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Abstract—All universities have faculty members who need to 

be assigned to teach courses. Those members have various 

specialties, preferences and different levels of experience. The 

manual assignment of courses is a very tedious and time-

consuming task that the scheduling committee frequently faces in 

every department. To solve this timetabling problem, we 

proposed a novel approach using the Bees Algorithm (BA), which 

is inspired from bees’ foraging behavior, hybridized with Demon 

algorithm and Hill Climbing for more extensive search. The 

scheduling process took into consideration all constraints and 

variables associated with scheduling courses, according to the 

requirements of the Computer Science department in our college. 

The results showed that the schedules produced from the 

algorithm outperformed the manual schedules in terms of 

achieving the objective function and satisfying the constraints. In 

addition, the hybridized version produced better results than the 

standard BA version without hybridization. The hybridized 

algorithm is designed for faculty scheduling, but can be further 

generalized to solve various timetabling problems. 
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I. INTRODUCTION 

Assigning faculty members to teach courses is a tedious 
process that must be done by almost every university in the 
world each semester. Similar to other scheduling problems, 
faculty scheduling is an NP-hard problem [1] that is very 
difficult to solve optimally using conventional search methods.  
The reason behind this is the presence of many constraints that 
should be taken into consideration, such as the clash of times 
between courses, the maximum and minimum number of 
workload hours for each faculty, the preferences and specialties 
of the faculty, and many more hard requirements that can affect 
the quality of the solution. For such a difficult problem, the 
available variables and constraints play a significant role in 
choosing the method that will solve the problem.  

Over the past few years, many different methods have been 
proposed to solve this problem, some of them are more 
efficient than others. Meta-heuristic optimization algorithms 
are among the most effective methods for this type of problem, 
because they keep improving the proposed solution until it 
reaches a certain satisfactory quality, although not necessarily 
the optimum [2]. 

Bio-inspired algorithms are meta-heuristic algorithms that 
are widely used in many different fields, because of their 
effectiveness in solving real life difficult problems that cannot 

be solved to optimality given the current computing resources. 
However, they are not widely used in the faculty scheduling 
problem, probably due to its complexity and difficulty of 
formulating its constraints that are involved in the solution 
method, which makes designing a bio-inspired solution method 
fairly complex. This paper presents a new intelligent bio-
inspired meta-heuristic algorithm, namely the Bees Algorithm 
(BA), for solving the faculty scheduling problem.  

The remainder of this paper is organized as follows: 
Section 2 provides a brief overview of some related work. 
Section 3 describes the problem in terms of variables, 
constraints, and the objective function. Section 4 presents the 
approach used to design and implement the algorithm. 
Section 5 demonstrates the results obtained from applying the 
algorithm using various evaluation techniques. The discussion 
is presented in Section 6. Finally, Section 7 provides the 
conclusion and some future work. 

II. RELATED WORK 

The faculty scheduling problem has been studied for many 
years as an independent problem or combined with the more 
general university course scheduling problems [3]–[6]. In the 
literature, various methods were used by researchers to handle 
this problem. We will go through some of the different 
algorithms proposed to solve the problem below.  

A. Gunawan and K. Ng [7] solved the teacher assignment 
problem using Simulated Annealing (SA) [8]–[10] and Tabu 
search (TS) [11]. The problem was divided into two phases. 
Phase one is concerned with finding a feasible schedule that 
satisfies all the hard constraints. Phase two aims to balance the 
credit hours between the faculty. Their algorithm starts by 
generating a random schedule, then applying SA as well as TS 
to improve the initial solution during both phases.  The 
algorithm was tested using two real datasets, and yielded better 
results compared to the genetic algorithm [12]–[14], and 
manual allocation. E. Aycan and T. Ayav [15] also used SA to 
solve the course scheduling problem, which consisted of 
assigning courses to classrooms and timeslots, in addition to 
assigning their instructors. Their methodology focused purely 
on using SA as a strategy to find the best schedule. Based on 
the performance, that was measured by execution time and 
quality; they concluded that using SA gave better results 
compared to manual scheduling. 

Parera et al. [16] used a Genetic Algorithm [13], [14] (GA) 
to solve a bigger problem which includes assigning faculty 
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members to sections and assigning sections to classrooms. 
Their goal was to produce a valid schedule free from time 
clashes, which the algorithm was able to provide. As specified 
earlier, A. Gunawan and K. Ng [12] used SA and Tabu search 
to solve the teacher assignment problem. In addition, they also 
developed a GA to tackle the mentioned problem. After 
assigning teachers to sections randomly, they used the GA in 
the reassignment process, where the crossover operator selects 
randomly two chromosomes (course with its list of teachers) 
and chooses crossover points to exchange the combination of 
the two chromosomes. In addition, the mutation operator only 
changes one gene (teacher) in a randomly chosen chromosome 
(course). The algorithm provided better schedules than the 
manual ones. Similarly, Y. OuYang and Y. Chen [17] used GA 
to solve the course scheduling problem, but with the addition 
of graph coloring algorithm to generate the initial population, 
and they used Tabu search in the mutation operation. They 
concluded that their algorithm performed better, in terms of 
timetabling speed, than the manually allocated one.  

Gunawan et al. [18] proposed a solution for the course 
scheduling [19], and teacher scheduling problems using greedy 
heuristic and SA. It starts with assigning teachers to sections 
using a mathematical approach, then moves on to timetabling 
the sections into time periods using a greedy algorithm. 
Finally, SA is used to make improvements. The algorithm was 
able to solve the two problems simultaneously while providing 
feasible solutions.  

Lastly, M. Hosny [20] proposed a heuristic approach to 
solve the faculty assignment problem. The designed algorithm 
can be divided into two phases, the first one starts by iterating 
over the list of teachers, assigning them sections, and 
reordering the list according to their assigned hours. The 
second phase is only needed if there are some sections that 
remained unassigned. After choosing the best schedule 
generated, a Hill Climbing Optimization algorithm is used to 
improve the chosen schedule. Although the algorithm was able 
to provide satisfying results, it was restricted to assigning labs 
to Teaching Assistants in the assignment process.  

In the coming section, we will describe in detail the 
problem under consideration in this research, as it paves the 
first steps into solving the faculty scheduling problem. 

III. PROBLEM DESCRIPTION 

The faculty assignment problem is defined as assigning 
teachers to courses, while adhering to a number of   pre-
specified constraints. In this paper, we define the problem of 
faculty scheduling in terms of the requirements provided by the 
Computer Science Department in King Saud University, as 
variables, constraints, and objective function. 

A. Variables 

There are only two variables under consideration in our 
problem: courses, and teachers. Starting with the courses, each 
course has a number of sections, each of which has a unique 
number, its specified hours, its type which can be: lecture, 
tutorial, or lab, and its time slots. Whereas for teachers, they 
are divided into PhD holders who teach only lectures, BSc 
holders who teach only tutorial and lab sections, and finally, 
MSc holders who can teach any type of sections. The final two 

categories are further divided into: students (i.e., those who are 
currently studying postgraduate degrees while working) and 
full-time. 

B. Constraints 

The constraints are divided into hard and soft constraints. 
Violating any of the hard constraints makes the schedule 
infeasible, whereas violating soft constraints affect the quality 
of the solution. In our problem, we only have one hard 
constraint which is the clash of courses‟ time for the same 
instructor. Having time conflicts in any teacher‟s schedule will 
make the whole solution infeasible. As for the soft constraints, 
we have five constraints. First, ensuring that each teacher‟s 
assigned hours are within the boundaries of a certain 
predefined minimum and maximum workload, which is stated 
for each instructor based on their rank. Second, fulfilling 
teachers‟ preferences for courses represented as a wish list. 
Third, balancing the workload amongst teachers within the 
same rank, so that there would be no significant differences. 
Forth, ensuring that each instructor gets at least a day off in 
their schedule for course preparation and research. Lastly, 
minimizing the number of instructors per course, as it can ease 
the teaching and coordination process. 

C. Objective Function 

It is crucial to define how to measure the quality of the 
generated schedules in order to evaluate the outcomes of the 
algorithm. First, we assume that any violation of our hard 
constraint (i.e., time clashes in a teacher‟s schedule) is not 
acceptable. Thus, we only measure the quality of feasible 
solutions. To measure the quality of the solution we count each 
soft constraint violation, multiplied by its weight, where the 
weight is determined based on the importance of the soft 
constraint.  We also add to this, the number of unassigned 
sections in the current solution, since our main target is to 
assign all sections to instructors. The objective function is 
represented in (1) below. Intuitively, the closer the objective 
function is to zero, the better the solution would be. 

Minimize          ∑       
 

   
.               (1) 

Where,   is the number of unassigned sections in the 
solution,    is the penalty weight of the  th

 (soft) constraint, 
   is the number of violations of the  th

 (soft) constraint,   is the 
number of constraints. 

To ensure the integrity of the objective function, the 
measurement of the violations for each constraint was 
normalized within the range [0, 1].  

The following section demonstrates our proposed approach 
to develop a bio-inspired meta-heuristic for solving the faculty 
scheduling problem. 

IV. METHODOLOGY 

In this section, we propose a bio-inspired approach, based 
on the bees‟ foraging behavior, to solve the stated problem. 
The described algorithm hybridizes the Bees Algorithm [21] 
with the Demon Algorithm [2], and Hill Climbing [2]. The 
algorithm is inspired from N. Alhuwaishel and M. Hosny [22], 
where a hybrid Bees-Demon Algorithm was used to solve the 
University Course Timetabling problem. However, to the best 
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of our knowledge this kind of hybridization has not been 
attempted before for the faculty scheduling problem. 

The Bees algorithm provides a variety of solutions as it 
starts with a population of solutions called the initial 
population. This approach is needed to explore the search 
space more; thus, gives a higher probability of finding near 
optimal solutions [23]. The basic idea of the Bees algorithm 
involves the generation of multiple initial solutions then 
focusing on exploiting the best and elite (best of the best) 
solutions, whilst performing modification to increase the 
chance of finding near optimal solutions. the steps used to 
apply the Bees algorithm, shown in Fig. 1, can be described as 
follows [21]: 

a) Construct the initial population of schedules.  

b) Evaluate fitness of the population using the 

objective function.  

c) Selecting the best and elite solutions.  

d) Perform neighborhood search on the selected sites 

(Hill Climbing), with more search to be done around elite 

solutions (Demon Algorithm). 

e) Repopulate the region after removing discarded 

solutions.  

The algorithm consists of two major parts: initial 
population construction, and neighborhood search. These 
subparts will be combined to design the overall algorithm. 

 

Fig. 1. Abstract representation of the hybrid algorithm. 

A. Initial Population Algorithm 

The first step in our proposed algorithm is to construct a 
population of feasible schedules that do not violate the hard 
constraint. To accomplish this, we designed a greedy 
randomized heuristic algorithm to populate the search space. 
After categorizing the sections into separate time slots to avoid 
time clashes during the assignment, the algorithm proceeds in 
three phases.  The first phase tries to assign only the minimum 

workload for each faculty from their wish list, while the second 
phase tries to assign the remaining workload for the faculty, 
but this time not necessarily from their wish list. The third 
phase, on the other hand, is considered only if there are still 
sections not assigned to faculty after the first and second 
phases. In Phase three, assigning faculty hours above their 
maximum workload (within a certain predefined percentage) is 
attempted. In each of these phases, we order the list of faculty 
based on their rank, which is calculated by their job position, 
administrative posts, and seniority. Within the second and third 
phases, the number of assigned hours is taken into 
consideration. This is intended to give higher priority in 
assignment to those faculty on top of the list. For those whose 
ranking criteria are equivalent, the list is ordered randomly. 
Using these procedures, we obtain different schedules to create 
the population. The steps of the algorithm are described in 
Algorithm 1: 

Algorithm 1: Initial population generation  
 

Input: list of faculty f, list of sections s, the percentage c to 

increase workload, population size n  

Output: population of feasible solutions P 

1: P  { } 

2: repeat while | P | < n  

3: categorize(s) 

/* Phase 1: assigning minimum workload */  

4: order(f ) 

5: for i = 1: | f |  

6:      assign(fi, s, min)  

/* Phase 2: assigning maximum workload */  

7: order(f ) 

8: for i = 1: | f |  

9:      assign(fi, s, max)  

/* Phase 3: assigning above maximum workload */   

10: if s  { } 

11:      for i = 1: | f | 

12:           fi (workload)  fi (workload)  c 

13:           assign(fi, s, max) 

14: P  P + f 
 

The algorithm starts with an empty set of population P, 
then repeats the following steps until it reaches the desired 
number of schedules n. At the first step, the list of sections s is 
divided into buckets according to their timeslot using 
categorize. This is done to ensure that any time clashing 
incident does not occur, thus preventing infeasible solutions. 
The order method takes the list of faculty f and sorts it 
according to the member‟s position, seniority, held admin  
post, and assigned hours. In cases where more than a member 
share the same criteria, their order will be chosen randomly. 
When it comes to the assign task, the method tries to assign fi 
with a matching section according to either the maximum or 
minimum workload for fi. It is important to note that in phase 
one‟s call of assign, s is sorted according to fi‟s preference. 
However, that is not taken into consideration within the the 
subsequent calls to assign in phases two and three. At the end, 
the algorithm checks whether s still has sections that need to be 
assigned. If so, every faculty‟s workload will be increased by 
percentage c. Fig. 2 represents these procedures. 

Initialize

Final Schedule

SelectRepopulate

Neighboring

Moves

Evaluate

converge
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Fig. 2. Initial population generation flowchart. 

B. Neighborhood Search  

Neighboring moves are functions applied on already 
existing solutions to generate new slightly different ones, 
hoping to find better solutions in their vicinity. The most 
important characteristic of a neighboring move is locality, 
which is its effect on the original solution. Locality means that 
small changes applied to the original solution representation 
(e.g. changing the location of some variables) should 
correspond to small changes in the actual solution (i.e., real 
schedule). Otherwise, the new solution will have drastic 
changes different from the original solution, which, in extreme 
cases, could cause the search to converge towards a random 
solution [2]. Listed below are the proposed neighboring moves 
used to generate new solutions, which are intended to reduce 
the violations of the soft constraints in our problem. 

1) Balancing the Workload 
This procedure is applied when two different instructors, 

who belong to the same rank and position, are not equivalent in 
the number of hours assigned. This is accomplished by 
calculating the average hours of each group then segregating 
them into above-average and below-average. The algorithm 

then tries to transfer sections from the above-average group to 
the below-average group, if no violations in constraints occur. 

2) One-day off 
This function aims to increase the number of faculty 

members who have a day off, by swapping sections between 
faculty members if it ensures that both individuals enjoy a day 
off, have no conflicts in assigned courses, and can be assigned 
the type of section. 

3) Max number of Faculty Members per Course 
Each course has a limit on the number of different 

instructors that should not be exceeded. Therefore, this 
neighboring move tries to lessen the number of faculty 
members for these courses. This is achieved by setting a limit 
to each course, then it investigates the possibility of 
consolidating a course. The approach used in the algorithm 
explores potential faculty members that share more than one 
course together, then checks if the course sections could be 
swapped to reduce the number of instructors for either course. 

C. Proposed Hybrid Algorithm  

As previously mentioned, the main algorithm we use is 
inspired from the Bees Algorithm [21]. The algorithm starts by 
generating a collection of schedules named the population; 
then it selects the highest scoring schedules according to their 
fitness (objective function value). Then it divides the group 
into best schedules and elite schedules, which are the best of 
the best, creating two mutually exclusive sets. In our proposed 
method, we have also incorporated a Hill Climbing [2] 
approach for accepting the new schedule after applying the 
neighboring moves on the best schedules. In other words, if the 
new solution produced after applying a neighboring move on 
each of the best solutions is better in terms of the objective 
function, it replaces the previous solution. However, we took a 
different approach for searching around the elite schedules, 
where we apply the Demon Algorithm (DA). The DA is a 
variant of the famous Simulated Annealing (SA) approach but 
with a deterministic acceptance function [2]. The DA 
potentially accepts worse solutions, based on a certain credit 
value called the demon, in hopes of finding better solutions in 
the next iterations. Thus, the idea is to do a more intelligent 
search around elite solutions, in an attempt to discover even 
better solutions as the search progresses. The intensifying 
phase of the algorithm continues for each schedule until the 
schedule‟s fitness ceases to change for five consecutive 
iterations. 

The first step in the proposed algorithm is to create a 
population of schedules using the heuristic algorithm described 
in Section 4.1.  After the initialization of all the variables, 
including the demon credit d, we repeat the following process 
until convergence. 

Firstly, the program evaluates every schedule in the 
population then selects the best and elite schedules from the 
population. Secondly, we intensify the search on the best and 
elite schedules using the neighboring moves for best and elite 
respectively. When applying neighboring search on the „best‟ 
schedules, the new schedule is accepted if the overall fitness is 
better. However, when applying the search on „elite‟ schedules, 
and based on the principle of the DA, the program calculates 
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the difference in fitness value of the two schedules, the old 
schedule and the new schedule. If the difference is positive (+), 
the new schedule is accepted and the difference value is 
credited to the demon value. On the other hand, if the 
difference is negative (-), the new schedule is accepted only if 
the demon credit can withstand the difference and then we 
update the demon value after subtracting the difference value. 
This process is considered as the intensification part of the 
algorithm as it intensifies the search on each individual 
schedule to improve it.  

Finally, we repopulate the search space keeping the best 
and elite schedules from the previous iteration, and keep the 
current best schedule in hand. Diversification is incorporated in 
the algorithm as it helps to generate a population with various 
fitness values. It is worth mentioning that the selection of best 
set is done in a stochastic manner [24] using a tournament 
selection approach, as the algorithm chooses five schedules 
randomly from the population, and then selects the best 
schedule among them. This process is repeated until reaching 
the required number of best set. This approach gives better 
results in terms of diversification and producing different 
schedules, as deterministic methods tend to stick with the same 
best set regardless of the iterations [2]. 

Once the best schedule ceases to change for five 
consecutive iterations, the algorithm stops repetition and 
outputs the result. The details are described in Algorithm 2. 

The algorithm starts by receiving a population of schedules 
from Algorithm 1 then evaluates every schedule in the 
population. Method eval does precisely that by taking a 
schedule and producing the objective function value for each 
corresponding schedule. After that, a set of best and elite 
schedules is selected respectively based on the fitness value in 
our case. Once the sets are established, the algorithm first 
iterates over the best set and attempts to improve the schedules 
using the method neighborhood then moves on to the elite 
schedules. Neighborhood implements the techniques discussed 
in Section 4.2 to improve the quality of schedules in both sets. 
However, improving criteria must be chosen for the schedules 
in both cases; this is selected to be „Hill Climbing‟ for best and 
„Demon‟ for elite, which are passed to the method 
neighborhood. After these steps have been conducted, the 
algorithm repopulates the space with the inclusion of the best 
and elite sets, then proceeds with the next iteration. 

Algorithm 2: Hybridized Algorithm 
 

Input: demon credit d 

Output: an optimal schedule s 

1: p ← Initial Population (Algorithm 1)  

2: repeat until convergence:  

3:      for i = 1: | p | 

4:           eval(pi) 

5:      b ← min(p) //best schedules 

6:      e ← min(b) //elite schedules 

7:      b ← b - e 

8:      for i = 1: | b |  

9:           repeat until convergence:  

10:                neighborhood(bi , hill climbing) 

11:      for i = 1: | e | 

12:           repeat until convergence:  

13:                neighborhood(ei , demon, d) 

14:      p ← Initial Population + b + e 

15:      for i = 1: | p | 

16:           eval(pi)  

17:      s ← min(p) 

18: return s 
 

In the next section, details of how the results were 
evaluated will be illustrated to conduct analysis on the 
performance of the designed algorithm. 

V. EXPERIMENTAL RESULTS 

In this section, we will discuss in details the dataset that we 
used to test our algorithm, and show our results and the 
different criteria used to evaluate these results. 

A. Characteristics of the Dataset 

To test our algorithm, we used a real dataset obtained from 
the Computer Science department at King Saud University. In 
addition, we a created another theoretical (i.e., synthesized) 
dataset inspired from the real dataset. We conducted the testing 
on one real dataset and two different theoretical datasets. Both 
types were saved on (.csv) files. Table I summarizes the details 
of the three datasets. Each dataset is split into two different 
parts:  

a) The dataset of the teachers to be allocated: This    

includes: professors, associate professors, assistant professors, 

lecturers, and teaching assistants. 

b) The dataset that contains the information about the 

courses and sections to be taught. This includes: lectures, labs, 

and tutorials.  

B. Parameter Tuning 

The objective function was designed to measure the quality 
of a schedule. A crucial part of it was to decide the weights 
used to penalize the violations of soft constraints. The weights 
were selected to be in the range [0, 1] and the totality of them 
would equal to one. We prioritized the soft constraints with 
their corresponding weights depending on the department‟s 
needs: 

a) Minimum and maximum workload, w1 = 0.4. 

b) Balancing the workload, w2 = 0.3. 

c) One-day off, w3 = 0.2. 

d) Minimize the number of instructors per course, w4 

= 0.1. 

After designing our algorithm, we had to test different 
values for each of the parameters: population size, best size, 
elite size, and demon credit.  

For each of these parameters we used the same dataset. In 
parameter tuning [25], [26], we applied grid search technique 
to test a variety of values for one parameter (approximately 13 
different values) keeping the rest of values constant. Each 
value was tested five times then we compared the resulting 
average fitness with that of the rest of the values.  
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TABLE I.  DATASET SUMMARY 

 Datasets 

Variable Real Dataset Theoretical 1 Theoretical 2 

Courses 22 7 10 

Sections 167 70 120 

Professors 0 1 0 

Associate Prof. 1 1 1 

Assistant Prof. 8 1 6 

Lecturers 16 9 13 

Teaching Assist. 20 5 14 

In addition, we chose to start our tuning with the population 
size, since it was observed to have the most effect on the 
fitness. Then we tested the number of best solutions, and then 
we tuned the number of elite solutions, since it is a subset of 
the best. Finally, we tuned the demon credit. The final 
parameter values we obtained were, population size = 50, best 
size = 8, elite size = 4, and demon credit = 0.25, which were 
deemed fit for our algorithm based on the quality of solutions 
obtained. 

C.   Evaluating the Results by Analyzing the Objective 

Function 

We ran our algorithm twenty times on each of the three 
previously defined datasets, documenting the fitness and the 
execution time (in minutes). The program was executed on a 
Macbook Pro with OS X Yosemite, 2.9 GHz Intel Core i7 
processor, 8 GB DDR3 memory. 

In Fig. 3, a sample of the fitness (objective function) of the 
best schedule at hand is illustrated against the iteration 
sequence. It is clear that in every iteration, the intensification 
phase of the algorithm provides a major contribution to the 
fitness as well as finding another potential candidate to 
substitute the current schedule through the diversification 
phase. 

 
Fig. 3. Progress of best schedule over time. 

TABLE II.  DATASET RESULTS SUMMARY 

 Datasets 

Measure Real Dataset Theoretical 1 Theoretical 2 

Average Fitness 0.062 0.033 0.078 

Standard Deviation 0.013 0.010 0.007 

Minimum Fitness 0.029 0.002 0.059 

Maximum Fitness 0.084 0.049 0.089 

TABLE III.  DATASET RUNTIME  SUMMARY 

 Datasets 

Criteria Real Dataset Theoretical 1 Theoretical 2 

Number of Sections 167 70 120 

Avg. Exec. Time (min) 5.17 1.775 4.35 

As demonstrated by the results in Table II, all of the 
obtained values on all data sets are very close to zero, 
indicating very small number of violations of the soft 
constraints. Also, the values obtained fall into the same range 
of values, meaning that the algorithm produces a good result in 
each run. This is confirmed by measuring the standard 
deviation to ensure the stability of our algorithm. On the other 
hand, the maximum result shows the worst case, which is still 
very close to zero. 

Understandably, the algorithm could not give a schedule 
with a zero-fitness value, as there are many factors that prevent 
the algorithm from reaching the ideal solution. For instance, 
different sections have different hours such as labs and 
lectures. Thus, it is nearly impossible to have the workload 
distributed perfectly between the faculty members. 
Nonetheless, considering all the constrains, we deemed 
important in the algorithm, the results shown are indeed very 
satisfactory. 

Regarding the execution time, it is noticeable that the 
execution time differs from run to run, and that is 
understandable as well, since the time it takes for the algorithm 
to converge is distinct depending on the population in hand and 
the number of iterations it will take to improve various 
schedules in the dataset during the intensification phase. 
Table III above summarizes the relationship between the 
dataset size and execution time in minutes. Overall, the 
algorithm produces excellent results in a reasonable processing 
time. 

 
Fig. 4. Comparison between manual, BA and hybrid BA schedules. 
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D. Evaluating the Results by Comparing the Manual Schedule 

with our Algorithm’s Schedule  

The manually designed schedule was compared with the 
generated schedule by our algorithm on the real dataset to 
assess the latter. The assessment is based on fulfilling the soft 
constraints, since the hard constraint is guaranteed to be 
satisfied to make a valid schedule.  Table V shows the results 
of the comparison in details. 

As can be seen from Table V, our algorithm provided a 
schedule that eliminated any violations of „min & max 
workload‟ constraint as well as the „day off‟ constraint. In 
addition, it managed to balance the workload by a significant 
amount, since it provided an overall total variance from the 
average workload of just 0.008, compared to a total variance of 
0.055 for the manually allocated schedule. Evaluating the 
overall fitness of the schedule, our schedule has a fitness of 
approximately 0.03 while the manual schedule has a fitness of 
approximately 0.17. This shows that our schedule improved the 
manual schedule by a remarkable 83.4% value. However, the 
only constraint that our algorithm was not able to provide 
satisfactory results for was minimizing the number of 
instructors per course shown evidently in Fig. 4. This is 
probably due to the small penalty weight that we assigned for 
this constraint, since we considered it less important in the 
schedule than the other constraints.  

E.   Evaluating the Results by Comparing the Proposed 

Algorithm with the Classic BA  

To assess the effectiveness of hybridizing BA with Demon 
and Hill Climbing algorithms, we compared the results of our 
algorithm to the results produced from the classic BA using the 
real dataset following the same criteria used in the previous 

section. As shown in Table V, the hybrid algorithm 
outperforms the classic BA in generating the best schedule. 
The two algorithms performed equally well in avoiding the 
violation of the day off constraint. However, the hybrid 
algorithm produced considerably better results in fulfilling the 
rest of the soft constraints, with a 56% improvement in 
balancing the workload. Digging deeper into these schedules, 
we noticed a notable difference in the quality of the produced 
solutions at the instructors‟ level. While the schedules 
produced by the hybrid algorithm tend to limit the number of 
different courses and assign a consistent set of sections to each 
instructor, the classic BA generates more variant ones. An 
example to further explain this point is illustrated in Table IV 
below, where we took one of the instructors and compared her 
schedule generated by the two approaches. We can clearly see 
that the hybrid BA schedule is more practical and more 
convenient for the instructor. 

TABLE IV.  INSTRUCTOR ASSIGNED SECTIONS EXAMPLE 

 BA Schedule Hybrid BA Schedule 

 

Course Type Hours Course Type Hours 

CS09 Tutorial 1 CS17 Lab 6 

CS23 Lecture 3 CS23 Tutorial 2 

CS10 Tutorial 1    

CS01 Tutorial 1    

Number of 

Sections 
4 5 

Unique 

courses 
4 2 

Total 

Workload 
6 8 

TABLE V.  MANUAL VS CLASSIC BA VS HYBRID BA RESULT SUMMARY

 Manual Schedule BA Schedule Hybrid BA Schedule 

Category Min and  

max 

workloa

d 

violation 

Balance 

workloa

d 

violation 

Day off 

violatio

n 

Number 

of 

instructor

s per 

course 

violation 

Min and 

max 

workloa

d 

violation 

Balance 

workloa

d 

violation 

Day off 

violatio

n 

Number 

of 

instructor

s per 

course 

violation 

Min and 

max 

workloa

d 

violation 

Balance 

workloa

d 

violation 

Day off 

violatio

n 

Number 

of 

instructor

s per 

course 

violation 

Students 2 0.003 0  0 0 0  0 0 0  

Professors 7 0.017 0  0 0.003 0  0 0.004 0  

Lecturers/T

A 
6 0.035 4  2 0.014 0  0 0.004 0  

All 15 0.055 4 1 2 0.017 0 10 0 0.008 0 6 

Total Fitness 0.172 0.066 0.029 

TABLE VI.  BA VS HYBRID BA AVERAGE COMPARISON 

Criteria BA Hybrid BA 

Avg. Fitness 0.076 0.062 

Avg. Exec. Time 0.82 5.17 

Taking the performance evaluation of the proposed 
algorithm a step further, we compared the two approaches in 
terms of the average fitness obtained along with the average 
time needed to generate the solutions, running each algorithm 
20 times on the real dataset to get the average value.  

As Table VI demonstrates, the hybrid algorithm generates 
better results in general. Although the improvement is not very 
significant on an average scale, our goal is to find the best 
fitted schedule which will be obtained through running the 
algorithm multiple times and adopting the best schedule. In 
other words, increasing the chance of finding a near optimal 
solution on a set of satisfactory solutions would be more 
beneficial than trying to ensure that all solutions in the set are 
optimal solutions. The difference in the average running time is 
not a concern as well, since the algorithm will only be run once 
each semester in practical situations. So, we can sacrifice the 
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increase in execution time for the sake of obtaining a much 
better schedule that will be adopted throughout the semester. 

F. Evaluating the Results with the Assessment of the Schedule 

by the Scheduling Committee 

Finally, our results were also assessed by members of the 
scheduling committee in the Computer Science Department, by 
answering an evaluation survey. Overall, we received a 
positive feedback from the scheduling committee. Generally, 
they strongly agreed that the algorithm fulfilled the 
requirement of assigning all courses to faculty members, as 
well as allowing each faculty member a day off per week. They 
also agreed that the algorithm managed to balance the 
workload among the faculty members. Moreover, the 
committee agreed that the quality of the schedule produced was 
satisfactory, and that they consider the resulting schedule 
reliable. 

Finally, the scheduling committee strongly admits that our 
algorithm is needed and useful for the Computer Science 
department, and would use it if it was currently available.  

VI. DISCUSSION 

After applying our proposed method to solving the faculty 
scheduling problem, it is evident that the Bees Algorithm 
proved its capability and suitability for this problem.  
Specifically, the diversification stage played a significant role 
in the exploration of many different solutions. This was 
achieved through the greedy-randomized population creation 
part of the algorithm. Whereas intensification further improved 
the solutions obtained that being the neighboring moves‟ role, 
focusing on minimizing the violations of the soft constraints. 

Moreover, hybridizing the Bees Algorithm with another 
meta-heuristic immensely improved our algorithm‟s 
performance, leaping to a higher level of intelligence. We used 
both Hill Climbing and Demon algorithms as solution 
acceptance algorithms. The Hill Climbing algorithm was 
applied on the best and elite solutions, whilst the Demon 
algorithm was only applied on the elite solutions, with the 
intension of doing more intelligent search around the elite than 
the other selected best solutions. 

VII. CONCLUSION 

In this paper, we tackled the faculty scheduling problem, 
which is concerned with assigning faculty members to 
prescheduled courses. To solve the problem, firstly, we 
designed the construction of the initial population that is 
considered a primary factor in the Bees Algorithm. We used a 
specially designed greedy-randomized heuristic for this 
purpose. Secondly, we designed the neighboring moves that 
will be used to improve the solutions selected by the algorithm. 
We hybridized the Bees algorithm with the Demon algorithm 
and Hill Climbing, which is considered an innovative approach 
in this particular problem.  

We used the dataset provided by the CS department to test 
our algorithm and chose to use this dataset to evaluate our 
algorithm, because it portrays a realistic environment. We also 
used two theoretical datasets to further test the algorithm. The 
algorithm showed superior results when compared to the 
manually allocated one, as it managed to eliminate „min & max 

workload‟ constraint as well as the „day off‟ constraint. 
Moreover, the scheduling committee in the department 
evaluated the schedules produced by the algorithm, and agreed 
that it satisfies their expectations.  

Several areas of improvement arise, though, by enhancing 
the hybrid algorithm to solve some additional requirements, 
such as minimizing the number of courses assigned to each 
teacher. Further research could be conducted by broadening the 
problem and generalizing the algorithm to solve other 
variations of scheduling. 

REFERENCES 

[1] S. Even, A. Itai, and A. Shamir, “On the complexity of time table and 
multi-commodity flow problems,” in Foundations of Computer Science, 
1975., 16th Annual Symposium on, 1975, pp. 184–193. 

[2] E.-G. Talbi, Metaheuristics: from design to implementation, vol. 74. John 
Wiley & Sons, 2009. 

[3] D. Abramson, “Constructing school timetables using simulated 
annealing: sequential and parallel algorithms,” Manag. Sci., vol. 37, no. 
1, pp. 98–113, 1991. 

[4] T. Ferdoushi, P. K. Das, and M. A. H. Akhand, “Highly constrained 
university course scheduling using modified hybrid particle swarm 
optimization,” in Electrical Information and Communication Technology 
(EICT), 2013 International Conference on, 2014, pp. 1–5. 

[5] F. Aloul, I. Zabalawi, and A. Wasfy, “A SAT-based approach to solve the 
faculty course scheduling problem,” in AFRICON, 2013, 2013, pp. 1–5. 

[6] R. Lewis and B. Paechter, “Finding feasible timetables using group-based 
operators,” IEEE Trans. Evol. Comput., vol. 11, no. 3, pp. 397–413, 
2007. 

[7] A. Gunawan and K. M. Ng, “Solving the teacher assignment problem by 
two metaheuristics,” Int. J. Inf. Manag. Sci., vol. 22, no. 2, pp. 73–86, 
2011. 

[8] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, and others, “Optimization by 
simmulated annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983. 

[9] R. W. Eglese, “Simulated annealing: a tool for operational research,” Eur. 
J. Oper. Res., vol. 46, no. 3, pp. 271–281, 1990. 

[10] A. G. Nikolaev and S. H. Jacobson, “Simulated annealing,” in Handbook 
of Metaheuristics, Springer, 2010, pp. 1–39. 

[11] F. Glover and M. Laguna, Tabu Search∗. Springer, 2013. 

[12] A. Gunawan, K. M. Ng, and H. L. Ong, “A genetic algorithm for the 
teacher assignment problem for a university in Indonesia,” Inf. Manag. 
Sci., vol. 19, no. 1, pp. 1–16, 2008. 

[13] J. H. Holland, “Genetic algorithms,” Sci. Am., vol. 267, no. 1, pp. 66–72, 
1992. 

[14] M. Mitchell, “Genetic algorithms: An overview,” Complexity, vol. 1, no. 
1, pp. 31–39, 1995. 

[15] E. Aycan and T. Ayav, “Solving the course scheduling problem using 
simulated annealing,” in Advance Computing Conference, 2009. IACC 
2009. IEEE International, 2009, pp. 462–466. 

[16] S. Parera, H. T. Sukmana, and L. K. Wardhani, “Application of genetic 
algorithm for class scheduling (Case study: Faculty of science and 
technology UIN Jakarta),” in Cyber and IT Service Management, 
International Conference on, 2016, pp. 1–5. 

[17] Y. OuYang and Y. Chen, “Design of automated Course Scheduling 
system based on hybrid genetic algorithm,” in Computer Science & 
Education (ICCSE), 2011 6th International Conference on, 2011, pp. 
256–259. 

[18] A. Gunawan, K. M. Ng, and K. L. Poh, “Solving the teacher assignment-
course scheduling problem by a hybrid algorithm,” Int J Comput Inf. 
Engin, vol. 1, no. 2, pp. 137–142, 2007. 

[19] M. W. Carter and G. Laporte, “Recent developments in practical course 
timetabling,” in International Conference on the Practice and Theory of 
Automated Timetabling, 1997, pp. 3–19. 

[20] M. I. Hosny, “A Heuristic Algorithm for Solving the Faculty Assignment 
Problem,” in Proceedings of the International Conference on Frontiers in 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 5, 2018 

159 | P a g e  

www.ijacsa.thesai.org 

Education: Computer Science and Computer Engineering (FECS), 2012, 
p. 1. 

[21] D. T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim, and M. Zaidi, 
“The bees algorithm–a novel tool for complex optimisation,” in 
Intelligent Production Machines and Systems-2nd I* PROMS Virtual 
International Conference (3-14 July 2006), 2011. 

[22] N. ALHUWAISHEL and M. HOSNY, ““A Hybrid Bees/Demon 
Optimization Algorithm for Solving the University Course Timetabling 
Problem,” in Proceedings of the 3rd NAUN International Conference on 
Mathematical, Computational and Statistical Sciences. Dubai, United 
Arab Emirates, February, 2015. 

[23] X.-S. Yang, S. Deb, and S. Fong, “Metaheuristic algorithms: optimal 
balance of intensification and diversification,” Appl. Math. Inf. Sci., vol. 
8, no. 3, p. 977, 2014. 

[24] J. E. Baker, “Reducing bias and inefficiency in the selection algorithm,” 
in Proceedings of the second international conference on genetic 
algorithms, 1987, pp. 14–21. 

[25] Á. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in 
evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 
124–141, 1999. 

[26] A. E. Eiben and S. K. Smit, “Evolutionary algorithm parameters and 
methods to tune them,” in Autonomous search, Springer, 2011, pp. 15–
36.

 


