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Abstract—A demonstration of the application of fuzzy logic-

based joint controller (FLJC) to a 6-DOF robotic arm as a color-

based sorter system is presented in this study. The robotic arm 

with FLJC is integrated with a machine vision system that can 

discriminate different colors. Additionally, the machine vision 

system composed of Kinect camera and computer were used to 

extract the coordinates of the gripper and the objects within the 

image of the workspace. A graphical user interface with an 

underlying sorting algorithm allows the user to control the 

sorting process. Once the system is configured, the computed 

joint angles by FLJC are transmitted serially to the 

microcontroller. The results show that the absolute error of the 

gripper coordinates is less than 2 cm and that the machine vision 

is capable of achieving at least 95% accuracy in proper color 

discrimination both for first and second level stacked color 

objects. 

Keywords—Color-based sorter; degrees of freedom; fuzzy logic; 

joint controller; machine vision; robotic arm 

I. INTRODUCTION 

The development of machines has been a valuable tool ever 
since the dawn of civilization. Machines had been the 
humanity’s innovative creations whose sole purpose was to 
achieve efficiency and effectiveness to different tasks that are 
either routine or almost impossible for humans to do by hand. 
Machines were meant to be driven by a human operator, until 
the last century [1] where automation began to be favored by 
industry, specially deployed in car manufacturing process. This 
greatly reduced the manpower needed and at the same time 
was efficient in terms of resources and time. From thereon, 
autonomous machines came into existence and diverse forms 
of such machines were developed for specific purposes. One 
such machine is the autonomous robotic arm whose design was 
primarily inspired by the human arm. Due to the flexibility that 
the human arm can do varied tasks, the development of an 
autonomous robotic arm has been a subject of research [2] 
since its development in 1960s. 

Autonomous robotic arms had numerous advantages as 
compared to human arm. Robotic arm machines are immune to 
fatigue and can be made to be invulnerable in wide 
environment settings. Additionally, it is the most viable 
alternative when deployed to environments that are too harmful 
for humans [3] and can be programmed to perform routine 

tasks efficiently. Amidst these benefits, a robotic arm is also a 
complex mechanical machine that exhibits time-varying inertia 
and friction and as such is more challenging to control by 
means of classical linear-based controllers. To achieve 
autonomous operation, the machine must have a controller that 
is able to sense its current state and decide its course action in 
much the same way humans decide. Non-classical or intelligent 
controllers had been developed throughout the years, such as 
fuzzy logic based controllers [5], [6] that mimics the way 
humans think, artificial neural network based controllers [7], 
[8] that emulates the biological human brain, genetic algorithm 
based controllers  [9], [10] inspired by evolutionary processes 
or hybrid types [11]. One such controller developed in this 
study is the fuzzy logic-based joint controller (FLJC) [4] that is 
capable of dealing with system nonlinearities by moving the 
joints of the robotic arm at proper rate and interval according to 
the task at hand. Fuzzy logic controllers has been shown as an 
effective controller in a number of robot systems like the micro 
soccer robots [12]-[15], micro-golf robot [16], ball-beam 
balancing robot [17] and simulated and actual robotic arms [4], 
[6], [18]-[21]. 

Aside from the controller developed in [4], this study will 
give emphasis on the integration of the controller with a 
machine vision system to demonstrate the use of the fuzzy 
logic controlled autonomous robotic arm system into a color-
based sorter system. The machine vision system will be 
thoroughly discussed as well as the algorithm deployed to 
perform the sorting process to realize a fully functional color-
based sorter. Test results of accuracy of the gripper to move 
towards the target coordinates as well as the reliability of the 
machine vision system are laid out and discussed. Lastly, 
several points are enumerated with regards to the possible 
improvements that could be made for the system. 

II. SYSTEM CONFIGURATION 

The color-based sorter system is similar to the 
configuration in [4] but with the following modifications: 
1) the robotic arm’s end-effector are embedded with limit 
switches to improve tactile sensing of the object, 2) the 
machine vision system is now capable of discriminating at 
most four different object colors, and 3) the sorter is capable of 
sorting out stacked objects up to second level. The robotic arm 
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itself is composed of a 4-DOF M100RAK [22] modular arm 
attached with 2-DOF gripper [23].  The shoulder, elbow and 
wrist joints are each mounted with MPU6050 Six-Axis 
Gyroscope and Accelerometer [24] Inertial Measurement Units 
(IMU) as sensors to acquire the robotic arm’s pose in real time.  
Attached to the robotic arm’s end-effector are the force sensing 
resistor (FSR) and miniature limit switches as its haptic 
feedback sensors. The robotic arm’s servo motors are 
controlled directly by the Arduino [25] microcontroller that 
communicates with the computer. Set atop on the workspace is 
the Kinect sensor [26] that serves as the main sensory input for 
machine vision system in the computer. Fig. 1. shows how the 
components are connected to form the fuzzy logic-controlled 
color-based sorter. 

 

Fig. 1.  Architecture of the color-based sorter. 

 
Fig. 2.  Configuration of the color-based object sorter. 

Shown in Fig. 2 is the hardware configuration used in this 
study with the robotic arm on the center in front of the cylinder 
objects and the camera on top. The pertinent dimensions of the 
workspace are shown in Fig. 3. The study focuses in the 
application of fuzzy logic-based controller of the robotic arm 
as well as the algorithm devised to properly sort the cylinder 
objects in place. 

 

Fig. 3.  Workspace dimensions of the color-based sorter. 

III. FUZZY LOGIC-BASED JOINT CONTROLLER 

The theory of fuzzy sets was first described by Lotfi Zadeh 
[27] and found its applications as a controller such as for plant 
processes [28]. Fuzzy sets are an extension of the bi-valued 
logic in that it can be used to describe half-truth statements to 
varying degrees. The concept of a fuzzy set can be exploited to 
emulate the way humans think when in control of a process by 
employing a human-like language describing how a complex 
system should be controlled. To achieve a descriptive language 
for control, a fuzzy logic controller consists of: 1) a fuzzifier 
block that converts real-world crisp values into fuzzy sets 
through membership functions, 2) an inference engine that 
interprets the input fuzzy set based on a set of human-defined 
language for control known as fuzzy rules to decide the output 
fuzzy sets, and 3) a defuzzifier block that converts the output 
fuzzy set back into real-world crisp values [29]. These crisp 
values are now used to directly control any process variables 
[5], [11], [17]. Shown in Fig. 4. is the conceptual block 
diagram of a fuzzy logic controller. The goal of the fuzzy logic 
controller is to move the end-effector to the desired target as 
close as possible. The controller is part of a closed-loop system 
composed of the sensors mounted on the robotic arm, the 
controller itself and the mechanically actuated robotic arm. The 
fuzzy logic controller dictates the microcontroller the amount 
and direction at which the servo motors are to be turned and 
the microcontroller in turn, through pulse width modulation 
signals controls the servo motors. 

 
Fig. 4.  Fuzzy logic system [5]. 
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A. Input and Output Parameters 

The top and side views of the robotic arm with pertinent 
dimensions are shown in Fig. 5. and 6. Excluding the 2-DOF 
gripper, there are four (4) joint angles that can be controlled to 
change the end-effector’s position: the base angle (θb), shoulder 
angle (θs), elbow angle (θe) and wrist angle (θw). The fuzzy 
logic controller must control these joints so that the input errors 
in x-coordinates (ex), y-coordinates (ey) and z-coordinates (ez) 
are close to zero as possible. 

 
Fig. 5.  Top view of the robotic arm relative to target. 

 
Fig. 6.  Side view of the robotic arm relative to target. 

The inputs to the controller were chosen according the 
following criteria: 1) the controller must know how close the 
end-effector is to the target, and 2) the controller must 
determine the current pose of the robotic arm to properly move 
the actuators in the desired direction. With these in mind, listed 
below are the input parameters for the fuzzy logic controller: 

1) ex is error in x-coordinate, defined to be difference 

between the x-coordinate of the end-effector and the x-

coordinate of the target. 

2) ey is error in y-coordinate, defined to be difference 

between the y-coordinate of the end-effector and the y-

coordinate of the target. 

3) ez is error in z-coordinate, defined to be difference 

between the z-coordinate of the end-effector and the z-

coordinate of the target. 

4) Өb is the base angle, defined as the angle between the 

robotic arm and the x-axis. 

5) Өe is the elbow joint angle. 

6) Өη is defined as the gripper angle with respect to 

horizontal. 

7) Өη’ is defined as the rate of change of gripper angle 

with respect to horizontal. 

The outputs of the fuzzy logic controller are as follows: 

1) ΔӨb is the change in base joint angle. 

2) ΔӨs is the change in shoulder joint angle. 

3) ΔӨe is the change in elbow joint angle. 

4) ΔӨw is the change in wrist joint angle. 

B. Membership Functions 

Once the input and output parameters are defined, the 
appropriate membership functions for each parameter are 
defined according to the limitations of the robotic arm itself as 
well as the magnitude of the change produced by each 
parameter. These membership functions are then tuned and 
finalized through a series of tests and experimentations [5]. The 
input membership functions are tuned by considering the 
sensitivity of the controller to these inputs. In this study, the 
unit of measurement for the range of values sampled to discrete 
grades of membership functions for input errors is in 
millimeters while those for angular displacement are in radians. 
Trapezoidal membership functions were used at the extreme 
values of input joint angles to avoid self-collision. Shown in 
Fig. 7. through Fig. 13. are the membership functions of the 
seven input parameters. For the sake of brevity, the 
membership functions are labeled accordingly as follows: 

Fuzzy Membership Acronyms: 

L – left  NL – negative large         P – positive 

M – middle N – negative            PL – positive large 

R – right  Z – zero (negligible)  

 
Fig. 7.  Membership function for error in x-coordinate. 

 

Fig. 8.  Membership function for error in y-coordinate. 
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Fig. 9.  Membership function for error in z-coordinate. 

 
Fig. 10.  Membership function for base joint angle. 

 

Fig. 11.  Membership function for elbow joint angle. 

 
Fig. 12.  Membership function for gripper angle with respect to horizontal. 

 
Fig. 13.  Membership function for rate of change of gripper angle with respect 

to horizontal. 

 
Fig. 14.  Membership function for change in base joint angle. 

 
Fig. 15.  Membership function for change in shoulder joint angle. 

 
Fig. 16.  Membership function for change in elbow joint angle. 

 
Fig. 17.  Membership function for change in wrist joint angle. 

Similarly, the output membership functions are tuned by 
considering the sensitivity of the robotic arm as the joint angles 
were changed. All output joint angles are specified in units of 
radians. The defuzzification process used the weighted average 
method to reduce calculation time in calculating the crisp 
value. Shown in Fig. 14 through Fig. 17 are the membership 
functions of the four output joint angles: change in base, 
shoulder, elbow and wrist joint angles. The same membership 
labeling scheme applies as defined for the input membership 
functions. 
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C. Analysis of the Different Robotic Arm Poses 

Once the input and output parameters were determined as 
well as their respective membership functions, the rules for 
inference engine are formulated. The rules can be formulated 
by analyzing the different robotic arm poses possible within the 
workspace. Of course, there are infinite arm poses that are 
possible within the workspace so dividing the range of possible 
values into subsets is necessary and it can be done by the aid of 
membership functions. The pose of the robotic arm is analyzed 
by looking at the top and side view of the robotic arm shown in 
Fig. 18. and 19. The different poses shall be the basis in 
formulating the fuzzy rules. In general, the rules are to be 
formulated in such a way that the input errors in x-, y- and z-
coordinates are minimized in each iteration. 

 

Fig. 18.  Top view of possible robotic arm orientation. 

The base joint angle can be oriented in five (5) different 
angle orientations as shown in Fig. 18: West, Northwest, 
North, Northeast and East. In the same figure, the black 
rectangle represents the base of the arm, the red link represents 
the shoulder-to-elbow link, the green link represents the elbow-
to-wrist link and the blue link represents the gripper. The 
initials P, Z, and N corresponds to positive, zero and negative 
respectively each used to describe the position of the end-
effector relative to the target. The symbol Өb is the base angle 
and a pair such as (P,N) denotes that the input errors for x and 
y coordinates are positive and negative respectively should the 
target is found at that region relative to the end-effector. 
Knowing the sign of the input errors will aid on formulating 
the fuzzy rule at which should the base angle be moved to 

minimize the error. In this view, the arm can rotate clockwise 
or counterclockwise as well as extend or retract its links. 

Shown in Fig. 19 are three possible poses when looking at 
the side view of the robotic arm. The three links form a 
coupled system that has three (3) degrees of freedom and is 
more than the degrees of freedom necessary to determine the 
radius and height of the end-effector. As such, a link can be 
assumed to be at fixed angle and isolate it from the other two 
angles. The gripper is chosen to be this link that can be fixed to 
maintain horizontally level with respect to the ground at all 
times. Effectively, we could decouple the gripper and write 
separate fuzzy rules for it apart from the shoulder and elbow 
joint angles. 

 
Fig. 19.  Side view of possible robotic arm orientation. 

D. Fuzzy Rule Formulation 

By analyzing the different poses of the robotic arm, the 
fuzzy rules can now be facilitated by taking note of the input 
errors as well as their signs. In general, the rule formulation is 
guided by the control law that all input errors must be 
minimized and as close to zero as possible. From the analysis 
of the robotic arm, three (3) different rule blocks can be 
identified. For instance, if the base angle is pointing in the 
North direction and the target is present at the (P,N) region 
then the base angle must rotate counterclockwise and the robot 
arm must extend forward, to bring the end-effector closer to the 
target. The beauty of fuzzy logic controller is that you do not 
have to specify the magnitude explicitly but just the intuition 
and at which direction should the output parameters move. 
This analysis is applied to all enumerated poses and the rules 
formulated can be found on Table I through Table III(a) 

Table I pertains to the fuzzy rules for the top view 
orientation involving the input parameters base joint angle, 
error in x-coordinate, error in y-coordinate and output 
parameter change in base joint angle. Table II contains the 
rules for the side view orientation involving the input 
parameters elbow joint angle, error in y-coordinate, error in z-
coordinate and output parameters change in shoulder and 
elbow angles. Lastly, Table III is a list that controls how the 
gripper angle must maintain horizontally level at all times. 
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TABLE I.  FUZZY RULES FOR BASE JOINT ANGLE 

  
Input: base joint angle (θb), error x (ex),   

            error y (ey)      

Output: change in base joint angle (Δθb) 

1 If θb is E and ex is N and ey is N then Δθb is P 

2 If θb is E and ex is N and ey is Z then Δθb is Z 

3 If θb is E and ex is N and ey is P then Δθb is N 

4 If θb is E and ex is Z and ey is N then Δθb is P 

5 If θb is E and ex is Z and ey is Z then Δθb is Z 

6 If θb is E and ex is Z and ey is P then Δθb is N 

7 If θb is E and ex is P and ey is N then Δθb is P 

8 If θb is E and ex is P and ey is Z then Δθb is Z 

9 If θb is E and ex is P and ey is P then Δθb is N 

10 If θb is NE and ex is N and ey is N then Δθb is Z 

11 If θb is NE and ex is N and ey is Z then Δθb is N 

12 If θb is NE and ex is N and ey is P then Δθb is N 

13 If θb is NE and ex is Z and ey is N then Δθb is P 

14 If θb is NE and ex is Z and ey is Z then Δθb is Z 

15 If θb is NE and ex is Z and ey is P then Δθb is P 

16 If θb is NE and ex is P and ey is N then Δθb is P 

17 If θb is NE and ex is P and ey is Z then Δθb is P 

18 If θb is NE and ex is P and ey is P then Δθb is Z 

19 If θb is N and ex is N and ey is N then Δθb is N 

20 If θb is N and ex is N and ey is Z then Δθb is N 

21 If θb is N and ex is N and ey is P then Δθb is N 

22 If θb is N and ex is Z and ey is N then Δθb is Z 

23 If θb is N and ex is Z and ey is Z then Δθb is Z 

24 If θb is N and ex is Z and ey is P then Δθb is Z 

25 If θb is N and ex is P and ey is N then Δθb is P 

26 If θb is N and ex is P and ey is Z then Δθb is P 

27 If θb is N and ex is P and ey is P then Δθb is P 

28 If θb is NW and ex is N and ey is N then Δθb is N 

29 If θb is NW and ex is N and ey is Z then Δθb is N 

30 If θb is NW and ex is N and ey is P then Δθb is Z 

31 If θb is NW and ex is Z and ey is N then Δθb is N 

32 If θb is NW and ex is Z and ey is Z then Δθb is Z 

33 If θb is NW and ex is Z and ey is P then Δθb is P 

34 If θb is NW and ex is P and ey is N then Δθb is Z 

35 If θb is NW and ex is P and ey is Z then Δθb is P 

36 If θb is NW and ex is P and ey is P then Δθb is P 

37 If θb is W and ex is N and ey is N then Δθb is N 

38 If θb is W and ex is N and ey is Z then Δθb is Z 

39 If θb is W and ex is N and ey is P then Δθb is P 

40 If θb is W and ex is Z and ey is N then Δθb is N 

41 If θb is W and ex is Z and ey is Z then Δθb is Z 

42 If θb is W and ex is Z and ey is P then Δθb is P 

43 If θb is W and ex is P and ey is N then Δθb is N 

44 If θb is W and ex is P and ey is Z then Δθb is Z 

45 If θb is W and ex is P and ey is P then Δθb is P 

TABLE II.  FUZZY RULES FOR SHOULDER AND ELBOW JOINT ANGLES 

 
Input: elbow joint angle (θe), error y (ey), error z (ez)                                        

Output: change in shoulder joint angle (Δθs),                        

               change in elbow joint angle (Δθe) 

1 If θe is R and ey is N and ez is N then Δθs is P and Δθe is P 

2 If θe is R and ey is N and ez is Z then Δθs is P and Δθe is Z 

3 If θe is R and ey is N and ez is P then Δθs is P and Δθe is N 

4 If θe is R and ey is Z and ez is N then Δθs is Z and Δθe is P 

5 If θe is R and ey is Z and ez is Z then Δθs is Z and Δθe is Z 

6 If θe is R and ey is Z and ez is P then Δθs is Z and Δθe is N 

7 If θe is R and ey is P and ez is N then Δθs is N and Δθe is P 

8 If θe is R and ey is P and ez is Z then Δθs is N and Δθe is Z 

9 If θe is R and ey is P and ez is P then Δθs is N and Δθe is N 

10 If θe is M and ey is N and ez is N then Δθs is Z and Δθe is Z 

11 If θe is M and ey is N and ez is Z then Δθs is N and Δθe is Z 

12 If θe is M and ey is N and ez is P then Δθs is N and Δθe is N 

13 If θe is M and ey is Z and ez is N then Δθs is P and Δθe is Z 

14 If θe is M and ey is Z and ez is Z then Δθs is Z and Δθe is Z 

15 If θe is M and ey is Z and ez is P then Δθs is N and Δθe is N 

16 If θe is M and ey is P and ez is N then Δθs is N and Δθe is N 

17 If θe is M and ey is P and ez is Z then Δθs is N and Δθe is Z 

18 If θe is M and ey is P and ez is P then Δθs is N and Δθe is N 

19 If θe is L and ey is N and ez is N then Δθs is P and Δθe is N 

20 If θe is L and ey is N and ez is Z then Δθs is P and Δθe is N 

21 If θe is L and ey is N and ez is P then Δθs is P and Δθe is N 

22 If θe is L and ey is Z and ez is N then Δθs is N and Δθe is N 

23 If θe is L and ey is Z and ez is Z then Δθs is N and Δθe is N 

24 If θe is L and ey is Z and ez is P then Δθs is N and Δθe is N 

25 If θe is L and ey is P and ez is N then Δθs is Z and Δθe is N 

26 If θe is L and ey is P and ez is Z then Δθs is N and Δθe is N 

27 If θe is L and ey is P and ez is P then Δθs is N and Δθe is N 

TABLE III.  FUZZY RULES FOR WRIST ANGLE 

 

Input: gripper angle w.r.t. horizontal (θη), rate of change 

of eta (Δθη) 

Output: change in wrist joint angle (Δθw) 

1 If θη is N and Δθη is N then Δθw is N 

2 If θη is N and Δθη is Z then Δθw is N 

3 If θη is N and Δθη is P then Δθw is Z 

4 If θη is Z and Δθη is N then Δθw is P 

5 If θη is Z and Δθη is Z then Δθw is Z 

6 If θη is Z and Δθη is P then Δθw is N 

7 If θη is P and Δθη is N then Δθw is Z 

8 If θη is P and Δθη is Z then Δθw is P 

9 If θη is P and Δθη is P then Δθw is P 

IV. MACHINE VISION SYSTEM 

The machine vision system is composed of the camera as 
its sensory vision input and the computer as an image 
processing unit. The camera is the Kinect sensor [26] capable 
of providing not only colored images as well as image depth 
data. The image depth data was used to properly determine the 
height of the detected objects and consequently the stacking 
level of the cylinder objects. Furthermore, the depth data was 
used to filter out the white platform background by exploiting 
the fact that its distance is farther away from the camera itself. 
This method is referred to as depth masking. 

The computer uses the Java-based Processing [30] software 
environment that provides the interfacing between the devices 
attached to it such as the Kinect sensor and the Arduino. 
Processing-based OpenCV [31] and SimpleOpenNI [32]  
libraries were used for the software development. The OpenCV 
library provided the tools to filter the image based on Hue-
Saturation-Value (HSV) as well as detect the presence of blobs 
and their respective coordinates. On the other hand, the 
SimpleOpenNI library allows the system to communicate with 
the Kinect sensor to get the RGB image and depth data. Fig. 
20. shows how the raw RGB image is eventually filtered out to 
keep the blue cylinder objects. The binarized image on the 
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right was processed further to detect the blobs present and store 
their coordinates for sorting purposes. 

 
Fig. 20.  On the left: actual gripper and cylinder objects as seen by the camera 

atop; on the right: filtered image showing the blue cylinder objects. 

 

Fig. 21.  Detection of gripper (left) and blue cylinder objects (right). 

This filtering, detection and coordinate acquisition 
processes were done for other colors as well as for the gripper. 
The gripper is colored differently from the possible colors of 
the cylinder objects to properly recognize and locate the 
coordinates of the gripper itself. Shown in Fig. 21. is the results 
of detection and extraction of the coordinates of the gripper and 
the blue cylinder objects. It is worth mentioning that the 
gripper has two distinguishable shapes if it is wide open. In 
such a case, the reported coordinates of the gripper are found 
by calculating the centroid of the two separately detected 
gripper objects. 

V. GRAPHICAL USER INTERFACE AND SORTING 

ALGORITHM 

The coordinates of the gripper and the objects are measured 
relative to the origin point at the center of the region of interest 
as well as their respective heights relative to the white 
background platform. Together with the measured joint angles 
of the robotic arm, these values constitute the input variables 
for the sorting algorithm. The process begins by the user 
configuring the system through a designed graphical user 
interface (GUI) shown in Fig. 22. The user selects which object 
colors are to be sorted first according to the priority the user 
wishes. The user can also choose how the objects are to be 
sorted and decided where each color should land on pre-
determined locations. After configuration, the “Sort” button 
can be pressed to begin the sorting process. 

 
Fig. 22.  The graphical user interface for the color-based sorter. 

Pressing the “Sort” button invokes the sorting algorithm. 
The sorting algorithm first applies depth masking to 
differentiate depth levels among the platform, the objects and 
the gripper. The next process applies HSV-based color filtering 
to detect the presence of the objects in a specific color. The 
sequence at which colors are detected is determined by the 
priority configuration set by the user. As objects are detected 
for each color, the coordinates of the objects are acquired and 
stored to their respective buffers. After all object colors are 
found, the coordinates of the gripper are acquired. A hysteresis 
function is applied to the obtained coordinates to eliminate the 
sudden changes in coordinates due to noise.  

Now that the coordinates of all objects are found, the 
gripper coordinates and the first object to be sorted or targeted 
is fed to the FLJC. There are several rules that determine which 
object should be fed to the FLJC: 1) based from the priority set 
by the user, and 2) the distance of the target object from the 
gripper. Since it is possible that there are multiple objects of 
the same color, the sorting algorithm would pick the target 
object with the minimal distance from the gripper. Should 
objects have same color and same distance from the gripper, 
the object with least change in base angle needed to reach will 
be picked up first. In this manner, the priority of which object 
should be picked up is resolved. Now that the target object is 
determined, the FLJC applies the appropriate changes to the 
joint angle needed to further minimize the distance between the 
gripper and the target. The machine vision will then locate the 
gripper coordinates and feed it back to the FLJC. This process 
repeats until the gripper coordinates is sufficiently coincident 
with that of the target object. It is also worth mentioning that a 
parallax error will be imposed upon the gripper coordinates 
relative to the platform depending on its height and location. 
To mitigate the parallax shift, a proper coordinate 
transformation is applied to the gripper coordinates before fed 
to the FLJC. For the coordinates (x, y) and height z as seen by 
the camera, the actual coordinates (x’, y’) are found to be: 

 x’=(x-xc)(1-p(z+B)/h)+xc 
 y’=(y-yc)(1-p(z+B)/h)+yc 

where (xc, yc) are the coordinates of the center of ROI 
relative to the base of the robotic arm, p is the parallax factor, h 
is the camera height and B is the base height of the robotic arm. 

As the gripper closes in to the object, the gripper is closed 
to grip the target object. The attached tactile sensors will 
determine if the object was indeed grasped. If the object is 
found to be grasped, a predetermined sequence of robotic arm 
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movements will place the object on its specific location 
according the configuration set by the user. Once the object is 
placed, the robotic arm goes into its home position. The sorting 
algorithm will feed the gripper coordinates and the next target 
object. This process will repeat until all such objects are placed 
to their appropriate destinations. During the sorting process, the 
user cannot reconfigure the sorter until it is finished but may 
press the emergency button to terminate. 

VI. DATA AND RESULTS 

A. Robotic Arm Simulator 

 

Fig. 23.  Robotic arm simulator. 

The robotic arm simulator shown in Fig. 23. is an 
improvement over that shown in [4]. The simulator can 
function as a monitoring tool to show the actual robotic arm 
pose in real time as well as provide a visualization of the 
controller in action. Furthermore, important parameters are 
indicated below to guide in the tuning of the fuzzy membership 
functions and several buttons that are programmed to move the 
robotic arm in a pre-determined sequence such as going to its 
home position and placing an object to designated areas. Once 
the actual robotic arm’s response is satisfactory, the tuned 
fuzzy membership functions are transferred to a final program 
to be integrated with the sorting algorithm and a designed GUI. 

B. Robotic Arm Movement 

To test the accuracy of the fuzzy logic controller, the 
robotic arm was stretched forward along the Y direction. The 
plots of actual robotic arm end-effector coordinates plotted 
against the desired y-coordinate are shown in Fig. 24. through 
Fig. 26. A comparison was made against the inverse kinematic 
implementation. From Fig. 24. the fuzzy logic controller had 
lesser sideway excursions as compared to inverse kinematics 
implementation. The fuzzy logic controller was able to follow 
closely the ideal y-coordinate value as compared to inverse 
kinematic implementation shown in Fig. 25. The inverse 
kinematic implementation is found below the required y-value 
because of the weights of the robotic arm links. This effect is 
more pronounced as the height has significantly drooped 
shown in Fig. 26. Again, the moment due to the weight of 
extending arm is increasing as the y-coordinate increases. The 
fuzzy logic controller on the other hand managed to maintain a 
satisfactory level that is within 5 mm from the ideal height of 
100 mm. 

 
Fig. 24.  X-Y movement response. 

 
Fig. 25.  Y-Y movement response. 

 
Fig. 26.  Z-Y movement response. 
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C. Accuracy of the End Effector 

The end-effector’s accuracy is tested by feeding the FLJC 
with an ideal coordinate coincident to the intersection of 
gridlines on the platform. By marking of the platform beneath 
the gripper, the distance between x-, y- and z-coordinates are 
obtained for at least 30 trials. 

 
Fig. 27.  Measure of end-effector’s absolute error before pickup. 

These coordinates are randomly picked from the workspace 
area where the objects to be sorted are placed. The differences 
are measured and plotted as shown in Fig. 27. The average 
values of 0.8, 1 and 0.6 cm for absolute errors in x-, y- and z-
coordinates were calculated for the end-effector relative to 
origin, respectively. On average, the end-effector coordinates 
were accurate enough to allow tolerance of 2 cm radius. 

 

Fig. 28.  Measure of end-effector’s absolute error after placement. 

Fig. 28 shows the plot of absolute error of gripper 
coordinates in x-, y- and z-coordinates as it moved towards the 
pre-determined coordinates as destination for sorted objects. 
The average values of 0.45, 0.92 and 1.77 cm for absolute 
errors in x-, y- and z-coordinates were calculated for the end-
effector relative to origin respectively. On average, the end-
effector coordinates were accurate enough to allow tolerance of 
2 cm radius. 

D. Reliability of Machine Vision System 

Two tests are performed to determine the reliability of the 
machine vision system: 1) accuracy in acquisition of 
coordinates, and 2) accuracy in color discrimination of objects 
both on the platform level or the second stack level. Twelve 
(12) trials each containing at least 10 colored objects are to be 
detected and the coordinates acquired. The average error for 
each trial is shown in Table IV. On average, the absolute error 

for the overall test of the vision system was about 0.19 cm for 
x-coordinates and about 1.41 cm for the y-coordinates, well 
within 2 cm tolerance value of accuracy. 

TABLE IV.  AVERAGE ERROR FOR OBJECT COORDINATES 

Trial No. 
Average Error 

Trial No. 
Average Error 

x y x y 

1 0.16 0.76 7 0.59 1.83 

2 0 1.16 8 0.25 1.38 

3 0.22 1.06 9 0.22 1.33 

4 0.13 1.73 10 0.08 1.3 

5 0.14 1.67 11 0.07 1.45 

6 0.15 2.03 12 0.21 1.22 

 
For the second test, the ability of the machine vision system 

to properly discriminate colors are tested for the same number 
of trial with same number of objects. A summary of confusion 
matrix was constructed as shown in Table V for all tested 
objects on the first level. The data shows that the colors blue, 
green and yellow were detected 100% accurately. Notice also 
that there is a 100% precision for colors blue, green and 
yellow, and 96% for red. The red color was found to have the 
least among them all because of the proximity of the red color 
to the gripper’s color, making it hard to delineate in HSV 
space. Nevertheless, the gripper is never mistakenly detected as 
an object. 

TABLE V.  SUMMARY OF CONFUSION MATRIX FOR 1ST LEVEL OBJECTS 

Color Blue Green Red Yellow 

Accuracy 100.00% 100.00% 81.54% 100.00% 

True Positive Rate 100.00% 100.00% 100.00% 100.00% 

False Positive Rate 0.00% 0.00% 0.94% 0.00% 

True Negative Rate 100.00% 100.00% 99.06% 100.00% 

False Negative Rate 0.00% 0.00% 0.00% 0.00% 

Precision 100.00% 100.00% 96.00% 100.00% 

Additional objects were stacked on top of the first level 
making it a second level stacked object. Similar test for the first 
level were conducted to test the ability of the system to 
properly discriminate stacked colored objects. Table VI shows 
the summary of confusion matrix for detection of objects on 
the second stack level. The data shows that the green and red 
were detected 100% accurately. Notice also that there is a 
100% precision for colors green and red and about 97% for red 
and yellow. 

TABLE VI.  SUMMARY OF CONFUSION MATRIX FOR 2ND LEVEL OBJECTS 

Color Blue Green Red Yellow 

Accuracy 96.97% 100.00% 100.00% 96.88% 

True Positive Rate 100.00% 100.00% 100.00% 100.00% 

False Positive Rate 4.17% 0.00% 0.00% 4.55% 

True Negative Rate 95.83% 100.00% 100.00% 95.45% 

False Negative Rate 0.00% 0.00% 0.00% 0.00% 

Precision 90.00% 100.00% 100.00% 90.91% 
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VII. CONCLUSION AND RECOMMENDATION 

 The study was successful in integrating the autonomous 
robotic arm with fuzzy logic-based joint controller (FLJC) with 
a machine vision system capable of accurate color 
discrimination into a color-based sorter system. An improved 
robotic arm simulator made it possible to tune the membership 
functions and see the actual effect on the robotic arm’s 
response. Additionally, the end-effector is well accurate 
enough to have less than 2 cm absolute error. The coordinates 
of the different target objects with different colors and stacking 
levels of up to second level as well as the coordinates of the 
gripper were successfully acquired by means of Processing 
with SimpleOpenNI and OpenCV library. The overall accuracy 
of the machine vision system shows that it has the same 
precision as the end-effector and is at least 95% accurate in 
properly discriminating colored objects. This extended study 
has demonstrated that it is capable of sorting even second level 
stacked color objects. The utilization of the depth data made it 
possible to determine the height of the colored object in 
question. 

As for improvement, the researchers aim to introduce 
different controllers such as the hybrid neuro-fuzzy system and 
genetic algorithm to aid in fine tuning the membership 
functions and fuzzy rule formulation. Furthermore, the 
machine vision system can be further improved by applying 
more advanced color clustering techniques which will 
eventually allow more colors to be discriminated without 
ambiguity. 
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