attempts to improve the schedules
using the method neighborhood then moves on to the elite
schedules. Neighborhood implements the techniques discussed
in Section 4.2 to improve the quality of schedules in both sets.
However, improving criteria must be chosen for the schedules
in both cases; this is selected to be „Hill Climbing‟ for best and
„Demon‟ for elite, which are passed to the method
neighborhood. After these steps have been conducted, the
algorithm repopulates the space with the inclusion of the best
and elite sets, then proceeds with the next iteration.

Algorithm 2: Hybridized Algorithm

Input: demon credit d

Output: an optimal schedule s

1: p ← Initial Population (Algorithm 1)

2: repeat until convergence: 

3: for i = 1: | p |

4: eval(pi)

5: b ← min(p) //best schedules

6: e ← min(b) //elite schedules

7: b ← b - e

8: for i = 1: | b | 

9: repeat until convergence:

10: neighborhood(bi , hill climbing)

11: for i = 1: | e |

12: repeat until convergence: 

13: neighborhood(ei , demon, d)

14: p ← Initial Population + b + e

15: for i = 1: | p |

16: eval(pi) 

17: s ← min(p)

18: return s

In the next section, details of how the results were
evaluated will be illustrated to conduct analysis on the
performance of the designed algorithm.

V. EXPERIMENTAL RESULTS

In this section, we will discuss in details the dataset that we
used to test our algorithm, and show our results and the
different criteria used to evaluate these results.

A. Characteristics of the Dataset

To test our algorithm, we used a real dataset obtained from
the Computer Science department at King Saud University. In
addition, we a created another theoretical (i.e., synthesized)
dataset inspired from the real dataset. We conducted the testing
on one real dataset and two different theoretical datasets. Both
types were saved on (.csv) files. Table I summarizes the details
of the three datasets. Each dataset is split into two different
parts:

a) The dataset of the teachers to be allocated: This

includes: professors, associate professors, assistant professors,

lecturers, and teaching assistants.

b) The dataset that contains the information about the

courses and sections to be taught. This includes: lectures, labs,

and tutorials.

B. Parameter Tuning

The objective function was designed to measure the quality
of a schedule. A crucial part of it was to decide the weights
used to penalize the violations of soft constraints. The weights
were selected to be in the range [0, 1] and the totality of them
would equal to one. We prioritized the soft constraints with
their corresponding weights depending on the department‟s
needs:

a) Minimum and maximum workload, w1 = 0.4.

b) Balancing the workload, w2 = 0.3.

c) One-day off, w3 = 0.2.

d) Minimize the number of instructors per course, w4

= 0.1.

After designing our algorithm, we had to test different
values for each of the parameters: population size, best size,
elite size, and demon credit.

For each of these parameters we used the same dataset. In
parameter tuning [25], [26], we applied grid search technique
to test a variety of values for one parameter (approximately 13
different values) keeping the rest of values constant. Each
value was tested five times then we compared the resulting
average fitness with that of the rest of the values.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 5, 2018

156 | P a g e

www.ijacsa.thesai.org

TABLE I. DATASET SUMMARY

 Datasets

Variable Real Dataset Theoretical 1 Theoretical 2

Courses 22 7 10

Sections 167 70 120

Professors 0 1 0

Associate Prof. 1 1 1

Assistant Prof. 8 1 6

Lecturers 16 9 13

Teaching Assist. 20 5 14

In addition, we chose to start our tuning with the population
size, since it was observed to have the most effect on the
fitness. Then we tested the number of best solutions, and then
we tuned the number of elite solutions, since it is a subset of
the best. Finally, we tuned the demon credit. The final
parameter values we obtained were, population size = 50, best
size = 8, elite size = 4, and demon credit = 0.25, which were
deemed fit for our algorithm based on the quality of solutions
obtained.

C. Evaluating the Results by Analyzing the Objective

Function

We ran our algorithm twenty times on each of the three
previously defined datasets, documenting the fitness and the
execution time (in minutes). The program was executed on a
Macbook Pro with OS X Yosemite, 2.9 GHz Intel Core i7
processor, 8 GB DDR3 memory.

In Fig. 3, a sample of the fitness (objective function) of the
best schedule at hand is illustrated against the iteration
sequence. It is clear that in every iteration, the intensification
phase of the algorithm provides a major contribution to the
fitness as well as finding another potential candidate to
substitute the current schedule through the diversification
phase.

Fig. 3. Progress of best schedule over time.

TABLE II. DATASET RESULTS SUMMARY

 Datasets

Measure Real Dataset Theoretical 1 Theoretical 2

Average Fitness 0.062 0.033 0.078

Standard Deviation 0.013 0.010 0.007

Minimum Fitness 0.029 0.002 0.059

Maximum Fitness 0.084 0.049 0.089

TABLE III. DATASET RUNTIME SUMMARY

 Datasets

Criteria Real Dataset Theoretical 1 Theoretical 2

Number of Sections 167 70 120

Avg. Exec. Time (min) 5.17 1.775 4.35

As demonstrated by the results in Table II, all of the
obtained values on all data sets are very close to zero,
indicating very small number of violations of the soft
constraints. Also, the values obtained fall into the same range
of values, meaning that the algorithm produces a good result in
each run. This is confirmed by measuring the standard
deviation to ensure the stability of our algorithm. On the other
hand, the maximum result shows the worst case, which is still
very close to zero.

Understandably, the algorithm could not give a schedule
with a zero-fitness value, as there are many factors that prevent
the algorithm from reaching the ideal solution. For instance,
different sections have different hours such as labs and
lectures. Thus, it is nearly impossible to have the workload
distributed perfectly between the faculty members.
Nonetheless, considering all the constrains, we deemed
important in the algorithm, the results shown are indeed very
satisfactory.

Regarding the execution time, it is noticeable that the
execution time differs from run to run, and that is
understandable as well, since the time it takes for the algorithm
to converge is distinct depending on the population in hand and
the number of iterations it will take to improve various
schedules in the dataset during the intensification phase.
Table III above summarizes the relationship between the
dataset size and execution time in minutes. Overall, the
algorithm produces excellent results in a reasonable processing
time.

Fig. 4. Comparison between manual, BA and hybrid BA schedules.

0.084

0.086

0.088

0.09

0.092

0.094

0.096

0.098

0.1

1 2 3 4 5 6 7 8 9 10 11 12

F
IT
N
E
S
S

ITERATION

FITNESS	PROGRESS

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 5, 2018

157 | P a g e

www.ijacsa.thesai.org

D. Evaluating the Results by Comparing the Manual Schedule

with our Algorithm’s Schedule

The manually designed schedule was compared with the
generated schedule by our algorithm on the real dataset to
assess the latter. The assessment is based on fulfilling the soft
constraints, since the hard constraint is guaranteed to be
satisfied to make a valid schedule. Table V shows the results
of the comparison in details.

As can be seen from Table V, our algorithm provided a
schedule that eliminated any violations of „min & max
workload‟ constraint as well as the „day off‟ constraint. In
addition, it managed to balance the workload by a significant
amount, since it provided an overall total variance from the
average workload of just 0.008, compared to a total variance of
0.055 for the manually allocated schedule. Evaluating the
overall fitness of the schedule, our schedule has a fitness of
approximately 0.03 while the manual schedule has a fitness of
approximately 0.17. This shows that our schedule improved the
manual schedule by a remarkable 83.4% value. However, the
only constraint that our algorithm was not able to provide
satisfactory results for was minimizing the number of
instructors per course shown evidently in Fig. 4. This is
probably due to the small penalty weight that we assigned for
this constraint, since we considered it less important in the
schedule than the other constraints.

E. Evaluating the Results by Comparing the Proposed

Algorithm with the Classic BA

To assess the effectiveness of hybridizing BA with Demon
and Hill Climbing algorithms, we compared the results of our
algorithm to the results produced from the classic BA using the
real dataset following the same criteria used in the previous

section. As shown in Table V, the hybrid algorithm
outperforms the classic BA in generating the best schedule.
The two algorithms performed equally well in avoiding the
violation of the day off constraint. However, the hybrid
algorithm produced considerably better results in fulfilling the
rest of the soft constraints, with a 56% improvement in
balancing the workload. Digging deeper into these schedules,
we noticed a notable difference in the quality of the produced
solutions at the instructors‟ level. While the schedules
produced by the hybrid algorithm tend to limit the number of
different courses and assign a consistent set of sections to each
instructor, the classic BA generates more variant ones. An
example to further explain this point is illustrated in Table IV
below, where we took one of the instructors and compared her
schedule generated by the two approaches. We can clearly see
that the hybrid BA schedule is more practical and more
convenient for the instructor.

TABLE IV. INSTRUCTOR ASSIGNED SECTIONS EXAMPLE

 BA Schedule Hybrid BA Schedule

Course Type Hours Course Type Hours

CS09 Tutorial 1 CS17 Lab 6

CS23 Lecture 3 CS23 Tutorial 2

CS10 Tutorial 1

CS01 Tutorial 1

Number of

Sections
4 5

Unique

courses
4 2

Total

Workload
6 8

TABLE V. MANUAL VS CLASSIC BA VS HYBRID BA RESULT SUMMARY

 Manual Schedule BA Schedule Hybrid BA Schedule

Category Min and

max

workloa

d

violation

Balance

workloa

d

violation

Day off

violatio

n

Number

of

instructor

s per

course

violation

Min and

max

workloa

d

violation

Balance

workloa

d

violation

Day off

violatio

n

Number

of

instructor

s per

course

violation

Min and

max

workloa

d

violation

Balance

workloa

d

violation

Day off

violatio

n

Number

of

instructor

s per

course

violation

Students 2 0.003 0 0 0 0 0 0 0

Professors 7 0.017 0 0 0.003 0 0 0.004 0

Lecturers/T

A
6 0.035 4 2 0.014 0 0 0.004 0

All 15 0.055 4 1 2 0.017 0 10 0 0.008 0 6

Total Fitness 0.172 0.066 0.029

TABLE VI. BA VS HYBRID BA AVERAGE COMPARISON

Criteria BA Hybrid BA

Avg. Fitness 0.076 0.062

Avg. Exec. Time 0.82 5.17

Taking the performance evaluation of the proposed
algorithm a step further, we compared the two approaches in
terms of the average fitness obtained along with the average
time needed to generate the solutions, running each algorithm
20 times on the real dataset to get the average value.

As Table VI demonstrates, the hybrid algorithm generates
better results in general. Although the improvement is not very
significant on an average scale, our goal is to find the best
fitted schedule which will be obtained through running the
algorithm multiple times and adopting the best schedule. In
other words, increasing the chance of finding a near optimal
solution on a set of satisfactory solutions would be more
beneficial than trying to ensure that all solutions in the set are
optimal solutions. The difference in the average running time is
not a concern as well, since the algorithm will only be run once
each semester in practical situations. So, we can sacrifice the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 5, 2018

158 | P a g e

www.ijacsa.thesai.org

increase in execution time for the sake of obtaining a much
better schedule that will be adopted throughout the semester.

F. Evaluating the Results with the Assessment of the Schedule

by the Scheduling Committee

Finally, our results were also assessed by members of the
scheduling committee in the Computer Science Department, by
answering an evaluation survey. Overall, we received a
positive feedback from the scheduling committee. Generally,
they strongly agreed that the algorithm fulfilled the
requirement of assigning all courses to faculty members, as
well as allowing each faculty member a day off per week. They
also agreed that the algorithm managed to balance the
workload among the faculty members. Moreover, the
committee agreed that the quality of the schedule produced was
satisfactory, and that they consider the resulting schedule
reliable.

Finally, the scheduling committee strongly admits that our
algorithm is needed and useful for the Computer Science
department, and would use it if it was currently available.

VI. DISCUSSION

After applying our proposed method to solving the faculty
scheduling problem, it is evident that the Bees Algorithm
proved its capability and suitability for this problem.
Specifically, the diversification stage played a significant role
in the exploration of many different solutions. This was
achieved through the greedy-randomized population creation
part of the algorithm. Whereas intensification further improved
the solutions obtained that being the neighboring moves‟ role,
focusing on minimizing the violations of the soft constraints.

Moreover, hybridizing the Bees Algorithm with another
meta-heuristic immensely improved our algorithm‟s
performance, leaping to a higher level of intelligence. We used
both Hill Climbing and Demon algorithms as solution
acceptance algorithms. The Hill Climbing algorithm was
applied on the best and elite solutions, whilst the Demon
algorithm was only applied on the elite solutions, with the
intension of doing more intelligent search around the elite than
the other selected best solutions.

VII. CONCLUSION

In this paper, we tackled the faculty scheduling problem,
which is concerned with assigning faculty members to
prescheduled courses. To solve the problem, firstly, we
designed the construction of the initial population that is
considered a primary factor in the Bees Algorithm. We used a
specially designed greedy-randomized heuristic for this
purpose. Secondly, we designed the neighboring moves that
will be used to improve the solutions selected by the algorithm.
We hybridized the Bees algorithm with the Demon algorithm
and Hill Climbing, which is considered an innovative approach
in this particular problem.

We used the dataset provided by the CS department to test
our algorithm and chose to use this dataset to evaluate our
algorithm, because it portrays a realistic environment. We also
used two theoretical datasets to further test the algorithm. The
algorithm showed superior results when compared to the
manually allocated one, as it managed to eliminate „min & max

workload‟ constraint as well as the „day off‟ constraint.
Moreover, the scheduling committee in the department
evaluated the schedules produced by the algorithm, and agreed
that it satisfies their expectations.

Several areas of improvement arise, though, by enhancing
the hybrid algorithm to solve some additional requirements,
such as minimizing the number of courses assigned to each
teacher. Further research could be conducted by broadening the
problem and generalizing the algorithm to solve other
variations of scheduling.

REFERENCES

[1] S. Even, A. Itai, and A. Shamir, “On the complexity of time table and
multi-commodity flow problems,” in Foundations of Computer Science,
1975., 16th Annual Symposium on, 1975, pp. 184–193.

[2] E.-G. Talbi, Metaheuristics: from design to implementation, vol. 74. John
Wiley & Sons, 2009.

[3] D. Abramson, “Constructing school timetables using simulated
annealing: sequential and parallel algorithms,” Manag. Sci., vol. 37, no.
1, pp. 98–113, 1991.

[4] T. Ferdoushi, P. K. Das, and M. A. H. Akhand, “Highly constrained
university course scheduling using modified hybrid particle swarm
optimization,” in Electrical Information and Communication Technology
(EICT), 2013 International Conference on, 2014, pp. 1–5.

[5] F. Aloul, I. Zabalawi, and A. Wasfy, “A SAT-based approach to solve the
faculty course scheduling problem,” in AFRICON, 2013, 2013, pp. 1–5.

[6] R. Lewis and B. Paechter, “Finding feasible timetables using group-based
operators,” IEEE Trans. Evol. Comput., vol. 11, no. 3, pp. 397–413,
2007.

[7] A. Gunawan and K. M. Ng, “Solving the teacher assignment problem by
two metaheuristics,” Int. J. Inf. Manag. Sci., vol. 22, no. 2, pp. 73–86,
2011.

[8] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, and others, “Optimization by
simmulated annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[9] R. W. Eglese, “Simulated annealing: a tool for operational research,” Eur.
J. Oper. Res., vol. 46, no. 3, pp. 271–281, 1990.

[10] A. G. Nikolaev and S. H. Jacobson, “Simulated annealing,” in Handbook
of Metaheuristics, Springer, 2010, pp. 1–39.

[11] F. Glover and M. Laguna, Tabu Search∗. Springer, 2013.

[12] A. Gunawan, K. M. Ng, and H. L. Ong, “A genetic algorithm for the
teacher assignment problem for a university in Indonesia,” Inf. Manag.
Sci., vol. 19, no. 1, pp. 1–16, 2008.

[13] J. H. Holland, “Genetic algorithms,” Sci. Am., vol. 267, no. 1, pp. 66–72,
1992.

[14] M. Mitchell, “Genetic algorithms: An overview,” Complexity, vol. 1, no.
1, pp. 31–39, 1995.

[15] E. Aycan and T. Ayav, “Solving the course scheduling problem using
simulated annealing,” in Advance Computing Conference, 2009. IACC
2009. IEEE International, 2009, pp. 462–466.

[16] S. Parera, H. T. Sukmana, and L. K. Wardhani, “Application of genetic
algorithm for class scheduling (Case study: Faculty of science and
technology UIN Jakarta),” in Cyber and IT Service Management,
International Conference on, 2016, pp. 1–5.

[17] Y. OuYang and Y. Chen, “Design of automated Course Scheduling
system based on hybrid genetic algorithm,” in Computer Science &
Education (ICCSE), 2011 6th International Conference on, 2011, pp.
256–259.

[18] A. Gunawan, K. M. Ng, and K. L. Poh, “Solving the teacher assignment-
course scheduling problem by a hybrid algorithm,” Int J Comput Inf.
Engin, vol. 1, no. 2, pp. 137–142, 2007.

[19] M. W. Carter and G. Laporte, “Recent developments in practical course
timetabling,” in International Conference on the Practice and Theory of
Automated Timetabling, 1997, pp. 3–19.

[20] M. I. Hosny, “A Heuristic Algorithm for Solving the Faculty Assignment
Problem,” in Proceedings of the International Conference on Frontiers in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 5, 2018

159 | P a g e

www.ijacsa.thesai.org

Education: Computer Science and Computer Engineering (FECS), 2012,
p. 1.

[21] D. T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim, and M. Zaidi,
“The bees algorithm–a novel tool for complex optimisation,” in
Intelligent Production Machines and Systems-2nd I* PROMS Virtual
International Conference (3-14 July 2006), 2011.

[22] N. ALHUWAISHEL and M. HOSNY, ““A Hybrid Bees/Demon
Optimization Algorithm for Solving the University Course Timetabling
Problem,” in Proceedings of the 3rd NAUN International Conference on
Mathematical, Computational and Statistical Sciences. Dubai, United
Arab Emirates, February, 2015.

[23] X.-S. Yang, S. Deb, and S. Fong, “Metaheuristic algorithms: optimal
balance of intensification and diversification,” Appl. Math. Inf. Sci., vol.
8, no. 3, p. 977, 2014.

[24] J. E. Baker, “Reducing bias and inefficiency in the selection algorithm,”
in Proceedings of the second international conference on genetic
algorithms, 1987, pp. 14–21.

[25] Á. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in
evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 3, no. 2, pp.
124–141, 1999.

[26] A. E. Eiben and S. K. Smit, “Evolutionary algorithm parameters and
methods to tune them,” in Autonomous search, Springer, 2011, pp. 15–
36.

