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Abstract—This paper considers robust control problems for a
3D space robot of two rigid bodies connected by a universal joint
with an initial angular momentum. It is particularly difficult to
measure an initial angular momentum in parameters of space
robots since the value of an initial angular momentum depends
on the situations. Hence, the main purpose of this paper is
to develop a robust controller with respect to initial angular
momenta for the 3D space robot. First, a mathematical model,
some characteristics, and two types of control problems for the
3D space robot are presented. Next, for the robust attitude
stabilization control problem of the 3D space robot, a numerical
simulation is performed by using the nonlinear model predictive
control method. Then, for the robust trajectory tracking control
problem of the 3D space robot, another numerical simulation
is carried out. As a result, it turns out that this approach can
realize robust control on initial angular momenta for the two
control problems. In addition, computation amount is reduced
by this approach and real-time control of the 3D space robot can
be achieved.
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I. INTRODUCTION

Since early times, “the falling cat phenomenon” is well
known and this means that a cat can land on her feet despite
it drops upside down from a tree. This phenomenon has been
focused and investigated in the field of classical mechanics
[1]. Similar examples of the falling cat phenomenon can be
easily found in the research field of engineering; robots and
craft in outer space, freely falling multi-body systems [2],
and gymnastic robots [3]. In such systems, the total angular
momentum is conserved, and then the conservation law of
the total angular momentum can be regarded as a nonholo-
nomic constraint [4]. The word “nonholonomic” means that
constraints in the differential equation form are nonintegrable.
Therefore, it is possible to change the attitude of the system by
changing its shape due to the existence of the nonholonomic
constraint.

In the research field of control theory, various researches on
space robots have been done so far. In [1], some interesting
results on the falling cat phenomenon are shown. In [5], a
space robot model of two rigid bodies is dealt with and a
near-optimal control law using finite dimensional Fourier basis
is developed. In [6], a chained-form based control strategy is

proposed to control the attitude of a planer space robot. In [7],
a control method by the genetic algorithm for a space robot
is derived. In most researches about control of space robots,
it is assumed that space robots do not have initial angular
momenta. However, space robots often have initial angular
momenta in realistic situations. For example, a mother ship
gives a space robot out, the space robot obtains an initial
angular momentum. Thus, the authors have focused on 3D
space robots with initial angular momenta and developed a
control strategy based on the near-optimal control method [8]–
[10]. In these studies, it is confirmed that the proposed method
can make the state of the 3D robot transfer to a desired one at
a desired time (the state transition control problem). Moreover,
in order to deal with other control purposes except the state
transition control problem, The authors apply the nonlinear
model predictive control method, which is one of the feedback
controllers, to 3D space robots [11], [12]. In [11], [12], the
two kinds of control problems, called the attitude stabilization
control problem and the trajectory tracking control problem,
are considered. In these work, it is assumed that initial angular
momenta can be measured accurately. However, as compared
to physical quantities such as mass, length, and inertia moment,
it is quite difficult to measure initial angular momenta because
the values of initial angular momenta vary according to the
situations. So, when we measure an initial angular momentum
of a 3D space robot, there exists error of measurement. To
control 3D space robots with initial angular momenta, we have
to overcome this problem, that is to say, we have to design
robust controllers for initial angular momenta.

The main aim of this research is to construct robust
controllers in terms of physical parameter errors for two types
of control problems of a 3D space robot with an initial angular
momentum, and verify robustness of the new control methods
via numerical simulations. The contents of this paper are as
follows. First, in Section II, a mathematical model of the 3D
universal joint space robot with an initial angular momentum
and its some characteristics are presented. Next, in Section
III, a numerical simulation on robust attitude stabilization
control of the 3D space robot is carried out. Then, Section IV
illustrates a numerical simulation on robust trajectory tracking
control of the 3D space robot. Finally, Section V gives the
concluding remarks of this research and future work.
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II. 3D UNIVERSAL JOINT SPACE ROBOT WITH AN
INITIAL ANGULAR MOMENTUM

A. Mathematical Model of 3D Space Robot with I.A.M.

First, this subsection explains a mathematical model of a
3D universal joint space robot with an initial angular momen-
tum. See [8]–[11] for more details. We consider a space robot
that consists of two rigid bodies in the 3-dimensional space
as illustrated in Fig. 1. In the space robot, two rigid bodies
(Rigid Body 1 and 2) are connected by a universal joint via
two links (Link 1 and 2). We denote coordinates of the inertial
space, Rigid Body 1 and 2 by C0, C1 and C2, and assume that
the origins of C1 and C2 correspond to the centroids of Rigid
Body 1 and 2, respectively.

Let Ai ∈ SO(3) be the attitude of Rigid Body i (i = 1, 2)
with respective to the inertial space C0, and wi ∈ R3 be the
angular velocity of Rigid Body i. Note that ŵi = AT

i Ȧi holds.
We use the following notations: mi: the mass of Rigid Body
i (ε = m1m2/(m1 + m2)), li: the length of Link i, si =
[ 0 0 − li ]T ∈ R3: the vector showing the position of the
joint w.r.t. C0, Ii ∈ R3: The inertia tensor of Rigid Body i
(Ji = Ii + εŝTi ŝi, J12 = εŝT1A

T
1A2ŝ2), where ˆ is the operator

that transforms a 3-dimensional vector v = [ v1 v2 v3 ]T ∈ R3

into a 3× 3 skew-symmetric matrix:

v̂ =

[
0 −v3 v2
v3 0 −v1
−v2 v1 0

]
. (1)

It is also noted that A := AT
1A2 represents the shape of

the space robot and

w2 = ATw1 + w (2)

holds for the angular velocity of the joint w ∈ R3, ŵ =
ATȦ. In this paper, we adopt the universal joint depicted in
Fig. 2 as a joint connecting the two rigid bodies. It must be
noted the universal joint can twist and the degree of freedom
is 2. Let θ1 ∈ R and θ2 ∈ R be angles of Link 1 and 2,
respectively, and we use the notation: θ = [ θ1 θ2 ]T ∈ R2. By
considering coordinates of the space robot, we can show the
following:

A =

[
sin θ1 sin θ2 cos θ1 − sin θ1 cos θ2

cos θ2 0 sin θ2
cos θ1 sin θ2 − sin θ1 − cos θ1 cos θ2

]
. (3)

In this paper, we consider the case where the universal
model has an initial angular momentum, hence we denote the
initial angular momentum by P0 ∈ R3. Then, the conservation
law of total angular momentum of the space robot is repre-
sented by

(A1J1 +A2J
T
12)w1 + (A2J2 +A1J12)w2 = P0, (4)

and we can easily confirm that (4) is represented as A(q)+
B(q)q̇ = 0 using the generalized coordinate q, and thus this
is an affine constraint [14]. From the result in [14], it can
be checked that (4) is completely nonholonomic. Assume that

angular velocities of the universal joint can be controlled, that
is, u1 := θ̇1, u2 := θ̇2. Then, we have

w =

[
cos θ2

0
sin θ2

]
︸ ︷︷ ︸

b1

u1 +

[
0
1
0

]
︸ ︷︷ ︸

b2

u2. (5)

Substituting (2) and (5) into (4), we obtain

A1Iuw1 +A1(AJ2 + J12)(b1u1 + b2u2) = P0, (6)

where we define the new notation:

Iu := J1 +AJ2A
T +AJT

12 + J12A
T. (7)

To represent the attitudes of Rigid Body 1, we use the
Cayley-Rodrigues parameter, and hence the attitude of Rigid
Body 1 A1 is expressed as (8). using the parameter α =
[ α1 α2 α3 ]T ∈ R3. The relationship between w1 and α
is expressed by

w1 = U1(α)α̇, U1(α) =
2(I − α̂)

1 + αTα
. (9)

Substituting (9) into (6) and solving for α̇, we have

α̇ = U−1
1 I−1

u AT
1P0

− U−1
1 I−1

u (AJ2 + J12)(b1u1 + b2u2).
(10)

Consequently, we derive the universal joint model with
an initial angular momentum (11) with the variables q :=
[ θT αT ]T ∈ R5, u := [u1 u2 ]T ∈ R2. Thus, the system (11)
is represented as a 5-state and 2-input nonlinear affine control
system.

B. Control Problems for 3D Space Robot with I.A.M.

Next, some characteristics of the universal joint model with
an initial angular momentum (11) are investigated from the
viewpoint of nonlinear control theory. If an initial angular
momentum exists, that is, P0 6= 0, the drift term of the
system (11) satisfies f(q) 6= 0, ∀q. This means that the
system (11) does not have any equilibrium point, that is,
the space robot cannot stop and keeps moving. For nonlinear
control systems, the concepts “local accessibility” and “local
controllability” are quite important in order to investigate
the range of movement of the system [13], [14]. The next
proposition on local accessibility and local controllability of
the system (11) can be obtained [8]–[11].

Proposition 1: The universal joint model with an an initial
angular momentum (11) is locally strongly accessible at any
point q = [ θT αT ]T ∈ R5. Moreover, if the control input u
is sufficiently large, (11) is small-time locally controllable at
any point q.

Since there is no equilibrium point in the model of the
universal joint model with an initial angular momentum (11),
we cannot deal with a normal stabilization problem for the
system. However, Proposition 1 guarantees that we have some
possibilities of other control purposes except normal stabi-
lization. For the universal joint model with an initial angular
momentum (11), the next three types of control purposes
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A1(α) =
1

1 + ||α||2

 1 + α2
1 − α2

2 − α2
3 2(α1α2 − α3) 2(α1α3 + α2)

2(α1α2 + α3) 1− α2
1 + α2

2 − α2
3 2(α2α3 − α1)

2(α1α3 − α2) 2(α2α3 + α1) 1− α2
1 − α2

2 + α2
3

 (8)

 θ̇1
θ̇2
α̇

 =

 0
0

U−1
1 I−1

u AT
1P0


︸ ︷︷ ︸

f(q)

+

 1 0
0 1

−U−1
1 I−1

u (AJ2 + J12)b1 −U−1
1 I−1

u (AJ2 + J12)b2


︸ ︷︷ ︸

g(q)

[
u1
u2

]
(11)

can be considered: (i) the state transition control problem: a
controller to transfer of the space robot to a desired state at a
desired time; (ii) the attitude stabilization control problem: a
controller to stabilize only the attitude of the space robot with
ignoring the shape of it; (iii) the trajectory tracking control
problem: a controller to track the space robot to a given
reference trajectory. In this paper, we will tackle the problems
(iii): the trajectory tracking control problem.

III. ROBUST ATTITUDE STABILIZATION CONTROL

A. Problem Setting

In this section, we shall deal with “the robust attitude
stabilization control problem” for the universal joint model
with an initial angular momentum (11). The purpose of this
control problem is that we design a controller to stabilize only
the attitude of the space robot α with ignoring the shape θ
in the presence of a parameter error for the initial angular
momentum. For example, this kind of the control problem
includes the situation where we move the space robot to the
direction of a given point of the earth in order to send and
receive information. The robust attitude stabilization control
problem is formulated as the next.

Problem 1 [Robust Attitude Stabilization Control]: For
the universal joint model with an initial angular momentum
(11), find control inputs such that the attitude of Rigid Body
1 α is stabilized to a desired value αd under the assumption
on the existence of a parameter error for the initial angular
momentum (P̂0 : an estimated value, P0 : a real value).

In this paper, we take the nonlinear model predictive con-
trol approach in order to solve Problem 1. Especially, we use
the C/GMRES method [15], which is a real-time optimal con-
trol algorithm for nonlinear systems. In the simulation, we use
the parameters of the 3D space robot: l1 = l2 = 1, m1 = m2 =
1, I1 = I2 = diag{ 1/2, 1/2, 1 }, the estimated value of the
initial angular momentum: P̂0 = [0.10.1−0.1]T, the real value)
of the initial angular momentum: P0 = [ 0.07 0.07 − 0.01 ]T,
the initial state: q0 = [ π/2 π/2 1 1 1 ]T, the desired attitude:
αd = [ 0 0 0 ]T. For the nonlinear model predictive control
method, we use the next cost function:

J =
1

2

∫ t+T (t)

t

(α(τ)− αd)TQ(α(τ)− αd)dτ

+
1

2

∫ t+T (t)

t

u(τ)TRu(τ)dτ

+
1

2
(α(t+ T )− αd)TS(α(t+ T )− αd)

(12)

with the weight matrices:

Q = diag{2.0, 1.0, 3.0},
R = diag{0.01, 0.01},
S = diag{0.8, 0.2, 0.4}.

(13)

Note that the cost function (12) evaluates only α and
ignores θ since we consider attitude stabilization. In (12), the
evaluation interval is set as T (t) = T (1−e−at), T = 6.5, a =
0.05. Moreover, we also use the parameters of controller:
the division number of the evaluation interval: N = 50, the
stabilization parameter of the continuation method: ζ = 20,
the number of iterations of the GMRES method: kmax = 3,
the sampling time: ∆t = 0.05 [s], the simulation time: 20 [s].

B. Simulation Results

A numerical simulation is performed based on the problem
setting in subsection III-A. Fig. 2 and 3 illustrate the simulation
results. Fig. 2 shows the time series of θ and α of the 3D
space robot, and Fig. 3 depicts snapshots of the behavior of
the 3D space robot. From these results, we can confirm that
the attitude of Rigid Body 1 α is stabilized to the desired
value αd = [ 0 0 0 ]T. The computation time of this simulation
is 0.95 s, and hence we can see that real-time robust control
can be achieved by the proposed method. It is also confirmed
that the control purposes can be achieved for other problem
settings (physical parameters of the 3D space robot, initial and
desired states, and an initial angular momentum) with tuning
the weight matrices in (12).

IV. ROBUST TRAJECTORY TRACKING CONTROL

A. Problem Setting

Next, in this section, we shall deal with another control
purpose, called “the robust trajectory tracking control problem”
for the universal joint model with an initial angular momentum
(11). The purpose of this control problem is that we design a
controller to make the state of space robot q track to a desired
trajectory data qd(t) in the presence of a parameter error for the
initial angular momentum. Examples of the control problem
are the situations where we track a solar panel installed into
the space robot to the direction of the sun, and we shoot
moving astronomical bodies with a camera installed into the
space robot. The robust trajectory tracking control problem is
defined as follows.

Problem 2 [Robust Trajectory Tracking Control] : For
the universal joint model with an initial angular momentum
(11), find control inputs such that the state q tracks to a
desired trajectory qd(t) under the assumption on the existence
of a parameter error for the initial angular momentum (P̂0: an
estimated value, P0: a real value).
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Rigid Body 2

Rigid Body 1 

Universal Joint 

Link 1 

Link 2 

Fig. 1. The 3D universal joint space robot model.

To solve Problem 2, we also utilize the C/GMRES method
[15]. In a simulation, we use the parameters of the 3D
space robot: l1 = l2 = 1, m1 = m2 = 1, I1 = I2 =
diag{ 1/2, 1/2, 1 }, the estimated value of the initial angular
momentum: P̂0 = [ 0.1 − 0.1 0.2 ]T, the real value) of the
initial angular momentum: P0 = [ 0.095 − 0.095 0.195 ]T,
the initial state: q0 = [ −π/2 − π/2 − 1 − 1 − 1 ]T. The
desired trajectory q(t) is generated from (11) in advance (see
the simulation result in the next subsection). For the C/GMRES

method, we use the next cost function:

J =
1

2

∫ t+T (t)

t

(q(τ)− qd(τ))TQ(q(τ)− qd(τ))dτ

+
1

2

∫ t+T (t)

t

u(τ)TRu(τ)dτ

+
1

2
(q(t+ T )− qd(t))TS(q(t+ T )− qd(t)),

(14)
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Fig. 2. The simulation result in the robust attitude stabilization control problem: the time histories of the real trajectory.

where

Q = diag{0.02, 0.015, 0.04, 0.04, 0.04},
R = diag{0.01, 0.01},
S = diag{0.1, 0.1, 0.2, 0.2, 0.2},

(15)

and the evaluation interval T (t) = T (1 − e−at), T =
6.5, a = 0.05. In addition, we also use the parameters of
controller: the division number of the evaluation interval:
N = 50, the stabilization parameter of the continuation
method: ζ = 200, the number of iterations of the GMRES
method: kmax = 3, the sampling time: ∆t = 0.005 [s], the
simulation time: 40 [s].

B. Simulation Results

The simulation results are depicted in Fig. 4, 5, and 6.
Fig. 4 shows both the time series of θ, α of the space robot
and the desired trajectory. In Fig. 5, the time series of the

error defined by e(t) := q(t)− qd(t) is illustrated. In addition,
snapshots of the behavior of the 3D space robot for both
desired trajectory and the real one are shown in Fig. 6. From
these results, we can see that the state of the space robot
tracks to the desired trajectory qd(t) and then the error e(t)
converges to 0. The computation time of this simulation is
2.71 s, and hence it turns out that real-time robust control can
be achieved by the proposed method. We can also confirm that
the control purposes can be also achieved for other problem
settings (physical parameters of the 3D space robot, initial
and desired states, an initial angular momentum, and a desired
trajectory) with tuning the weight matrices in (12).

V. CONCLUSIONS

This paper has considered two kinds of robust control
problems “the robust attitude stabilization control problem”
and “the robust trajectory tracking control problem” for the 3D
universal joint space robot with an initial angular momentum
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(a) t =0.0000 (b) t =4.0000 (c) t =8.0000

(d) t =12.0000 (e) t =16.0000 (f) t =20.0000

Fig. 3. The simulation result in the robust attitude stabilization control problem: the snapshots of the 3D space robot.

from the standpoint of the nonlinear model predictive control
approach. The simulation results have shown that the control
purposes are achieved in both robust control problems, and
hence the proposed method has robustness for initial angular
momenta. Moreover, we can see that the computation times
in numerical simulations are quite short, and thus real-time
control has been realized.

Our future work include the next topics: modeling and
control of space robots with initial angular momenta by the
quaternion representation, controller design for space robot
models in the descriptor representation, and control of other
types of 3D space robots.

REFERENCES

[1] M. J. Enos, ed., “Dynamics and control of mechanical systems: the
falling cat and related problems”, Fields Institute Communications, 1,
American Mathematical Society, 1993

[2] T. Mita, S. Hyon, and T. Nam, “Analytical Time Optimal Control
Solution for Free Flying Objects with Drift Terms”, in Proc. of IEEE
CDC 2000, Sydney, Australia, pp. 91–94, 2000

[3] T. Mita, S. Hyon and T. Nam, “Analytical Time Optimal Control Solu-
tion for a Two Link Planar Acrobot with Initial Angular Momentum”,
IEEE Trans. Robotics and Automation, Vol. 17, No. 3, pp. 361–366
2001

[4] A. M. Bloch, Nonholonomic Mechanics and Control, Springer, 2003
[5] C. Fernandes, L. Gurvits, and Z. Li, “Near-Optimal Nonholonomic

Motion Planning for a System of Coupled Rigid Bodies”, IEEE Trans.
on Automatic Control, Vol. 39, No. 3, pp. 450–463, 1994

[6] F. Matsuno and J. Tsurusaki, “Chained Form Transformation Algorithm
for a Class of 3-States and 2-Inputs Nonholonomic Systems and Attitude
Control of a Space Robot”, in Proc. of IEEE CDC 1999, Arizona, USA,
pp. 2126–2131, 1999

[7] X. Ge and L. Chen, “Attitude Control of a Rigid Spacecraft with
Two Momentum Wheel Actuators Uging Genetic Algorithm”, Acta
Astronautica, Vol. 55, No. 1, pp. 3–8, 2004

[8] T. Kai and K. Tamaki, “3D Attitude Near-Optimal Control of a
Universal Joint Space Robot Model with Initial Angular Momentum,” in
Proc. of ICCA 2009, Christchurch, New Zealand, pp.2335–2340, 2009

[9] T. Kai and K. Tamaki, “Control of a 3D Ball-in-Socket Joint Space
Robot Model with Initial Angular Momentum based on the Near-
Optimal Control Algorithm,” in Proc. of NOLCOS 2010, Bologna, Italy,
pp. 957–962, 2011

[10] T. Kai and K. Tamaki, “A Near-Optimal Control Approach to 3D Ball-
in-Socket Joint Space Robot Models with Initial Angular Momenta,”
Acta Astronautica, Vol. 68, pp. 1702–1711, 2011

[11] T. Kai, “A Model Predictive Control Approach to Attitude Stabilization
and Trajectory Tracking Control of a 3D Universal Joint Space Robot
with an Initial Angular Momentum,” in Proc. of IEEE CDC 2011,
Orlando, USA, pp. 3547–3552, 2011

www.ijacsa.thesai.org 12 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 6, 2018

0 5 10 15 20 25 30 35 40
-8

-6

-4

-2

0

2

4

t [s]

th
e

ta
1

 [
ra

d
]

 

 

0 5 10 15 20 25 30 35 40
-8

-6

-4

-2

0

2

4

t [s]

th
e

ta
2
 [

ra
d

]

 

 

0 5 10 15 20 25 30 35 40
-3

-2

-1

0

1

2

3

t [s]

a
lp

h
a
1

 

 

0 5 10 15 20 25 30 35 40
-3

-2

-1

0

1

2

3

t [s]

a
lp

h
a

2

 

 

0 5 10 15 20 25 30 35 40
-3

-2

-1

0

1

2

3

t [s]

a
lp

h
a
3

 

 

desired trajectory

real trajectory

desired trajectory

real trajectory

desired trajectory

real trajectory

desired trajectory

real trajectory

desired trajectory

real trajectory

Fig. 4. The simulation result in the robust trajectory tracking control problem: the time histories of the desired and real trajectories.
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Fig. 5. The simulation result in the robust trajectory tracking control problem: the time histories of the error.
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Fig. 6. The simulation result in the robust trajectory tracking control problem: the snapshot of the 3D space robot (upper: the desired trajectory, lower: the
real trajectory).
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